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Unlike organ transplants where an immunosuppressive environment is required, a

successful pregnancy involves an extremely robust, dynamic, and responsive maternal

immune system to maintain the development of the fetus. A specific set of hormones

and cytokines are associated with a particular stage of pregnancy. Any disturbance that

alters this fine balance could compromise the development and function of the placenta.

Although there are numerous underlying causes of pregnancy-related complications,

untimely activation of Toll-like receptors (TLR), primarily TLR4, by intrauterine microbes

poses the greatest risk. TLR4 is an important Pattern Recognition Receptor (PRR),

which activates both innate and adaptive immune cells. TLR4 activation by LPS

or DAMPs leads to the production of pro-inflammatory cytokines via the MyD88

dependent or independent pathway. Immune cells modulate the materno–fetal interface

by TLR4-mediated cytokine production, which changes at different stages of pregnancy.

In most pregnancy disorders, such as PTB, PE, or placental malaria, the TLR4

expression is upregulated in immune cells or in maternal derived cells, leading to the

aberrant production of pro-inflammatory cytokines at the materno–fetal interface. Lack

of functional TLR4 in mice has reduced the pro-inflammatory responses, leading to an

improved pregnancy, which further strengthens the fact that abnormal TLR4 activation

creates a hostile environment for the developing fetus. A recent study proposed that

endothelial and perivascular stromal cells should interact with each other in order

to maintain a homeostatic balance during TLR4-mediated inflammation. It has been

reported that depleting immune cells or supplying anti-inflammatory cytokines can

prevent PTB, PE, or fetal death. Blocking TLR4 signaling or its downstream molecule

by inhibitors or antagonists has proven to improve pregnancy-related complications

to some extent in clinical and animal models. To date, there has been a lack of

knowledge regarding whether TLR4 accessories such as CD14 and MD-2 are important

in pregnancy and whether these accessory molecules could be promising drug targets

for combinatorial treatment of various pregnancy disorders. This review mainly focuses

on the activation of TLR4 during pregnancy, its immunomodulatory functions, and the

upcoming advancement in this field regarding the improvement of pregnancy-related

issues by various therapeutic approaches.
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INTRODUCTION

Pregnancy is an immunologically unique state owing to
the fact that it requires the maternal immune system to
be highly active so as to fight the upcoming intrauterine
microbial challenges, but it is also simultaneously required
to be immunosuppressed to maintain the semi-allogenic fetal
development (1–3). A fine interplay between both phases ensures
a healthy pregnancy. There are numerous reports that have
suggested that any dysregulation in the immune status at the
materno–fetal interface due to infections are the main cause of
preterm delivery, preeclampsia, gestational diabetes, miscarriage,
placental malaria, and other pregnancy-related disorders (4–
7). There are multiple routes through which the infections
can gain access to the placenta, maternal endometrium, and
amniotic fluid; ascending through the genital tract and colonizing
uterine cavity is the most preferred of all (8). Many of
these microbial components act as a ligand for the pattern
recognition receptors (PRRs). Pattern recognition receptors are
an important element of the innate immune system since
they act as a first line of defense against invading pathogens.
Recognition of microorganism-originated pathogen-associated
molecular patterns (PAMPs) or host-derived damage-associated
molecular patterns (DAMPs) relays the signaling cascade, leading
to an increase in the expression of cytokines, chemokines, and
interferons (7, 9). The Toll-like receptor (TLR) family is one
of the important subgroups of PRRs, and it acts as a bridge
between innate and adaptive immunity. Expression of TLRs is
not restricted to immune cells, but they are also present on variety
of cell types, including fibroblasts, endothelial cells, and epithelial
cells, and also on placental tissue (10, 11). Each TLR recognizes
a specific microbial product and activates a defined signaling
pathway leading to distinct immunological response. There are
numerous studies that have reported that administration of a
TLR4-specific ligand, lipopolysaccharide (LPS), stimulated the
generation of pro-inflammatory cytokines and prostaglandins
in gestational tissues that leads to preterm labor (12–14).
This review emphasizes the role of TLR4 signaling in normal
pregnancy and its dysregulation leading to adverse outcomes.We
will also summarize promising therapeutic strategies that focus
on targeting the TLR4 signaling pathway for the management of
pregnancy-related disorders.

TOLL-LIKE RECEPTORS

The Toll gene was first discovered in Drosophila, where it plays a
critical role in defining the dorso–ventral axis during embryonic
development (15). A few key findings revealed that the Toll
protein is involved in imparting an immune response against
fungi and bacteria in adult fly (16, 17). Later, receptors similar
to Toll were identified in humans, and the first one was mapped
on chromosome 4 (18, 19). During that time, TLRs were believed
to be important in the development process. Subsequently,
however, human homologs of Drosophila Toll, TLRs, were also
reported to be involved in activating innate and adaptive immune
responses in vertebrates. There are a total of 10 homologs of
TLR (TLR1-TLR10) that are known to be expressed by humans

and that can specifically detect different surface and intracellular
pathogen products.

