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Abstract
We review various simple analytical theories for homopolymers within a unified framework.
The common guideline of our approach is the Flory theory, and its various avatars, with the
attempt at being reasonably self-contained. We expect this review to be useful as an
introduction to the topic at the graduate student level.

(Some figures may appear in colour only in the online journal)
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1. Introduction

Polymer physics, with an old and venerable history spanning
more than 60 years, now occupies an important position in
basic physics, providing conceptual support to a wide variety
of problems [1–17].

A polymer, from a physicist’s point of view, is a set of
units, called monomers, connected linearly as a chain. Such
polymers are the natural or synthetic long chain molecules
formed by bonding monomers chemically as in real polymers
or bio-polymers like DNA and proteins, but they need not be
restricted to those only. Polymers can also be the line defects
in superconductors and other ordered media, the domain walls
in two-dimensional systems and so on. Even if noninteracting,
a polymer by virtue of its connectivity brings in correlations
between monomers situated far away along the chain. This
makes a polymer different from a collection of independent
monomers. The basic problem of polymer physics is then to
tackle the inherent correlations due to the long length of the
string-like object.

A gas of N isolated monomers at any nonzero
temperature T would like to occupy the whole available
volume to maximize the entropy, but that would not be
the case when they are connected linearly as a polymer.
This brings in a quantity very special to polymers, namely
the equilibrium size of a polymer, in addition to the usual
thermodynamic quantities. Traditionally, thermodynamic
quantities, at least for large N, are expected to show
extensivity, i.e., proportionality to the number of constituent
units, but the size of a polymer in thermal equilibrium
need not respect that. In other words, if the length of
a polymer is doubled, the size need not change by the
same factor. Consequently, even the usual thermodynamic
quantities would have an extra polymer length dependence
which will not necessarily be extensive but would encode
the special polymeric correlations mentioned above. How
the equilibrium size of a polymer changes or scales, as
its length is increased, whether this dependence shows any
signature of phase transitions with any external parameter like
temperature, and the consequent effects on other properties
are some of the questions one confronts in the studies of
polymers.

The success of exact methods, scaling arguments and
the renormalization group has crafted the statistical physics
approach to polymer physics into a well defined and
recognized field. One of the first, and most successful,
theoretical approaches to the thermophysical properties of

polymers is the celebrated Flory theory, which is the central
topic of this review. This simple argument was a key step
in the history of critical phenomena, in particular in marking
the emergence of power laws and the role of dimensionality.
To investigate the special effects of long-range correlations
that develop near a critical point, one needs a fine tuning of
parameters like temperature, pressure, fields etc, close to that
special point. In contrast, the simple Flory theory showed that
a polymer exhibits critical features, power laws in particular,
and a dimensionality dependence beyond the purview of
perturbation theories, all without any requirement for fine
tuning. Here is an example of self-organized criticality—a
phenomenon where a system shows critical-like features on
its own without any external tuning parameter—though the
name was coined decades after the Flory theory.

Various monographs [1–7, 9–19], have covered different
aspects of methodologies and techniques. This notwithstand-
ing, our aim is to bring out the nuances present in the Flory
theory and to place it in the current context, to appreciate why
this theory has stood the test of time as compared to other
mean-field theories.

This review is organized as follows. After a recapitulation
of the basic facts of a noninteracting polymer and the
simple Flory theory in section 2, we introduce the Edwards
continuum model [18, 19] (section 3) and the mean-field
approximation to its free energy (section 5). This forms
the basis for discussing the Flory approximation through a
saddle point method (section 5.2). The results for the three
regimes of a polymer (swollen, theta and compact) and the
transition behaviour can also be found in the same section.
How the Flory theory fares when compared with the current
view of scale invariance, universality and scaling is discussed
in section 4 and the role of a microscopic length scale is
also discussed there. A few modifications [20, 21], and a
simple extension to include external forces applied to one
extreme of the polymer, are discussed in sections 6.2 and 7.3,
respectively.

While the original Flory theory describes the size at a
fixed temperature, as the number of monomers increases,
it is possible to go beyond power laws in the current
framework. The analysis allows one to discuss the temperature
dependence of the size at a fixed number of monomers
(assumed to be sufficiently large). This crossover effect is
discussed in section 7. A particularly interesting case appears
to be the two-dimensional case, discussed in section 6.4,
where the scaling function can be computed exactly.
Section 6.5 discusses the uniform expansion method [5] along
with its relationship to a perturbative approach [22–24].

Besides the three states mentioned above, there is an
obvious state of a polymer, namely a stretched or rod-like
state. This state can be achieved by a force at one end, keeping
the other end fixed, or by assigning a penalty for bending.
In the absence of any interaction, there is no transition
from this rod-like state to any of the other states. But still,
for completeness, the universal features of the crossover
behaviour need to be discussed. This is done in the last part
of the paper, which is devoted to the semiflexible chain, in
which bending rigidity competes with entropy. The response
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of the polymer when a pulling force is applied to an extremum
is discussed in section 8, with an eye on the interpolating
formula between flexible and semiflexible regimes [25–28].
Ancillary results for the structure factor and the end-to-end
distance are presented in section 8.6.

Several technical issues are relegated to the appendices.
A few Gaussian transformations that are frequently employed
are listed in appendix A. A discussion of the central limit
theorem as applied to polymers and a possible deviation
can be found in appendix B. In appendix C, the theoretical
framework of perturbation theory [22, 23] is introduced at
the simplest possible level, and the lowest order calculation
is explicitly performed to show how the method works.
Finally, for completeness, appendices E–H include the explicit
derivation of some results that are used in the main text.

We end this introduction with a few definitions. If all the
monomers, and therefore the bonds, can be taken as similar,
then the polymer is called a homopolymer. If there is any
heterogeneity either in monomers or in bonds, it will be a
heteropolymer. In the case of two types of monomers arranged
in a regular pattern, the polymer is called a copolymer.
Two different types of polymers connected together is an
example of a block-copolymer. This review focuses on the
homopolymer case only.

We use the symbol∼ to denote the dependence on certain
quantities, ignoring prefactors and dimensional analysis,
while the symbol ≈ is used for approximate equality.

2. Elementary version of the Flory theory

2.1. Gaussian behaviour

2.1.1. Freely jointed chain. Consider an isolated homo-
polymer formed by N + 1 monomers at positions
{r0, r1, . . . , rN} in space, and let b be the monomer–monomer
distance (sometimes referred to as the Kuhn length). This is
depicted in figure 1.

We further introduce the bond variable τj (|τj| = b) and
the end-to-end distance R,

τj = rj − rj−1, and

R = rN − r0 =

N∑
j=1

τj.
(2.1)

A flexible polymer is defined as one for which the bond
vectors are completely independent so that each bond can
orient in any direction in space irrespective of the orientations
of the others. This freedom is expressed as an absence of any
correlation between any two different bonds, that is

〈τi · τj〉 = b2δij. (2.2)

This is the basis of the freely jointed chain (FJC). As
the monomer–monomer distance is fixed, the average in
equation (2.2) is an average over all possible orientations.
This ensemble averaging is denoted by the angular brackets
〈· · ·〉. A more realistic model, where there is an orientational
correlation between successive bonds, called the worm-like
chain (WLC) model (or Kratky–Porod model), is the
paradigm of the stiff polymer, and will be discussed later.

Figure 1. Various representations of a polymer. (a) Freely jointed
chain: rigid bonds with full free rotations. The beads and bonds may
cross without any penalty. (b) A collection of N tethered spheres
(monomers) at positions rj, with j = 0, 1, . . . ,N. The size of the
monomers could be indicative of the excluded volume interaction of
the monomers. (c) A bead spring model where the harmonic springs
take care of the polymer connectivity. (d) Continuum model—no
details of the polymeric structure are important. The location of a
monomer is given by a length s.