Toll-like receptors (TLRs) comprise of an extracellular
domain, including leucine-rich repeats and a Toll/interleukin-1
receptor (TIR) domain at the cytoplasmic end. Following ligand
recognition, TLRs relay the signaling either via the intracellular
signaling adapter protein, the myeloid differentiation factor
88 (MyD88)-dependent pathway, or the MyD88-independent
pathway, which is also known as the TLR-mediated TIR-domain-
containing adapter-inducing interferon-β (TRIF)-dependent
pathway. The MyD88-dependent pathway leads to the activation
of early phase nuclear factor-κB (NF-κB), resulting in the
production of pro-inflammatory cytokines, including IL-1β, IL-6,
IL-12, and TNF-α. The TRIF-dependent pathway generates Type
I IFNs (IFNα /β) through interferon regulatory factor (IRF-3) and
via activation of late-phase NF-κB (20, 21).

Proper release of these cytokines by the activated leukocytes
or uterine epithelial cells plays a key role in attaining a successful
pregnancy by facilitating the fetus implantation. But there is
increasing evidence to suggest that uncontrolled activation of
TLRs—either on leukocytes or uterine epithelial and stromal
cells, specifically TLR4—at the materno-uterine junction is
associated with pregnancy-related problems (22–25).

Extracellular Receptor Complex
TLR4 in itself is unable to recognize LPS, and it therefore
requires numerous other proteins for ligand recognition. The
LPS-binding protein (LBP) is one such soluble plasma protein
that first interacts with LPS and then transfers it to a cluster
of differentiation 14 (either sCD14 or membrane bound). CD14
is a GPI-linked protein that is also one of the PRRs that
can bind to the LPS-LBP complex; finally, it also chaperones
the LPS molecule to MD-2/TLR4 signaling complex. Myeloid
differentiation 2 (MD-2) is an adapter protein that directly
recognizes and binds to the conserved lipid A moiety of LPS
(26, 27). The intracellular signaling is triggered only when MD-2
interacts non-covalently on the extracellular domain of TLR4 to
forms a heterodimeric complex (LPS.MD-2.TLR4)2 (28).

TLR4 Signal Transduction
TLR4, the first identified human Toll-like receptor, is the only
TLR that can signal via an MyD88-dependent as well as an
MyD88-independent manner. It acts as a specific receptor
for gram-negative bacterial lipopolysaccharide (LPS) and can
also bind DAMPs, such as hyaluronic acid and β-defensin 2,
fibrinogen, and heat shock proteins hsp60 and hsp70 (29, 30).
The binding of the ligand to the receptor triggers the intracellular
signaling pathway. Each TLR shares a similar cytoplasmic
signaling domain, which is similar to the IL-1 receptor, the
TIR domain. Numerous adaptor molecules that have a TIR
domain, such as MyD88, TRIF, TIR domain-containing adaptor
protein/MyD88 adapter-like protein (TIRAP/Mal), and TRIF-
related adaptor molecule (TRAM), interact with the TIR domain
of TLR4 and thus relay the downstream signal. Among all the
TLRs, TLR3 is the only one that does not signal via the MyD88-
dependent pathway. Furthermore, only TLR4 utilizes all of the
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four adaptor molecules, namely, MyD88, TIRAP, TRIF, and
TRAM, for signal transduction (9, 31) (Figure 1).

There are numerous reports that emphasizes the role of
immune activation in the intestinal and respiratory tract, and a

wealth of knowledge is currently focused on uterine epithelial
cells of the female reproductive tract (FRT) being an essential
immunological site (32–36). Several studies have shown that
TLRs are expressed all through the pregnancy at different

FIGURE 1 | TLR4 Signaling pathway. The LPS Binding Protein (LBP) binds to LPS and transfers it to CD14 or MD-2, which are the accessory proteins involved in the

ligand recognition, dimerization, and endocytosis of TLR4. TLR4, upon dimerization, can signal via two separate pathways, the MyD88-dependent and the

MyD88-independent pathway. The MyD88-dependent pathway involves the activation of IRAKs and TRAF6, which results in the phosphorylation of transcription

factors, such as NF-κB and AP-1. These transcription factors upon phosphorylation translocate to the nucleus and are involved in triggering the transcription of

pro-inflammatory cytokine genes. The MyD88-independent pathway, or the TRIF-dependent pathway, however, involves TRAF3 for the activation of transcription

factor IRF-3, which favors the production of Type I interferons, such as IFN α, β.
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locations in the FRT (37, 38). Expression of PRRs on the epithelial
and stromal cells in the uterus helps in the recognition and timely
response toward vaginal infections. Conversely, the uncontrolled
activation of innate immune system may also result in poor
pregnancy outcomes.

MyD88-Dependent Signaling
After the dimerization of TLR4 on ligand binding, MyD88 is
recruited, and it interacts via its TIR domain to the cytoplasmic
region of TLR4 through a homophilic interaction. Several other
accessory molecules are also employed, including various IL-
1 receptor-associated kinases (IRAKs), TRAFs, and mitogen-
activated protein kinases (MAPKs). Next, NF-κB is activated
and translocated to the nucleus via initiating the degradation
of its inhibitory protein Iκ-Bα by inhibitory kappa B kinase
(IKK). Activating protein-1 (AP-1) is one of the transcription
factors that is activated by MAPKs (31). This pathway ultimately
leads to the production of several pro-inflammatory cytokines
and chemokines.

MyD88-Independent Signaling
TLR4/TRIF dependent signaling is only initiated after the
receptor complex is internalized into the endosomes. Only TLR3
and TLR4 utilizes this pathway, involving the participation
of TRIF and IRF-3 and resulting in the production of type
I interferons (IFN) along with pro-inflammatory cytokines.
They have the capability to stimulate IFN-β and Interferon-
inducible genes in MYD88 null cells owing to the fact that
both the pathways need different accessory proteins to function
(9). IRF-3 and IRF-7, upon phosphorylation, dimerize and
translocate to the nucleus where they bind to the Interferon-
Stimulated Response Elements (ISREs), giving rise to the
expression of interferon-inducible genes. IRF-3 and IRF-7 are
crucial among the IRF family, as Type I interferon production
is severely hampered in IRF-7 null mice and was completely
abolished in IRF-3 and IRF-7 null cells (39). TLR4-induced
type I IFN induction was highly compromised in IRF-3 null
mice emphasizing the importance of IRF-3 and IRF-7 in TLR
signaling pathway (40). Interestingly, there are reports that
have highlighted that CD14 plays a major role in supporting
the internalization of (LPS.MD-2.TLR4)2 receptor into the
endosomes (41).

TLR4 Expression and Signaling at the
Materno–Fetal Interface
Histological and functional changes of different parts of
the female reproductive tract involving the perimetrium,
myometrium, endometrium, cervix, and vagina take place
throughout normal pregnancy. Several pregnancy-related tissues
are also formed, including the amnion, chorion, and placenta, to
support the development of the fetus. Any dysregulation in the
usual scenario results in adverse pregnancy outcomes. Hence, in
the current review, we have focused on the investigations that
have been carried out to look into the function and expression
profile of TLR4 during the course of pregnancy, exploring specific
materno–fetal tissues of the female reproductive tract that have a
close relationship with the developing embryo (Figure 2).

Placenta
The developing embryo is protected from the surrounding
environment effectively by the placenta. Numerous PRRs are
contemplated to take part in this interface, including Nod-like
receptors (NLRs) and TLRs (42). All TLRs are found to be
present in the normal-term placental tissue at the mRNA level,
but only TLR2 and TLR4 are completely characterized at the
protein level. The expression of these receptors is not continuous
throughout the pregnancy but follows a definitive trend. In the
first trimester placental tissues, trophoblast cells exhibit enhanced
expression of TLR2 and TLR4. The villous cytotrophoblast
along with extravillous trophoblast expresses TLR4 in first
trimester trophoblast. The outer syncytiotrophoblast cells that
directly interact with the maternal blood are found to lack
TLR4 expression (43). Therefore, a pathogen can get access to
the placenta by crossing the syncytiotrophoblast cell layer that
is lacking in TLR4 and pose a threat to the inner placental
compartments. The entrance of a pathogen into the trophoblast
cell expressing TLR4, however, results in excessive chemokine
secretion, which leads to enhanced chemotaxis of amonocyte and
neutrophil to the site of infection (44).

The differential expression of TLRs persists till the end of
the second trimester. There are various reports that suggest
that TLR4 is expressed during the second and third trimester
in human placentas obtained from normal and preterm
pregnancies. The expression of TLR4 has also been found
in the syncytiotrophoblast layer by the third trimester. These
studies have signified that placental cells can effectively counter
the intrauterine infections (45, 46). A recent study has now
focused on the temporal changes of TLRs expression taking place
throughout gestation, which can help in devising an effective
clinical diagnostic marker by observing the TLR pattern shifts
at the materno–fetal interface during pregnancy (11). Another
study elucidated the mechanism that regulates IFN-β expression
in the trophoblast through a negative feedback loop to ensure an
effective response against invading pathogens (47).

Fetal Membranes
Chorioamnionitis is characterized by the inflammatory response
generated in the amnion and chorionmembranes by the invading
pathogenic microbes, resulting in preterm labor (48). Fetal
membrane infections are known to trigger pro-inflammatory
cytokines, in particular IL-6, TNF-α, and IFN (α,β,γ), and
chemokines in the amniotic sac (49, 50). There is much
supporting evidence to suggest that fetal membranes do indeed
respond to bacterial components and, in turn, generate cytokines
(51, 52) along with many host defense peptides, which are
anti-microbial in nature (53–55). During chorioamnionitis, the
normal polarized distribution pattern of TLRs is completely
lost, resulting in the overall upregulation of TLR2 and TLR4
expression (56).