2.1.2. Size of a polymer. Use of equations (2.1) and (2.2)
leads to

〈R2
〉 =

N∑
i,j=1

〈τi · τj〉 = Nb2, (2.3)

so that the size R, measured by the root mean square (rms)
end-to-end distance of a polymer, depends on its length N as

R ∼ bNν, (2.4)

with ν = 1/2 for the FJC. The exponent ν is called the
size exponent. We are using the rms value as the size of
the polymer because by symmetry (i.e. isotropy) 〈R〉 = 0.
A judicious choice of origin can always remove a nonzero
average of any probability distribution, whereas it would be
impossible to make the variance zero. Hence the importance
of the rms value as a measure of the size.

The behaviour described by equation (2.4) can also be
read as follows. If a sphere of radius R is drawn with its centre
in a random position along the chain, the total length of the
polymer contained in the sphere is about RdF , with dF = 1/ν
being what is known as the fractal dimension. So, the fractal
dimension of our noninteracting polymer is dF = 2.

The probability distribution P(R,N) of the end-to-end
distance is a Gaussian (see appendix B for details) and in
d = 3 it is (see equation (B.7))

P(R,N) ≈

(
3

2πNb2

)3/2

exp
[
−

3
2

R2

Nb2

]
. (2.5)
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The standard deviation, which determines the width of this
distribution, gives the rms size R of equation (2.4).

A chain characterized by Gaussian behaviour (2.5) is also
called an ideal or phantom chain. It also goes by the names
of Gaussian polymer and non-self-interacting polymer. These
names are used interchangeably.

The size of a polymer discussed above is an example
of a critical-like power law whose origin can be traced to
correlations. Even though the bonds are uncorrelated, the
monomers are not. This can be seen from equations (2.1) and
(2.2) as the positions of monomers i and j satisfy

〈[rj − ri]
2
〉 =

j∑
l,m=i+1

〈τl · τm〉 = (j− i)b2. (2.6)

Generalizing equation (2.5), the conditional probability
density of monomer j to be at r′ if the ith monomer is at r
is given by

P(r′, j|r, i) ∝ exp
[
−

3
2
(r′ − r)2

|j− i|b2

]
. (2.7)

The distribution becomes wide as j − i increases and it
is not factorizable. This is to be contrasted with the case
of noninteracting monomers without polymeric connections.
There this joint probability distribution is the product of
the individual probability densities and hence devoid of any
correlations6. The behaviour of an ideal chain as formulated
here is purely entropic in origin because all the configurations
are taken to have the same energy.

If one generalizes equation (2.2) by substituting δij by
a general correlation gij which (a) depends only on |i − j|,
and (b) is such that

∑
jgij <∞, then the results, like R2

∼ N,
remain essentially the same, since equation (2.3) is modified
by a multiplicative constant. In this case, the decay length of
the correlation gij gives the Kuhn length.

2.2. Non-Gaussian behaviour

To go beyond the Gaussian behaviour, let us introduce the
repulsive interaction of the monomers, e.g., the athermal
excluded volume interaction. The question of interest is how
this repulsion of the monomers affects the size of the polymer.
Does it just change the amplitude in equation (2.4) or does
it change the exponent? A change in the exponent needs
to be taken more seriously than a change in the amplitude
because the latter is equivalent to a change in the unit of
measurement while the former changes the fractal dimension
of the polymer.

2.2.1. Simple Flory theory. A simple way to account for
the fact that non-consecutive spheres (i.e. monomers) cannot
interpenetrate is provided by a hard-sphere repulsion, which
is proportional to the excluded volume vexc of each pair of

6 Two random variables x, y are correlated, i.e. 〈xy〉 6= 〈x〉〈y〉, if and only if
P(x, y) 6= p(x)p(y).

monomers multiplied by the number of monomer pairs (N2)
per unit of available volume (R3), that is

repulsive energy ∼ vexc
N2

R3 . (2.8)

The total free energy FN(R) of the system can then be quickly
estimated as follows [4, 29].

From equation (2.5)

SN(R) = kB log P(R,N) ∼ −
R2

Nb2 (2.9)

is the entropy of the chain7, where kB is the Boltzmann
constant, so that at temperature T one has

FN(R) = F0 + e0
R2

Nb2 + e1vexc
N2

R3 , (2.10)

where e0 and e1 are T-dependent constants and F0 is the
remaining part of the free energy. Equation (2.10) is to
be interpreted as the free energy of a polymer chain of N
monomers with excluded volume interaction if it had a size
of radius R. The size of an unconstrained polymer would
come from a minimization of FN(R) with respect to R,
which amounts to equating the two R-dependent terms in
equation (2.10). The size still has the form of equation (2.4),
but with

ν = 3/5. (2.11)

This ν is called the Flory exponent. This is the most
elementary version of the Flory theory which experienced
remarkable success in explaining the experimental evidence
in the swelling of real polymers. This success is thought to
be accidental, but we shall see later on that more systematic
arguments do lead to equations (2.10) and (2.11).

The above argument can be generalized to arbitrary
dimensions d. The entropy term as given by equation (2.9)
is independent of d, but the excluded volume term in
equation (2.8) would be replaced by N2/Rd, with Rd being the
volume occupied by the polymer. A minimization of the free
energy then gives the Flory exponent as ν = 3

d+2 . However,
for d > 4, it gives a size exponent less than 1/2, which is not
possible, because a repulsion cannot make a polymer more
compact than a free chain. One therefore expects the free
chain value ν = 1/2, so that the general Flory exponent would
be

ν =


3

d + 2
, for d ≤ 4, (swollen phase)

1
2
, for d > 4,

(2.12)

which agrees with the known exact results like ν = 1 for
d = 1, ν = 3/4 for d = 2, ν = 1/2 for d > 4 and is very close
to the best estimate ν ≈ 0.588 known for d = 3 [30, 31].

7 The entropy should be kB log[number of chains of N monomers and
end-to-end distance = R]. However, the number in the argument of the
logarithm is proportional to P(R,N), and so—apart from an additive,
N-dependent, constant—we get equation (2.9).
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Figure 2. Schematic phase diagram of an isolated homopolymer.
At high temperature T > Tθ , the polymer is in a swollen phase
(right), whereas one expects a compact globule at sufficiently low
temperatures T < Tθ (left). These two regimes are separated by a
transition regime at T = Tθ (centre) where the polymer behaves
more or less as a Gaussian chain, at least in d > 3.

2.2.2. Collapse. The case of attractive interaction may also
be mentioned here. With attraction and hard-core repulsion,
the monomers would like to stay as close as possible. This
gives a more or less compact packing of spheres so that
the monomer density inside a sphere enclosing the polymer
is O(1) in N. Note that the density for the repulsive case
N/Rd

∼ N1−dν
→ 0, for large N. A compact phase, also

called a globule, would then have

R ∼ N1/d, i.e., ν =
1
d
(compact). (2.13)

The collapsed state is not a unique state and the polymeric
nature is important in determining its overall property.

One expects a generic phase diagram, as schematically
depicted in figure 2, with a theta point at T = Tθ , a high
temperature (T > Tθ ) swollen or coiled phase and a low
temperature (T < Tθ ) compact phase. This will be discussed
in detail in section 5.

3. The Edwards continuum model

3.1. Discrete Gaussian model

The central limit theorem, as explained in appendix A, allows
us to describe a polymer by the distribution W(r0, . . . , rN) of
N bonds, τ1 = r1 − r0, . . . , τN = rN − rN−1, each having a
Gaussian distribution, as

W(r0, . . . , rN) =

N∏
j=1

p(τj)

=

N∏
j=1

{(
1

2πb2

)d/2

exp

[
−

1
2

τ 2
j

b2

]}
(3.1a)

= Z−1
G exp[−βHG], (3.1b)

where we have introduced the Gaussian Hamiltonian

βHG =
1

2b2

N∑
j=1

τ 2
j =

1

2b2

N∑
j=1

(rj − rj−1)
2, (3.1c)

with the partition function ZG = (2πb2)Nd/2.
The Gaussian Hamiltonian is another representation of

a polymer where the monomers are connected by harmonic
springs (figure 1(c)). At any nonzero temperature, the
equipartition theorem gives 〈τ 2

j 〉/b
2
= d, which allows the

bonds to have a nonzero rms length. The size of the polymer
is given by 〈R2

〉 = db2N.
The Gaussian Hamiltonian, being quadratic, makes

analytical calculations simpler compared to the FJC case with
rigid bond constraints. In contrast, the extensibility of the
springs allows the polymer to have a size R > Nb with a
nonzero probability as seen from equation (2.5). However, the
probabilities, being in the tail of the Gaussian distribution,
are too small to contribute to the average. Consequently,
most of the physical behaviour will be controlled by the
configurations around the peak of the distribution and not
by rare extreme configurations. With this caveat in mind,
the Gaussian Hamiltonian can be used in most cases, unless
certain stretched states become important.

There is a subtle difference between this Gaussian
Hamiltonian approach and the FJC of the previous section.
Unlike the FJC, here we are associating energies with
conformations and the behaviour is not strictly entropic in
origin. However, the ‘springs’ help us in maintaining the
polymeric connectivity and the total elasticity of the Gaussian
polymer would be the same as the entropic elasticity of the
ideal chain. In that respect, the elasticity of the Gaussian
chain, equation (2.9), could be termed as entropic in origin.

3.2. Continuum model

A simple-minded way of taking the continuum limit N →
∞, b → 0 with the length Nb a constant, would lead to a
vanishing 〈R2

〉 as defined by equation (2.3). This is avoided by
introducing a curvilinear coordinate s = jb2, 0 ≤ s ≤ L = Nb2

for the monomer and a vector position r(s) associated with
it. The Gaussian Hamiltonian of equation (3.1c) takes the
limiting form

βHG =
1
2

N∑
j=1

b2 1

b4 (rj − rj−1)
2
→ βH(0)

L ,

with βH(0)
L =

1
2

∫ L

0
ds

(
∂r
∂s

)2

. (3.2)

In the above form, one end point of the polymer can
be anywhere in the whole volume available and it would
contribute a volume factor to the partition function, of no
concern to us. We may get rid of this perfect gas like redundant
factor by fixing one monomer, preferably the end point at
s = 0, at the origin. The continuum limit of the corresponding
distribution (equation (3.1a)) is given

W(r0, . . . , rN)→ W[r(s)]

=
1
Z0

exp[−βH(0)
L [r(s)]], (3.3)

5
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with the ‘configurational partition function’ written formally
as8

Z0 =

∫
Dr exp[−βH(0)

L [r(s)]]δ
d(r(0)). (3.4)

The notation
∫

Dr represents a formal sum over all possible
paths or polymer configurations, but it is ill-defined if taken
literally as a b → 0 limit of the measure expected from
equation (3.1a). This continuum language, patterned after the
path integral representation in quantum mechanics [32], was
introduced by Edwards [5, 18, 19]. The path integral, also
known as the Wiener measure in the context of diffusion, is to
be interpreted as a limit of the discrete sum. With appropriate
care, the limit process may be traded with standard integrals,
as will be done in this review.

Some more caution is needed here in interpreting the
continuum Hamiltonian. Although s is introduced as a
curvilinear coordinate measuring the arc length or contour
length along the polymer, the string in the continuum
(figure 1(d)) is not to be taken as a space curve. For a space
curve |∂r/∂s| = 1, which is not enforced in equation (3.2).
In this interpretation, s remains a measure of the contour
length obtained from the bead numbers, but the string remains
Gaussian at the smallest scale. One may bypass this problem
by assigning a new axis for s so that the polymer is viewed as a
d+ 1 dimensional string. To avoid the pitfalls of the Gaussian
behaviour at all length scales, it may be necessary to use a
lower cut-off in equation (3.2). Unless necessary this is not to
be specified explicitly.

3.3. Interactions: the Edwards model

Next we consider a more general description, where the
polymer can also interact. Since a polymer is generally in a
solvent, the interactions need not be the actual microscopic
interactions of the monomers. If a polymer is dissolved
in a solvent, a monomer is surrounded mostly by solvent
molecules. If we remove the solvent part from the problem,
it would appear as if the monomers were staying away
from each other. This situation of a polymer in a good
solvent can be described by an effective repulsion among
the monomers. On the other hand, if a polymer precipitates
out from a solution, then there is a preference for the
monomers to avoid the solvent molecules. This is the case
of a polymer in a bad solvent whose effective description
requires an attraction between the monomers. In this spirit
of effective interactions, it suffices to consider the polymer
as the sole object with interactions among the monomers,
which depend on temperature, solvent quality and other
parameters of the original problem. As pseudo-interactions,
these need not be restricted to pairwise interactions only.
A schematic representation of two-body 82(r, r′) and
three-body interactions 83(r, r′, r′′) is shown in figure 3.

A polymer in a good solvent can be described by a simple
choice of a pairwise contact repulsive interaction, represented

8 Note that, within the de Gennes mapping between spin models and
polymers with the number of components going to zero, this quantity is in
fact a compressibility (or a susceptibility). See [33].

Figure 3. Schematic representation of the two-body 82 and the
three-body 83 interactions. For contact interactions
82(r, r′) = uδ(r, r′), 83(r, r′, r′′) = vδd(r− r′)δd(r′ − r′′).

by a delta function, 82 = uδd(r), with a coupling parameter
u > 0 so that ignoring all higher order terms,

βHL[r(s)] =
1
2

∫ L

0
ds

(
∂r
∂s

)2

+
1
2

u
∫ L

0
ds1

∫ L

0
ds2 δ

d(r(s2)− r(s1)). (3.5)

The first term on the right-hand side of equation (3.5) is
the usual Gaussian term, representing polymer connectivity,
whereas the term penalizes any two-monomer contact. This
particular form is known as the Edwards Hamiltonian [19] and
is a representation of a self-avoiding walk or a polymer with
excluded volume interaction. This is also called the minimal
model for a polymer.

To describe the collapse, i.e., the poor solvent case,
we need u < 0 for attraction and for stability of a
repulsive three-body interaction. With the choice of the usual
three-body contact pseudo-potential 83 = vδd(r− r′)δd(r′ −
r′′), penalizing any three-monomer contact, the Edwards
Hamiltonian becomes

βHL[r(s)] =
1
2

∫ L

0
ds

(
∂r
∂s

)2

+
1
2

u
∫ L

0
ds1

∫ L

0
ds2 δ

d(r(s2)− r(s1))

+
1
3!

v
∫ L

0
ds1

∫ L

0
ds2

∫ L

0
ds3

× δd(r(s1)− r(s2))δ
d(r(s2)− r(s3)). (3.6)

≡ βH(0)
L + βVL, (3.7)

where βH(0)
L is given by equation (3.2) and βVL represents

the interaction part of the dimensionless Hamiltonian. These
minimal models involve only three parameters: L, u and v.

Since a polymer can be precipitated out of a solution by
cooling (section 2), it is assumed that a temperature Tθ exists
such that

u ∝ (T − Tθ )/Tθ ,

so that T > Tθ (u > 0) corresponds to the repulsive case (a
polymer in a good solvent) while T < Tθ (u < 0) for the

6
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attractive case (the bad solvent case). The transition point
T = Tθ is the theta point, as in figure 2.