A recent report demonstrated that human fetal membranes
and neutrophils that interact directly, and LPS-stimulated factors
originating from the fetal membrane, can effectively recruit, and
trigger neutrophils to induce inflammatory cytokines and helps
them build neutrophil extracellular traps. The effect of TLR
activation in preterm infants has also been studied by checking
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FIGURE 2 | Schematic showing distribution of immune cells across materno–fetal interface during early pregnancy. Macrophages, Treg cells, and dendritic cells are

present in the myometrium as well as decidua, while uterine natural killer (uNK) cells are restricted to decidua. The effective crosstalk between various immune cells

and extravillous trophoblast cells creates an immunosuppressive environment and helps in the formation of various pregnancy-related tissues, both of which are

essential for a successful pregnancy. Extravillous cytotrophoblasts enter the decidua to reach out to maternal spiral arteries for obtaining required nutrient to support

developing embryo. Other nutrients, gas, and waste exchange happens via placental villus, which interacts with the maternal blood directly. The villus has double layer

of cells consisting of syncytiotrophoblasts and cytotrophoblasts. It encloses the fetal blood vessels along with fibroblasts and fetal macrophages (Hofbauer cells).

Immune cells as well as placental cells protect the fetus by expressing PRRs, such as Toll-like receptors, on their surface throughout the pregnancy.

the level of the immunomodulatory factor, such as cAMP
concentration in cord blood samples along with peripheral blood
samples of preterm babies for the first month after delivery (57).

Decidua
Decidua harbors most of the immune cells, which have the
capability to generate an instant immune response against
invading pathogens. Immune cells, such as macrophages,
dendritic cells, uterine Natural Killer (uNK) cells, and Regulatory
T cells, present in decidua differentially express TLR2 and TLR4
on their surface during pregnancy (56). Additionally, resident
cells in the decidua also express these pattern-recognition
receptors. Transcripts of all TLRs have been found in the first and
third trimester decidual cells, whereas only TLR2 and TLR4 have
been found to be expressed in the first trimester decidual cells,
and TLR1–TLR6 expression has been seen in the term decidua
(58, 59). Furthermore, decidual cells, upon being stimulated
with LPS, trigger the production of pro-inflammatory cytokines
and many TLR4 pathway related downstream genes (60). These
results have demonstrated the contribution of decidual stromal
cells in fighting intrauterine infections and thereby act as a barrier

between the developing fetus and invading microbes so as to
ensure a safe environment for fetal development.

Immune Modulation During Pregnancy
The host graft model of pregnancy is an old paradigm
that suggest that immune cells recognize the fetus as semi-
allogenic and hence try to eliminate it. In the current
school of thought, however, the immune cells facilitate the
implantation, formation, and development of the blastocyst for
the sustenance of the pregnancy. In the normal condition,
there are three immunological stages: (i) the pro-inflammatory
condition in the decidua that aids in implantation and
placentation; (ii) the growth of the fetus occurs in an anti-
inflammatory environment; and (iii) there is finally a change
back to the pro-inflammatory state for parturition (25, 61, 62)
(Figure 3A).

Fetus implantation in the early stages of pregnancy triggers the
immune response at the junction of the decidual endometrium
and extravillous trophoblast (EVT). Early contact of EVT with
the maternal cells activates the immune system, primarily
the innate immunity (63, 64). Innate immune cells, such
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FIGURE 3 | Immunological stages of pregnancy: during first trimester of pregnancy, the inflammatory response is required for blastocyst implantation. (A) The second

trimester is described by an anti-inflammatory and T-helper 2 (Th2)-type immune microenvironment that is necessary for fetal growth. In the third trimester, switching

from anti-inflammatory to an inflammatory response happens, and this is essential for labor and delivery. (B) Different stages of pregnancy have altered the level of

TLR4 activation the first and third trimester have more TLR4 activation in immune cells and trophoblast cells, which results in inflammation that is required for

blastocyst implantation and term labor and delivery. In the second trimester, the lowered TLR4 activation supports the anti-inflammatory response for fetal growth.

(Continued)
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FIGURE 3 | (C) Trophoblast-mediated immune regulation. (i) Trophoblast cells secrete number of cytokines and chemokines, such as CC-chemokine ligand 2 (CCL2),

CXC-chemokine ligand 12 (CXCL12), CXCL8, and transforming growth factor-β (TGFβ), which are responsible for recruitment of immune cells to the materno–fetal

interface. Immune cells provide support for invasion and implantation of trophoblast. (ii) Trophoblast cells secrete cytokines that help in training of uterine natural killer

(uNK) cells and M2-like macrophages; in turn, these immune cells support the vascular and tissue remodeling that is necessary for trophoblast invasion and

differentiation. TGFβ secreted by trophoblast cells induces the polarization of regulatory T (Treg ) cells, and these cells provide a feto-tolerant environment at the

materno–fetal interface. (iii) Trophoblast cells express PRRs, such as TLRs, that allow them to sense and respond to DAMPs and PAMPs produced during tissue

damage and infection. IL, interleukin; M-CSF, macrophage colony-stimulating factor.

as decidual macrophages, NK cells, dendritic cells, and T
cells, are attracted toward the materno–fetal junction during
the first trimester and remain there until parturition (65–
67). These immune cells secrete different inflammatory
cytokines, which are responsible for different states of
the placenta. A distinct role is played by these immune
cells for acceptance of the fetus and its protection from
pathogens. The involvement of these immune cells and how
TLR4 expression helps in pregnancy is described further
(Figures 3B,C).

Uterine NK Cells
Natural Killer (NK) cells were initially derived by their cytotoxic
activity against transformed cells. These cells have a unique ability
to produce cytokines and perform cytotoxic functions other than
T and B cells of lymphocyte origin.