3.4. Green functions

The problem associated with b → 0,N → ∞ for partition
functions (bNd in equation (3.1b)) is avoided by normalization
by Z0. The probability that the free polymer has an end-to-end
distance vector R is written as

G(0)L (R) = Z−1
0

∫
R

Dr exp[−βH(0)
L [r(s)]]

= (2πL)−d/2e−R2/(2L), (3.8)

where the notation∫
R

Dr ≡
∫

Dr δd(R− [r(L)− r(0)]) δd(r(0)) (3.9)

is used to indicate the sum over all paths with fixed end-to-end
distance R with the s = 0 end fixed at the origin. The
result, equation (3.8), is the d-dimensional analogue of the
probability distribution in equation (2.5). For the interacting
case, the normalized partition (Green) function is

GL(R) = Z−1
0

∫
R

Dr exp[−βHL[r(s)]], (3.10)

which is related to the probability of the end-to-end
vector being R, but for the normalization. G is called the
Green function or a propagator while G(0)L (R) is the ‘free’
propagator.

The partition function of equation (3.4) corresponds
to the case where the polymer end at length L is free,
while the sum expressed by equation (3.9) corresponds to a
constrained ensemble, the ensemble of all configurations with
the same end-to-end distance R. This is a fixed-R ensemble.
Its conjugate ensemble is the fixed-force ensemble where
a force is applied at the free end. In a fixed-R ensemble,
the force required at the open end point is a fluctuating
quantity whose average gives the force required to maintain
that distance. In the fixed-force ensemble, the end-to-end
distance fluctuates and the variance of this fluctuation is
related to the elastic constant or response function of the
polymer. This case will be taken up in section 7.3. As per
standard arguments of statistical mechanics, the results are
supposed to be independent of the ensemble used. However,
polymers provide many examples of non-equivalence of these
two ensembles [34, 35].

4. Flory theory in a modern perspective

The significance of the Flory theory can be brought out
by looking at it from a modern point of view. The failure
of the mean-field theory in phase transitions and critical
phenomena led to the ideas of universality and scaling and the
idea of studying problems at different length scales, as with
renormalization group [6, 31]. The Flory theory, even though
believed to be a mean-field type theory, showed all the aspects
of the modern theory, in fact much more than a mean-field

theory is expected to do. In this section, we discuss the link
between the Flory theory and the idea of scale invariance and
universality, and the crossover behaviour.

4.1. Scaling analysis

The appearance of power laws as in the N dependence of the
size of a polymer is associated with scale invariance or the
absence of any typical scale. To see this, compare the two
functions, fl(x) = Ax−α and fs(x) = Be−x/ξ/xα for x→∞.
For small α, it is not possible to define any scale for fl(x),
apart from the size of its domain over which it is normalized,
while fs(x) is characterized by a scale ξ of x. If x is measured
on a different scale, i.e. x′ = λx, then we see that by changing
the prefactor A′ = Aλ−α , the functional form of fl remains
invariant. On this new scale one would still see the same
power law behaviour, no matter what the scale factor λ is.
Compare this with fs. If λx � ξ , then fs becomes too small
to be rejuvenated by increasing the coefficient B. This is
generally true for any non-power law function. On the other
hand, if under a scale change x→ λx, a function f (x) behaves
as f (λx)= λ−pf (x), then by choosing λ= 1/x, we get a power
law form f (x) ∼ x−p. Therefore, a continuous scale invariance
(i.e. any value of λ) implies power laws and vice versa.

As an example, consider the probability distribution
of the end-to-end distance R of a polymer of length L.
This probability P(R,L) depends, in principle, on all the
parameters of the problem, especially the starting microscopic
length scales, in a way consistent with dimensional analysis.
However, for the large distance behaviour, if the ratio of the
bond length and the total length goes to zero, one expects
dependence on L only.

If we change the scale of measuring length by a factor
λ, then as per dimensional analysis all distances, small and
large, need to be scaled. However, if we choose to scale only
the large lengths keeping the microscopic scales unchanged,
what we get is dependence of λ solely coming from the L
part. Such a transformation is called a scale transformation. A
scale transformation for polymers shows that if L→ λL, then
R is scaled by λν , even though in real life both 〈R2

〉
1/2 and

L1/2 are to be measured as lengths. There is no violation of
dimensional analysis because a dimensionally correct form is
〈R2
〉
1/2
= b1−2νLν . If both b and L are scaled as b→ λ1/2b

and L → λL, then 〈R2
〉
1/2 will also be scaled by λ1/2 like

b. This distinction, between a scale transformation to get the
scaling keeping microscopic scales fixed and a transformation
that scales all the lengths as in dimensional analysis, is
exploited in the renormalization group approach. In contrast,
the Flory theory type approaches take advantage of this
difference by assuming that only the large scales matter. We
may amplify this by considering a particular example.

Let us take the example of P(R,L) obtained from a
microscopic Hamiltonian defined earlier. We change only R
and L, as L→ λL and R→ λνR. While doing this, we keep
all other scales untouched, and therefore these will not be
displayed. Then P can be claimed to show scaling if

P(R,L) = λXP(λνR, λL), (4.1)

7
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for any λ. We are then free to choose λ = 1/L to write

P(R,L) =
1

LX P
(

R
Lν

)
≡

1
LX P

(
R
Lν
, 1
)
, (4.2)

where P(x) is called a scaling function. As advertised,
this form emphasizes the large scales only, by suppressing
the dependence on the small scales of the problem. As a
probability, the normalization

∫
ddrP = 1 can be used to

deduce that X = dν. The scaling analysis therefore predicts
the form of the probability distribution as

P(R,L) =
1

Ldν
P
(

R
Lν

)
, (4.3)

which agrees with the Gaussian distribution for ν = 1/2 (see
equation (2.5)). We now use the result that the equilibrium
size is given by R0 ∼ Nν , to argue in a different way. If
only the large scale like R0 matters, then dimensional analysis
suggests that, being a density, P(R,N) ∝ R−d

0 , and the R
dependence has to be in a dimensionless form. With R0 as
the only scale, the argument has to be R/R0. This single
scale assumption then tells us P(R,L) = R−d

0 P(R/R0), in
agreement with equation (4.3).

A different way to analyse the scale-invariant behaviour
is to do a scale transformation of the underlying variables.
Let us start with the Edwards Hamiltonian equation (3.5) and
scale the length of the polymer by a factor λ, i.e., s = λs′

so that r = λνr′, where ν is the polymer size exponent to be
determined. The Hamiltonian now takes the form

H[r(s)] =
1
2
λ2ν−1

∫ L/λ

0
ds

(
∂r
∂s

)2

+ λ2−dνu
∫ L/λ

0
ds1

×

∫ L/λ

0
ds2 δ

d(r(s2)− r(s1)), (4.4)

suppressing the primes on the variables. We tacitly assumed
that u does not scale. For L → ∞, the first term is scale
invariant for the Gaussian value ν = 1/2. This is ensured
by the construction of the Hamiltonian in terms of r and
s. However, for this ν we find that the scaled interaction
u′ = λ2−d/2u increases with increasing λ for d < 4. This
suggests that a Gaussian chain is unstable in the presence of
the interaction in the continuum limit λ→∞ with L→∞.
Such a term that grows on rescaling is called a relevant
term. The question is, if the Gaussian behaviour is unstable,
whether there is different scale-invariant stable behaviour. For
the interaction to be important, we then demand that ν be such
that both the terms scale in the same way so that H gets an
overall scale factor. This requires 2ν − 1 = 2 − dν or ν =
νF = 3/(d+ 2), as given in equation (2.12). In short, the scale
invariance of the Hamiltonian of a noninteracting polymer
gives the Gaussian value ν = 1/2 while the scale invariance
for a repulsive polymer gives the Flory exponent. By taking
L→∞, the polymer is made scale invariant at all large scales.
In this situation, the exponent is visible in the scaling of space
and length. On the other hand, if L is finite but large, we expect
the two terms to contribute equally even at the largest possible
scale, namely, λ = L. One then recovers the Flory exponent
because the two integrals, assumed convergent, are O(1) in L
as the integral limits are from 0 to 1.

What is actually required is the scale invariance of
the free energy, to include the effects of entropy, not the
Hamiltonian per se. This introduces corrections that require
an additional scale factor for u. As it so happens, this
correction (vertex correction) is small for polymers and the
scale invariance of the Hamiltonian gives a close estimate.

4.2. Scaling functions and interpolation

Based on the Flory theory presented in section 4.1, we see
the importance of the interactions u and v in determining the
size of a polymer, but most importantly, the dependence on N
seems to be universal in the sense that the exponent does not
depend on u, v, but any nonzero u or v change the Gaussian
behaviour.

The dependence of the size on the interactions can be
written in a form consistent with dimensional analysis. Taking
the dimension of r, the position vector, as length L, and
the Hamiltonian as dimensionless, we have [L] = L2 (see
section 3.2). Although L is a measure of the polymer length
it is dimensionally like a surface, because of the fractal
dimension (dF = 2) mentioned in section 2. Since [δd(r)] =
L−d, the dimensions of u and v in equations (3.5) and (3.6) are
respectively Ld−4 and L2(d−3). With the help of L, one may
construct the dimensionless interaction parameters

z = c1uL(4−d)/2, and w = c2vL3−d, (4.5)

with dimensionless constants c1, c2 chosen as per conve-
nience. The size can be written as

R2
= d Lψ2(z,w), (4.6)

where the function ψ gives the interpolation behaviour from
the Gaussian to the swollen chain (u > 0). We suppress the
w dependence in this discussion. Equation (4.6) of course
assumes that the short-distance scale b, or the range of
interaction of 82,83 do not appear in the expression for
the large N limit. This is a highly nontrivial assertion which
we shall assume to hold good for the time being. The
renormalization group approach tackles this issue but we do
not get into that here. ψ is often called a scaling function or a
crossover function.

One question may arise here. Just as equation (4.6) is
meant for a crossover from the Gaussian to the swollen chain,
could we have done it the other way round? We have seen
that a polymer shows three different sizes: a theta chain
separating the swollen phase (u > 0) and the collapsed phase
(u < 0). There are situations (e.g., d < 3) for which none
of these is Gaussian. For a temperature or solvent induced
phase transition of a polymer, what should be the reference
point to define the scaling function? In such cases, it is the
unstable state that is to be taken as the primary size from
which the interpolation formula or ψ(z) has to be constructed.
The Gaussian behaviour is unstable in the presence of any u,
but the swollen state is the stable one for u > 0, justifying the
form written in equation (4.6). It then has to be modified by
substituting L1/2 by Lνθ for the collapse transition. This will
be taken up later in section 7.

8
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One way to express the interpolation behaviour is to
study the behaviour of the size exponent as the parameters are
varied. Let us consider the repulsive regime with w = 0. In
this regime the power law behaviour is observable in realistic
systems only for large lengths. The approach to the asymptotic
value can be determined by studying the slope of ψ with L in
a log–log plot. The effective exponent can be defined by a
log-derivative

σ(z) = L
∂

∂L
lnψ =

ε

2
z
∂

∂z
lnψ, (ε = 4− d), (4.7)

with the L derivative taken at a fixed u. For large z or L, σ (z)
should approach a constant that from equation (4.6) would
give R ∼ L(1/2)+σ , i.e., ν = (1/2)+ σ .

The function ψ is analytic in the range 0 < z < ∞,
because for a finite chain the partition function, being a
finite sum, cannot show any singularity. Also ψ(0, 0) = 1, by
definition. It is therefore fair to expect leading behaviour

ψ(z) = (1+ az)p, (4.8)

so that

ψ(z)
z→∞
∼ zp,

while ψ(z)
z�1
∼ 1+ paz+

p(p− 1)
2

(az)2 + · · · , (4.9)

and

σ(z) =
ε

2
p

az

1+ az
z→∞
−→

ε

2
p. (4.10)

It seems that the large z behaviour, of our immediate interest,
can be obtained from the small z expansion of ψ(z, 0).
There are various approaches to get ψ . The perturbative
renormalization group approach, not discussed here, tries to
get a well-behaved series for σ , at least for small ε, by starting
with a power series expansion in z. A perturbative approach
for ψ will be taken up in appendix C. In contrast to these, the
Flory theory is a nonperturbative approach to get ψ or σ in
the large z limit directly.

As an example, we may quote the series for the scaling
function obtained in a double expansion in z and ε [31] as

ψ2(z) = 1+
2
ε

z−
6

ε2 z2
+ · · · ≈ (1+ 8z/ε)1/4, (4.11)

keeping only highest order of 1/ε in the coefficient of powers
of z. This series then gives σ = ε/16, and

ν =
1
2
+
ε

16
+ O(ε2).

For comparison, the Flory value has the ε-expansion,

νF =
3

d + 2
=

1
2
+
ε

12
+ · · · . (4.12)

4.2.1. Why exponent? The reason for focusing on the
exponent ν can now be explained. The occurrence of an
exponent different from ν = 1/2 is noteworthy because R
and Lν are dimensionally different. The difference owes its
origin to the interactions, but, still, the exponent obtained
above does not depend on the parameters of the interaction.

Table 1. Lexicon of the variables involving {L, u, v} and
{b,N, u, v}. Here c represents some appropriate constant, not
necessarily the same everywhere.

Minimal model With small scale

Microscopic length None b
Polymer length L Nb2

Size (Gaussian polymer) R = d
√

L R = db
√

N
2-body parameter z = c u L(4−d)/2 α = c u b4−d

3-body parameter w = c vL(3−d) γ = c vb6−2d

Size (interacting) R ∼ L1/2 zp R ∼ b1−2νLν ∼ bNν

Even for a general short-range interaction, instead of a contact
potential in equation (3.7), the Flory argument in section 2
would produce the same ν as for the minimal model. This is
universality.

There are two ways to motivate this universality.
One way is to use z as in equation (4.5), where the
interaction parameter is made dimensionless by L. For any
other short-range interaction 82, one may define a z-like
appropriate dimensionless parameter, e.g., by taking u =∫

ddr82(r). In this case, for L→∞, z→∞ for any value of
u > 0 if d < 4, and the same asymptotic limit is reached for all
interactions. The second way would be to use a microscopic
parameter like the bond length, the range of interaction or the
size of a monomer, let us call it b, to define a dimensionless
interaction parameter α = ub4−d. If on successive rescaling
of b (‘coarse-graining’) α approaches a fixed value α∗, then
all short-range repulsions are ultimately described by α∗.
The emergence of b, as an extra length scale, then allows a
form 〈R2

〉 ∼ L(L/b2)2ν−1, with ν determined by α∗. Here, b
appears as the saviour of an apparent violation of dimensional
analysis.

Although the Flory theory does not require the
microscopic length scales like b, we shall use both versions,
often by using z to write R ∼ L1/2zp, for some appropriate p,
and often by introducing b to make the power of L explicit, as
R ∼ b1−2νLν . A lexicon of the two sets with and without b is
given in table 1.

5. Flory mean-field theory

For an interacting polymer, the partition function, from
equation (3.10), can be written as

Z

Z0
=

∫
ddR GL(R) = e−β1F, (5.1)

with 1F = −kBT(ln Z − ln Z0) as the excess free energy due
to interaction. For the excluded volume case of equation (3.5),
this excess free energy is called the free energy of swelling.

For the fixed-R ensemble, the Helmholtz free energy is

FL(R) = EL(R)− TSL(R) (5.2)

where the energy EL(R) is defined from a ratio similar to
equation (5.1) but in terms of GL and G(0)L , as

exp[−βEL(R)] ≡
GL(R)

G(0)L (R)
= 〈exp[−βVL[r]]〉

(0)
R (5.3)
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(the superscript (0) indicating an averaging with respect to
H(0)

L ), and the corresponding Boltzmann entropy SL(R) =
kB ln[G(0)L (R) Z0].