Uterine NK cells are similar to systemic NK cells, but they
do not express CD16 on their surfaces. They are translocated
to the endometrium lining and placenta by the chemokine
secreted from trophoblast cells. Uterine NK (uNK) cells are
different in that they are highly granulated and are considered
to play an essential role in maintaining a successful pregnancy by
cytokine production in a temporal manner (68, 69). In addition
to cytokine secretion, the crosstalk of uNK cells with dendritic
cells supports the production of various growth and angiogenic
factors, which helps in the implantation of trophoblast toward
the vicinity of maternal blood (61, 63, 65, 70). These cells are
dominant until mid-gestation, which helps in the implantation
and acceptance of the fetus. uNK cells do so by getting activated
or inhibited by ligands expressed in invading trophoblast (HLA-
C) via the KIR receptor expressed on NK cells. uNK cells help
in polarizing the Th2 subset of the CD4 T-cell subsets through
the activation of KIR signaling in the second stage of pregnancy.
The inhibitory KIR interaction with HLA C2 (in infants or
trophoblast) is associated with preeclampsia (71, 72). In-vitro
studies have shown that uNK cells have a high TLR expression
(specifically TLR 2,3, and 4), which is stimulated to produce IFN-
γ or IFN-β either by TLR agonist or through other cells in the
endometrium (73, 74). TLR-induced cytokines and the effector
function prevents the fetus frommicrobial infection and provides
a feto-tolerant environment. The elevated inflammatory response
is balanced by IL-10 and IL-1RA, and this downregulates the
pro-inflammatory cytokines (75–77). The crucial role of IL-10
was elucidated in a mouse model, which resulted in frequent
PTB upon TLR4 and TLR9 activation (78, 79). It is still unclear
how TLR helps in shaping the uNK population in the materno–
fetal interface.

Decidual Macrophages
In contrast to inflammatory cells, there is an abundant population
of decidual macrophages, and these are critical to maintaining
pregnancy after successful implantation. Decidual macrophages
express CD206 and CD209 molecules on the surface along
with CD11c hi/lo antigen. These cells act as antigen-presenting
cells to innate (NK cells) and adaptive immune (T cells) cells
at the materno–fetal interface during early pregnancy. Unlike
circulatingmacrophages, decidual macrophages have amoreM2-
like phenotype and perform a “cleanup” function of apoptotic
cells to prevent pro-inflammatory condition in the decidua (65,
80–83). Activation of the TLR pathway dictates the polarization
of macrophages from anti-inflammatory to pro-inflammatory
subsets in the uterus. Decidual macrophages have the potential
to secrete cytokines like TNF-α and IL-1β along with IL-
6, IL-8, and IL-10 as anti-inflammatory cytokines upon TLR
agonist stimulation. TLR induced IL-10 by decidual macrophages
inhibits excessive CD4 T-cell proliferation and activation (75,
84). Excessive administration of TLR ligand-like CpG or LPS
modulates the macrophages to the M1 type, which leads to
preterm birth or fetal reabsorption (79). Thus, the M1 phenotype
of macrophages in uterus are harmful for normal pregnancy,
which can be rescued either by depleting such macrophages or
by administration of IL-10 cytokine (77, 85). Progesterone also
prevent the NF-κB activation through TLR4 pathway in decidual
macrophages, thus decreasing the production of inflammatory
cytokines (86, 87).

Regulatory T Cells
Immunology during pregnancy is similar to tumor immunology.
In cancer, the adaptive immunity plays a critical role in graft
rejection, but cancer cells modulate the immune cells for its
establishment. As opposed to rejection, maintaining pregnancy
is also a kind of allograft tolerance (61, 88). In this scenario,
a subset of adaptive immunity, i.e., regulatory T cells, plays
a critical role in sustaining pregnancy. Amplification of these
cells helps in restraining Th1 and Th17 responses and creates
an immunosuppressive environment, thus protecting the fetal
allograft from elimination. Tregs comes into play during the
second stage of pregnancy where they crosstalk with other
immune cells, such as uNK, dendritic cells, and decidual
macrophages, to create a “tolerant” environment by reducing the
Th1 and Th17 cytokines.

The temporal existence of Treg cells is regulated by TLR4
expression, which is upregulated during early pregnancy in
decidual stromal cells and thus decreases the Treg population.
This increased TLR4 signaling inhibits the transcription factor
Foxp3, which in turn reduces regulatory T-cell polarization
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(89). A reduced number of Treg cells has been associated with
preeclampsia and PTB. There is a report that, for the first time,
has demonstrated the significance of regulatory T cells in a
murine model, where depletion of these cells resulted in loss of
pregnancy (90). Rag−/− mice were treated with a TLR4 ligand
(LPS), causing preterm birth; however, the adoptive transfer of
Treg cells rescued these mice and ensured they were able to
sustain the pregnancies to term (13, 91), and negatively regulated
LPS induced fetal inflammation in a late pregnancy mouse model
(92). Therefore, regulatory T cells are important in maintaining
a tolerant environment, and their time of polarization decides
the fate of pregnancy (93). During pregnancy, a pool of memory
Treg cells are differentiated against the paternal alloantigen, and
they are responsible for inducing tolerance upon subsequent
pregnancy with the same paternal alloantigen (94, 95).