The partition function Z of equation (5.1) is then given by

Z = Z0

∫
ddRG(0)L (R)〈e−βVL[r]〉

(0)
R

=

∫
ddR exp[−βFL(R)]. (5.4)

The Flory approximation discussed below attempts to get
an approximation form for FL(R).

5.1. Mean-field approximation

Let us introduce the monomer density

ρ(r) =
∫ L

0
ds δd(r− r(s)),

with
∫

ddr ρ(r) = L, (5.5)

so that ρ is related to the number concentration. The polymer
Hamiltonian in equation (3.7) can be recast in terms of the
concentration in the form

βVL[r] =
u

2!

∫
ddrρ2(r)+

v

3!

∫
ddrρ3(r), (5.6)

which can be verified by direct substitution of equation (5.5).
The mean-field assumption is based on the (Gibbs–

Bogoliubov) inequality

〈e−βVL(r)〉R ≥ e−β〈VL(r)〉R , (5.7)

and to a maximization of the right-hand side with respect
to a parameter, as elaborated below, with the additional
approximation

〈ρρ · · · ρ〉R = 〈ρ〉R〈ρ〉R · · · 〈ρ〉R · · · , (5.8)

so that the two- and three-body potential terms are reduced
to a product of the 〈ρ(r)〉R. This factorization ignores all
effects of density–density correlations. Since 〈ρ(r)〉R gives
the spatial variation of the density of monomers of a single
polymer, with the average density L/Rd, the r-dependence can
be taken in a scaling form

〈ρ(r)〉R =
L

Rd
2
( r

R

)
, (5.9)

where 2(x) is a well-behaved function. The assumption that
has gone into writing this form is that the behaviour of the
density for large L is determined solely by the large distance
scale R and not the polymer-specific microscopic scales. The
prefactor takes care of the dimensionality of the density so that
the r-dependence has to be in a dimensionless form. Under the
assumption that only the large scale R, the size of the polymer,
matters, the dimensionless argument of the function has to be
r/R. A uniform density sphere of radius R would have2(x) =
constant for 0 < x ≤ 1 and zero otherwise but there is no need
to assume a uniform distribution of monomers.

The mean-field expression for the Helmholtz free energy,
from equation (5.2) using equations (5.7)–(5.9), gives the
standard form of the Flory free energy

βFL(R) =
1
2

R2

L
−

d

2
log

(
1

2πL

)
+ Rd

[̃
u

(
L

Rd

)2

+ ṽ

(
L

Rd

)3

+ · · ·

]
(5.10a)

≈
1
2

R2

L
+ ũ

L2

Rd
+ ṽ

L3

R2d
, (5.10b)

where

ũ =
1
2!

uSdθ
2
d−1, and ṽ =

1
3!

vSdθ
3
d−1 (5.11)

are dependent on the density via the moments,

θ l
k =

∫
∞

0
dx xk 2l(x), (5.12)

with Sd = 2πd/2/0(d/2) coming from the (d − 1)-
dimensional angular integrals. Some explicit values in d =
3 (corresponding to k = 2) will be derived later. The
resemblance of this free energy equation (5.10b) to the simple
Flory argument of equation (2.10) should not go unnoticed.

The logarithmic term appearing in equation (5.10a)
yields subdominant contributions under all circumstances,
and will be neglected in most of the paper. However, this
subdominant log-term is an extremely important property
of a polymer as it signifies the probability of a polymer
forming a loop with R = 0. The coefficient (d/2 in this case)
is called the reunion exponent. This exponent has certain
universality [36] and is one of the characteristic exponents
for polymers. Such a subleading term actually controls many
polymeric thermodynamic phase transitions and the order of
the transition in the L → ∞ limit. The most well-known
example in this class is the DNA melting [37].

5.2. Solution through steepest descent method

Our goal is to extract the dominant contribution to the integral
(5.4) using a steepest descent (saddle point) method. This
method has the advantage of being systematically improvable.
In addition we are also interested in the result for the
end-to-end distance

〈R2
〉 =

1
Z

∫
ddR R2 exp[−βFL(R)]. (5.13)

This clearly amounts to considering the expansion around the
minimum R∗

βFL(R) = βFL(R
∗)+

1
2!
∂2

∂R2 [βFL(R)]

∣∣∣∣
R=R∗

(R− R∗)2

+ · · · , (5.14)

where the steepest descent condition ∂[βFL(R)]/∂R|R=R∗ = 0
yields to lowest order

R2

dL
− 2̃v

L3

R2d
+ · · · = ũ

L

Rd
. (5.15)
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Table 2. Summary of the exponents predicted by Flory theory in
various regimes as reported in section 5.2.

Flory regime T > Tθ α > 0 2 ≤ d ≤ 4 νF =
3

d+2

Flory regime T > Tθ α > 0 d > 4 νG =
1
2

Theta regime T = Tθ α = 0 2 ≤ d ≤ 3 νθ =
2

d+1

Theta regime T = Tθ α = 0 d > 3 νG =
1
2

Compact regime T < Tθ α < 0 ∀d νc =
1
d

Anticipating the emergence of non-Gaussian value of ν,
a short-distance scale b (e.g. the bond length used earlier) can
be introduced to define a dimensionless variable x:

R = bNνx, where N = L/b2. (5.16)

With this x, the partition function and the size from
equations (5.4) and (5.13) can be expressed as

Z = bdNνd
∫

ddx e−f (x,N)
≡ bdNνdẐ,

and

〈R2
〉 = b2N2ν 1

Ẑ

∫
ddx x2 e−f (x,N), (5.17)

where

f (x,N) =
1
2

x2N2ν−1
+ α

N2−νd

xd
+ γ

N3−2νd

x2d
(5.18)

and

α = ũb4−d, γ = ṽb6−2d (5.19)

are dimensionless. The similarity of the powers of N in f (x,N)
equation (5.18) with the powers of λ in equation (4.4) should
be noted.

One may compare α, γ of equation (5.19) with the
dimensionless form z,w introduced earlier in equation (4.5).
The latter are made dimensionless with L, the length, while
here the small scale b is used for that purpose (see also
table 2). Although Z and 〈R2

〉 have been written above with
an explicit b, it is possible to avoid this arbitrary scale b
altogether. By defining R = L1/2 z(2ν−1)/ε x, both Z and 〈R2

〉

can be written in terms of L, z,w without any b.
The integrals involved in the above expressions behave

differently in different temperature regimes. These are
discussed below.

5.2.1. Flory regime (α > 0,T > Tθ ). Let us first consider
the good solvent case with u > 0. We still have to worry about
the dimensionality dependence. There are two possibilities.

(a) Case 2 < d < 4. Matching the first and second terms
in the exponential of (5.17) we find the Flory exponent
seen earlier, ν = νF = 3/(d + 2). In this case, the
third term becomes subdominant in the N � 1 limit as
N3−2νFd

= N−3(d−2)/(d+2)
� 1. The size is then given by

equations (5.17) and (5.18), with ν = νF and

f (x,N) = N
4−d
d+2

(
1
2

x2
+
α

xd

)
. (5.20)

The function f (x,N) can then be expanded around the
minimum x∗ = (αd)1/(d+2) resulting to lowest order

〈R2
〉 ≈ b2N2νFα2/(d+2) (5.21)

absorbing some unimportant constants in the definition of
b. This is the Flory regime.

(b) Case d > 4. In this case the above analysis is no longer

valid as N
4−d
d+2 � 1 in the large N limit and the steepest

descent method cannot be applied. We then go back to
equation (5.17) and assume that there is no N dependence
in the entropic term. This amounts to setting N2ν−1

= 1,
or ν ≡ νG =

1
2 . Then all the other terms in (5.17) vanish

in the N � 1 limit and equations (5.17) and (5.18) give

〈R2
〉 ≈ b2N. (5.22)

Equations (5.21) and (5.22) can then be written as

〈R2
〉 ≈ Cb2N2 max(νF,1/2),

or R ≈ C1/2b1−νLν,
(5.23)

where C = α2/(d+2) when d < 4 and C = 1 when d ≥ 4, and
ν = max(νF, 1/2).

That d = 4 is special is seen from the power of N in
equation (5.20) and from the fact that u is dimensionless in
d = 4 so that z becomes large as L→∞ for d < 4.

5.2.2. Theta regime (α = 0,T = Tθ ). In this case, the term
proportional to α is absent in both equations (5.17) and (5.18),
and again there exist two different regimes, depending on the
dimensionality of the system.

(a) Case 1 < d < 3. Matching the first and third terms we find

νθ =
2

d + 1
(5.24)

which coincides with the Gaussian value νG = 1/2 in
d = 3 but is different from it in d = 2. However, the value
ν = 2/3 for d = 2 differs from the known exact value
ν = 4/7 [38, 39]. The Flory theory has also been extended
to theta points on fractals [40] and dilute lattices [41].

Substituting in equation (5.17) we find

f (x,N) = N
3−d
d+1

(
1
2

x2
+

γ

x2d

)
. (5.25)

It is worth noticing that the matching choice (1st and 2nd
terms for Flory regime α > 0, 1st and 3rd terms for the
θ -regime α = 0) is unique, as any alternative choice would
lead to inconsistent results.

Because N
3−d
d+1 � 1 in this regime, we can apply the

steepest descent method along the lines previously shown
thus yielding the θ -regime.
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Following the same reasoning as in the previous case, to
leading order in the steepest descent expansion, we find

〈R2
〉 ≈ b2N2νθ (2γ )1/(d+1),

or 〈R2
〉 ≈ Lw1/(d+1).

(5.26)

(b) Case d > 3. Again, the only possibility is to choose ν such that
the entropic part has no N dependence, and this again leads to
the Gaussian result, (5.22).

The final result for this case is then

〈R2
〉 ≈ Cθb2N2 max(νθ ,1/2), (5.27)

where Cθ = (2γ )1/(d+1) when d < 3 and Cθ = 1 when d ≥ 3.
Here, d = 3 turns out to be special, unlike the good

solvent case which has d = 4 as the special dimensionality.
This is apparent from the power of N in equation (5.25)
and the fact that v is dimensionless for d = 3. For d < 3,w
becomes large with length of the polymer.

5.2.3. Compact regime (α < 0,T < Tθ ). We now go back
to equations (5.17) and (5.18) where we set α = −|α|. In
this case, the term proportional to γ becomes very important
to guarantee the convergence of the integral. As the term
proportional to α cannot be dropped, the only remaining
possibility is to match these two terms. This leads to the result
νc =

1
d , as noted in equation (2.13).

In this case N2νc−1
= N(2−d)/d

� 1 and the Gaussian
term is subdominant in the N � 1 limit. Note, however, that
unlike previous cases, it cannot be dropped as it ensures the
convergence of the integral at large x.9 This should also be
taken into account on the integration domain of R since it
should not extend beyond N. It is nevertheless irrelevant for
the computation of average quantities such as 〈R2

〉 given by
equation (5.18).

To leading order, one finds

〈R2
〉 ≈ b2N2νd

(
2γ
|α|

)2/d

, (5.28)

for any d. This value νd = 1/d is consistent with the idea of
a compact sphere with density ∼O(1). To prevent a complete
collapse, one needs a repulsive interaction and the three-body
term v > 0 helps in stabilization of the phase.

6. Additional remarks on Flory theory

6.1. Summary of Flory predictions

For each of the swollen and the theta cases, there is a
critical dimensionality dc above which the interactions are
not significant enough to cause a change in the Gaussian
behaviour. This critical dimensionality is dc = 4 for the
excluded volume interaction and dc = 3 for the theta point.
These are the dimensions at which the interaction constants u
and v are dimensionless. For d < dc, the interactions cannot be

9 Note that this resembles the role of the irrelevant dangerous variables in
renormalization group theory.

ignored, no matter how small, but the magnitude does not play
any role. The size exponents are not dependent on the strength
of the interaction, so long it is nonzero and positive. The
values of the exponents predicted by Flory theory in the above
three regimes and different dimensionalities are recalled in
table 2.

6.2. Modification of the entropic term and Flory
interpolation formula

As remarked earlier, the equilibrium size of a polymer coil is
determined by the balance between polymer interactions and
polymer elasticity, which is entropic in nature. To derive an
interpolation formula that would be applicable away from the
asymptotic large N regime, an intuitively appealing argument
can be made. The free energy in the fixed R ensemble, based
on the Gaussian distribution and the interactions, is given by
equation (5.10a). To this we may add an extra entropy coming
from the possibility of placing one end point of the polymer
anywhere in the volume Rd. This entropy is of the form
∼ln Rd. Therefore the modified Flory free energy, obtained
by adding this extra entropic contribution to the form given in
equation (5.10a), is βFL(R)|modified = βFL(R)−d ln R, where
βFL(R) is given by equation (5.10a).

In terms of the swelling factor ψ2 that compares the size
of a polymer with the corresponding Gaussian size as defined
in equation (4.6), the modified free energy can be expressed
as

βF̄L(ψ) ≈
d

2
ψ2
− d log(ψ)+

d + 1
d

z

ψd
+

w

ψ2d
. (6.1)

Here z,w defined in equation (4.5), with c1, c2 involving the
θ of equation (5.11), are

z =
d(2−d)/2

2(d + 1)
Sdθ

2
d−1uLε/2,

w =
1
3!

d−dSdθ
3
d−1vL3−d.

(6.2)

The corresponding steepest descent equation yields

ψd+2
− ψd

− 2w
1

ψd
=

d + 1
d

z. (6.3)

Note that this is basically equation (5.15) with an extra term
(the second term on the left-hand side of equation (6.3)) that
stems from the modification. In particular, for d = 3, the
form [20, 21], is

ψ5(z)− ψ3(z)−
2̃v

ψ3(z)
=

4
3

z, (6.4)

with z as in equation (6.2) for d = 3. A comparison with the
value of z used in equation (5.11) (see also equation (5.19))
yields a well defined value for θ2

2 whose general expression
appeared in equation (5.12), that is

θ2
2 =

9

π2

√
1

2π
(6.5)
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Figure 4. Numerical solution of equation (6.4) as in figure 1 of [21]
with the same values of the parameters 2γ = 0.01, 0.038, 0.1, 1.

so that inserting equation (5.11) into equation (6.2) we get

z =

(
3

2π

)3/2

uL1/2. (6.6)

The behaviour of ψ(z) is given in figure 4 which displays the
‘loop’ for sufficiently low values of parameter 2γ (see also
equation (5.19)).

For γ = 0 (w = 0), a power series solution for ψ(z) can
be constructed as

ψ(z) = 1+ 2
3 z− 14

9 z2
+

160
27 z3
+ · · · , (6.7)

which could be verified, order by order, by direct substitution
in equation (6.4). Furthermore, this gives

ψ2(z) = 1+ 4
3 z− 2.666 67z2

+ 9.777 78z3
+ · · · . (6.8)

This solution may be compared with a brute-force computa-
tion of the perturbative series in [23] (see appendix C),

ψ2(z) = 1+ 4
3 z− 2.0754 . . . z2

+ 6.2968 . . . z3

− 25.057 . . . z4
+ · · · , (6.9)

where z is as given in equation (6.6).
The interpolation formula given by equation (6.4) was

verified for polystyrene in cyclohexane [42]. A slightly
different form with a constant term on the right-hand side was
however found for polymethyl methacrylate [43].

6.3. Modification of the Flory estimate

The idea of the fractal dimension introduced in section 2.1.2
suggests that the number of monomers in a sphere of radius
R is RdF and therefore the energy term should be R2dF−d, dF
to be determined. This is not consistent with the estimate of
the repulsive energy N2/Rd which is crucial for the Flory
exponent. A more refined argument would however favour the
Flory estimate [44].