ROLE OF TLR4 SIGNALING IN
PREGNANCY

During normal pregnancy, a large number of cytokines and
chemokines are secreted by trophoblasts, which helps in the
proper implantation of the embryo on the uterine wall. These
cytokines also help in the training of immune cells that are
essential for the establishment of different stages of pregnancy
(61, 70, 96).

TLR2 and TLR4 are widely expressed on various innate
immune cells, including decidual macrophages and dendritic
cells. Along with these immune cells, TLR4 is reported to
express in decidual cells during the first trimester, EVTs,
Villous cytotrophoblasts, and hofbauer cells, though not in
syncytiotrophoblasts (70). These cells protect the fetus from
various microbes and infectious agents, which indicates their
critical role in placenta. There are many DAMPs, such as
apoptotic cells or matrix component-like fibronectin and
oligosaccharides, within the placenta that trigger TLR signaling
via the MyD88-NF-κB pathway. This signaling results in the
production of inflammatory cytokines by neighboring immune
cells in the decidua.

TLR4 expression is found in various types of cells and
at different time points. Any changes in this expression
or perturbation in signaling causes pregnancy disorders like
preterm birth, preeclampsia, and abortion. Recently, TLR4-
mediated IFN-β production and its role in pregnancy has been
widely elucidated. There is an increase in the production of
IFN-β by trophoblast cells upon LPS-mediated TLR4 activation
via the MyD88-independent (TRIF-TBK1-IRF-3 axis) pathway.
Increased IFN-β induces downstream interferon stimulating
genes and also triggers negative regulators of the TAM receptor,
such as Mer and Axl. Absence of these negative regulators were
found to be detrimental, as fetal rejection occur in the presence
of increased IFN-β in the placenta (47).

Preterm Birth (PTB)
A major problem of neonatal mortality is due to preterm
labor (gestation at < 37 weeks). PTB is marked by increased
pro-inflammatory factors due to local or systemic infection

or inflammation, such as infection in intra-amniotic
(chorioamnionitis) or periodontitis, which interacts via maternal
sera (97, 98) (Figures 4A,B). LPS-mediated TLR4 signaling is
profound in PTB and IUFD (Intra Uterine Fetal Death) even
with a low dose in LPS pre-treated mice (99). In the animal
model, TLR4 knockout mice were unaffected by PTB, whereas
a neutralizing antibody against TLR4 reduced fetal death in
normal mice (98, 100). In chorioamnionitis, which leads to PTB,
LPS-induced translocation of TLR4 toward the basal membrane
is a protective mechanism to lower the immune response (101).
Increased TLR4 expression on CD14+ monocytes has been
well-correlated in patients with PTB (102). Reports suggest that
small doses of LPS (TLR4 agonist) treatment in Il-10−/− mice
causes PTB, as opposed to in wild type mice (78). Also, upon LPS
treatment, mice show increased uNK intrusion and placental cell
death. But with depletion of uNK cells or deactivation of TNF-α,
mice were rescued from PTB (103). During parturition or in
preterm birth, it has been observed that TLR4 plays a critical role
in developing inflammatory response by recruiting a number of
monocytes and macrophages to the placenta. TLR4 and TREM-1
(triggering receptor expressed on myeloid cells 1) expression was
found to be elevated in monocytes and neutrophils in patients
diagnosed with PTB (104). Tlr4−/− mice showed delayed labor
due to the absence of an inflammatory cytokine storm even
after LPS treatment, suggesting that TLR4 indeed is necessary
for timely labor. Inflammation-induced PTB can be delayed by
small molecule-like (+) naloxone, which is specific to TLR4
receptor and has the ability to cross the placenta and delay
labor (105, 106). As most of the studies were done under total
TLR4 knockout conditions, involvement of TLR4 activation
at the materno–fetal interface was still unclear. However, in
a recent study, a decidua specific conditional TLR4 knockout
was generated using the Pgr-Cre driver (PgrCre/+Tlr4f/f) to
explore the physiological importance of TLR4 during pregnancy.
Endothelial cells expressing TLR4 has reported to be important
in sensing the inflammation in the decidua, which, in turn,
activates STAT3 via IL-6 in perivascular stromal cells and
hence regulates the anti-inflammatory IL-10 production. The
homeostasis of TLR4 expression in endothelial cells determines
the pregnancy outcome, as in case of PTB, and could be a
probable therapeutic target in preventing PTB (107).

Preeclampsia (PE)
Preeclampsia is a heterogeneous disorder caused after the 20th
week of pregnancy due to local or systemic abnormalities. There
is much evidence to suggest that TLR signaling activation could
cause PE in many ways (Figures 4C,D). An imbalance of the Th1
and Th2 response is a dominant immune response as a result of
TLR4 activation which creates a pro-inflammatory environment
leading to preeclampsia (108, 109). The abundance of TLR
ligand could be linked to various pathogenic infection, such as
Chlamydia pneumoniae, Cytomegalovirus, Helicobacter pylori,
Malaria, Toxoplasma gondii, and Mycoplasma Hominis (110–
112). Since PE is a multifactorial disorder, maternal health along
with infectious load add up to the pathogenesis of this disorder.
Pregnant women with urinary tract infection are also at a higher
risk of this disorder (110, 113). Among all TLRs, TLR4 has
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FIGURE 4 | Alteration of TLR4 signaling in pregnancy disorders. (A) Bacterial products, such as lipopolysaccharide, activate TLR4 and the signal TRIF-TBK1-IRF-3

pathway to induce the baseline expression of IFN-β (which is encoded by IFNB) in the placenta. The production of IFN-β by the placenta modulates the maternal

immune system and promotes tolerance, while providing protection against viral and bacterial infections. (B) Bacterial products stimulate the production of type I IFNs

by trophoblast cells and maintain an anti-inflammatory environment as well as active surveillance and protection against infections. However, in case higher antigen

load or if pathogenic infection reaches the placenta, TLR4 expression increases and modulate the activation signals through MyD88-TRAF6-NF-κB leading to

inhibition of type I IFNs, and promotion of pro-inflammatory response that is responsible for preterm labor. TRAM is the TRIF-related adapter molecule (also known as

(Continued)
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FIGURE 4 | TICAM2). Role of macrophages and TLR4 in Pregnancy: (C) In normal pregnancy, M2-like macrophages are available around spiral arteries and the

endothelium, which helps in the remodeling of these arteries by producing various factors associated with angiogenesis and tissue remodeling. They also play a role in

immunomodulation, for instance by producing IL-10. (D) During preeclampsia, increased numbers of M1-like macrophages are found in the materno–fetal interface.

These M1 type decidual macrophages have more TLR4 expression and signal via NF-κB pathway to produce pro-inflammatory cytokines, such as TNF-α and IFN-γ,

which induces apoptosis of the trophoblast cells.

TABLE 1 | List of drugs targeting TLR4, and its downstream signaling molecules during pregnancy disorder.

Drugs Role in pregnancy disorder Disorder References

TNF-α ANTAGONIST

Hydroxyquinone Reduces production of TNF and endothelin-1 PE (127)

Asprin Prevents endothelial dysfunction due to TNF PE (118)

TLR4 INHIBITOR

Curcumin Downregulates TLR4 expression and NF-κB mediated inflammatory response PE (108, 128)

Vitamin D Calcitriol can modulate innate as well as adaptive response (pro to anti- inflammatory)

Decreases TLR4 expression

PTB, PE & spontaneous

miscarriages

PE

(129, 130)

(131, 132)

Rosiglitazone Reduces TLR4 mediated inflammation

Increases antioxidant response by NRF-2 and HO-1

PTB (133)

Progesterone Inhibit TLR4 expression in macrophages

Promotes Th2 differentiation

Induces tolerance at materno–fetal junction

PE (86, 134)

(135)

(136, 137)

IMMUNOMODULATORS

Inonotus obliquus polysaccharide Maintain Th17/Treg cell balance Infection of T.gondii (138)

IL-10 Maintains anti-inflammatory condition in decidua PTB (107)

IKK COMPLEX INHIBITOR

NEMO-binding Domain Inhibitor Reduces Prostaglandin E2 (PGE2) in LPS and Ureaplasma parvum stimulated in-vitro

ovine gestational membrane model

PTB (139)

Parthenolide Reduces inflammatory gene expression in patient derived choriodecidual cells.

Decreases TNF-α and COX-2 expression in human urothelial cell stimulated

with TNF-α.

PTB (140, 141)

TPCA-1 Similar effect as of parthenolide.

Reduction in PGE2 level in LPS stimulated ovine pregnancy model

PTB (139, 140, 142)

been found to be associated with preeclampsia. As reported by
Mazouni et al. a patient with preeclampsia showed an imbalance
of the pro-inflammatory form of monocytes due to TLR2 and
TLR4 signaling (114). Another factor, which is predisposed to
preeclampsia, is the genetics of TLR2 and TLR4 polymorphism.
Single nucleotide polymorphisms in TLR2 (Arg753Gln) and
TLR4 (Asp299Gly/Thr399Ile) have been associated with early
onset of preeclampsia (115), with an exception in the Caucasian
population (116).

Other than different maternal syndromes, which are
associated with PE, serum TLR4 and NF-κB p65 could be used
as a biomarker for predicting cytokine environment and its
influence on the immune cells (117). Even microRNAs (miR-155,
miR-335, and miR-584), which prevents free radicals (eNOS)
in the endothelial cells, are associated with PE and can be
upregulated by aspirin treatment that inhibits NF-κB mediated
inflammation (118).

Placental Malaria
Parasitic infection caused by Plasmodium is known to stimulate
various immune cells by activation of the TLR4–NF-κB axis.
Placental malaria is marked by an increased innate immune

response causing intra-uterine complications, decreased body
weight of the fetus during birth, and susceptibility to recurrent
infection in early life (119–121). The development of gestational
malaria was studied in pregnant mice model infected with P.
berghei NK65, where TLR2, TLR4, and TLR9 were identified to
trigger the inflammatory pathway, leading to NF-κB activation.
In this study, placental inflammation was associated with the
TLR4 pathway because infection in TLR2 null and TLR9 null
pregnant mice displayed no difference to that of wild-type
pregnantmice.Moreover, a CD14/TLR4 blocker (IAXO-101) was
successful in rescuing the malarial risk to both fetus and mother
and helped in gaining the fetal body weight (122). As CD14
and lipoprotein can activate the TLR1/TLR2 pathway, inhibiting
CD14 by IAXO-101 will cease the activation of TLR1/2/4 and
hence affect cytokine balance, which can eventually lead to an
adverse pregnancy outcome.

Under the same scenario, it was observed that the TLR4
receptor behaves differently on the maternal and fetal interface.
Maternal TLR4 is involved in the pathogenesis of malaria
severity, while fetal TLR4 has a protective response against
placental parasite burden, which could be due to the paternal
allele for Tlr4. Similarly, a decrease in maternal type 1 IFN
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receptor 1 (IFNAR1) during the course of infection promotes
the parasite burden by limiting the activation and accumulation
of Helper T cells. Increased fetal IFNAR1, however, helps in
eliciting an anti-parasite response, but fetal IFNAR1 is not

sufficient enough to reduce the placental parasite burden and its
harmful effect on the fetus (6). In placental malaria, the TLR4
downstream partner MyD88 has no significant role in pregnancy
outcome irrespective of maternal or fetal genetic background

FIGURE 5 | Various Drugs that target TLR4 pathway in pregnancy disorders: drugs and anti-inflammatory agents that target TLR4 pathway and its downstream

molecules during infection induced preterm birth. Hormones and drugs targeting TLR4 expression help in switching the pro-inflammatory environment to

anti-inflammatory in various pregnancy disorders. TNF inhibitors reduce the increased TNF production during altered TLR4 activation in preeclampsia.
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when infected with P. berghei NK65. The deletion mutant of
MyD88 did not produce any abnormalities and affected growth
in infected pregnant mice (123). An ideal vaccine approach
against TLR4 could be formulated that can be specific to placental
malaria and would provide protection against maternal anemia,
PTB, and fetal growth retardation.

THERAPEUTIC MODALITIES FOR
PREGNANCY RELATED DISORDER
TARGETING TLR4 SIGNALING

Various TLR4 antagonist and inhibitors have been developed
that are currently in different phases of clinical trial for
diseases other than pregnancy. There are few options that
are currently being studied for immune modulation and
inhibition of TLR expression for pregnancy-related disorders.
The association of TLR4 was studied in women with aPL
(antiphospholipid antibodies), which activate the TLR4 pathway
and the inflammatory response in trophoblasts leading to
miscarriages, PE, and PTB (124). Recent studies have identified
endothelial TLR4 to be a potential therapeutic target for
PTB (107). Cytokines like IL-6 have been successful in
delaying preterm birth by immunomodulation and regulating
prostaglandin-related genes (125).

Cytokine-suppressive anti-inflammatory drugs (CSAID’s) are
a novel group that target the NF-κB and MAP Kinase
pathways, making them more effective than Non-Steroidal Anti-
inflammatory Drugs (NSAID). CSAIDs that can selectively
inhibit TAK1 and the IKK complex are well-studied in animal
models, which has resulted in the reduction of cytokines
and prostaglandin levels (126) (Table 1). TAK1 inhibitor 5z-7-
oxozeaenol (OxZnl), a resorcyclic acid lactone that is an excellent
pharmacological target in CSAIDs, can effectively block the
cytokine cascade to avoid preterm birth (143, 144) (Figure 5).
Although these drugs can selectively target TLR-NF-κB pathway,
there are some side effects associated with its use, such as
how it may inhibit unwanted NF-κB activation, thus increasing
the predisposition to opportunistic infection. To resolve such
problems, these drugs can be administered in amniotic cavity to
reduce the side effects and enhancing the efficacy of the drug. But
the probable benefits and the risk assessment should be balanced,
and such CSAID therapy should be given to women who can gain
significant benefits.

CONCLUDING REMARKS

Detailed study of spatiotemporal expression of TLRs during
normal pregnancy and related disorders using various model
systems has increased our understanding of placental infections
and furthered our development of strategies to overcome the
adverse pregnancy outcomes. Activation of innate immune PRR
through TLR4 at the materno–fetal interface ensures that the
developing fetus is protected from invading pathogens at early
stage of pregnancy. But uncontrolled activation of TLR4 has
been proven to trigger chronic inflammation and to result
in loss of pregnancy. Hence, increased levels of TLR4 on
leucocytes or cells of maternal and fetal origin could be used
as a biomarker for pregnancy disorders. Many studies have
shown the involvement of innate immune cells for sustaining a
successful pregnancy.

It is not yet clear how the TLR4 expression pattern alters
during various stages of pregnancy and in what way its
uncontrolled activation on immune or other decidual cells at
the maternal–fetal interface leads to various pregnancy failures.
Addressing this issue may help in developing certain clinical
diagnostic markers as well as specific antagonists targeting
either TLR4 specifically or its downstream effector molecules for
improving pregnancy outcomes.
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