The polymer chain can be thought of as consisting of
smaller blobs of n monomers within which the effect of
repulsion is not significant and the spatial size can be taken
as ξ2

∼ n. The chain then consists of N/n such blobs. This

coarse-grained polymer will have (N/n)2(R/ξ)−d contacts of
blobs. There is a need to know the number of overlap of
monomers of the two fractal blobs. The dimensionality of
the intersections of two fractals follows a rule of addition of
co-dimensions. For a D-dimensional fractal embedded in a
d-dimensional space, the co-dimension is the dimensionality
of complementary space and is d−D. The additivity rule says
that the co-dimension of the intersections of two fractals is
the sum of the co-dimensions of the two. In other words the
fractal dimension D of the points of contact of two fractals of
dimensions D1 and D2 would obey d−D= (d−D1)+(d−D2),
i.e., D = D1+D2− d. As per this rule the number of contacts
of the two blobs will be ξ4−d. Therefore, the repulsive energy
will be

N2

n2

ξd

Rd
ξ4−d

=
N2

Rd
,

recovering the Flory estimate.

6.4. Explicit computation of the scaling function in d = 2

A rather interesting case occurs in d = 2 where the scaling
function ψ(z) can be computed explicitly. We go back to
equations (5.17) for d = 2 and γ = 0. With a change of
variable R = bNνF x similar to equation (5.16) we get from
equation (5.17) (in polar coordinates)

〈Rn
〉 = bnNnνF

∫
∞

0 dx xn+1 exp[−f2(x,N)]∫
∞

0 dx x exp[−f2(x,N)]
, (6.10)

where

f2(x,N) =
1
2

N1/2x2
+ αN1/2 1

x2 (6.11)

in the Flory regime νF = 3/4 (for which γ and higher terms
are irrelevant in the N � 1 limit). Here, f2 is equation (5.20)
in d = 2.

Let us introduce the ratio

χ2(N, α) =
〈R3
〉

〈R〉
, (6.12)

which is also a definition of ‘polymer extension’ analogous to
〈R2
〉. The scaling function is then ψ2

= χ2/(b2N), which can
be written as

ψ2(N, α) = N1/2

∫
∞

0 dx x4 exp[−N1/2( x2

2 +
α

x2 )]∫
∞

0 dx x2 exp[−N1/2( x2

2 +
α

x2 )]
. (6.13)

Both integrals are easily evaluated within a steepest descent
procedure with saddle point x2

0 = (2α)
1/2. The asymptotic

form in the large N limit is

ψ2(N, α) = N1/2α1/2
∼
√

z, (6.14)

consistent with the large z behaviour of equation (6.3) for
d = 2.
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On the other hand, an exact calculation can also be carried
out by using the following identities:∫
∞

0
dx exp

[
−bx2

−
a

x2

]
=

1
2

√
π

b
exp[−2

√
ab] (6.15)∫

∞

0
dx x2 exp

[
−bx2

−
a

x2

]
=

(
1

2b
+

√
a

b

)
1
2

√
π

b
exp[−2

√
ab] (6.16)∫

∞

0
dx x4 exp

[
−bx2

−
a

x2

]
=

(
3

4b2 +
a

b
+

3
2b

√
a

b

)
1
2

√
π

b
exp[−2

√
ab]. (6.17)

The integral (6.15) is proven in [45], and the remaining
two can be evaluated immediately by taking derivatives with
respect to b. Then we find the exact result

ψ2(N, α) =
√

Nα
1+ 3X + 3X2

1+ X
,

with X =
1
√

2αN
, (6.18)

so that for N � 1

ψ2(N, α) =
√

Nα

[
1+

1
√
αN
+O

(
1
αN

)]
(6.19)

in agreement with equation (6.14), while for α → 0, ψ2
→

3/
√

2.
In view of the exactness of the Flory exponent in d = 2,

it would be extremely useful to see how this exact result on
the crossover function fares with real experiments. This could
be accessible in studies on polymers adsorbed on a surface or
planar interface.

6.5. The uniform expansion method

We now attempt to get the interpolation formula, equa-
tion (6.4), in a more systematic but nonperturbative way. The
basic idea is to introduce an effective Gaussian distribution
with a new elastic constant ψ−2 in such a way that

〈R2
〉 = 〈R2

〉
′

0, (6.20)

where 〈(· · ·)〉′0 is the Gaussian average with respect to the new
distribution [5].

Let us write the Edwards Hamiltonian as (absorbing β in
the Hamiltonian)

H = H′0 + (H − H′0) = H′0 + δH, (6.21a)

where

H′0 =
1

2ψ2

∫ L

0
ds

(
∂r
∂s

)2

, (6.21b)

δH =
1
2
(1− ψ−2)

∫ L

0
ds

(
∂r
∂s

)2

+
1
2!

u
∫ L

0
ds1

∫ L

0
ds2 δ(r(s2)− r(s1)) (6.21c)

≡ δH1 + δH2. (6.21d)

Here ψ2 is a dimensionless ‘elastic constant’ such that for H′0,
which is a Gaussian Hamiltonian, 〈R2

〉
′

0 = dψ2L. Admittedly,
ψ is reminiscent of the swelling factor of section 6.4, ψ2

=

〈R2
〉
′

0/R
2
0, and in fact it is the actual one if the condition

expressed by equation (6.20) is satisfied.
Expanding 〈R2

〉, to first order in δH, we have

〈R2
〉 =

∫
ddR R2GL(R)∫

ddR GL(R)

= 〈R2
〉
′

0 − (〈R
2δH〉′0 − 〈R

2
〉
′

0〈δH〉
′

0), (6.22)

where the prime denotes an averaging with H′0. The resulting
Gaussian integrations can be performed to obtain

〈R2
〉 = 〈R2

〉
′

0 − 〈R
2
〉
′

0

[
1− ψ2

+
1

ψ3

4
3

z+ · · ·

]
. (6.23)

The details of the calculations are similar to those reported in
appendix B, with the relevant result given by equation (C.11),
but the occurrence of the ψ-terms can be understood from
a transformation. Since H′0 represents a Gaussian with the
extra ψ factor, we have G′0(r) = ψ

−d/2G0(r/ψ). Therefore,
by scaling R, r→ R/ψ, r/ψ , one gets the factor ψ4 coming
from the correlation of R2 and δH1. As H is dimensionless
the correlation is dimensionally ∼ L because of R2. When
these are combined with the factor (1 − ψ−2) of δH1,
we find the contribution ∼ Lψ2(1 − ψ2). A change in
variable gives δ(r)→ ψ−dδ(r/ψ), so that the δH2 correlation
would be ∼ (Lψ2)(ψ−3)(uL1/2), in three dimensions, as in
equation (6.23).

The swelling factor analogue of equation (4.6) now reads

ψ2
=
〈R2
〉

〈R2〉0
=
〈R2
〉
′

0

〈R2〉0
. (6.24)

The last step stems from the condition

〈R2
〉 = 〈R2

〉
′

0, (6.25)

which is the requirement of the uniform expansion method,
equating the correction term in the square bracket to zero. This
yields

ψ5(z)− ψ3(z) = 4
3 z (6.26)

which coincides with equation (6.4) with γ = 0 (no 3-body
term), as it should.

Although the scheme is based on the first-order
perturbative result, the method via the choice of ψ makes it
nonperturbative and applicable to a wide variety of situations.

6.6. Extension of Flory theory to more complex systems

As anticipated in the introduction, Flory theory is still a
widely used tool in many different soft matter systems
with increasing complexity. This is because, in spite of its
simplicity and known limitations, it is able to capture the
main essential competition between entropic and energetic
contributions. There are clearly too many cases of extensions
of Flory theory to these more complex systems to be

14



J. Phys.: Condens. Matter 25 (2013) 503101 Topical Review

reproduced here. As representative examples, we confine
ourselves to two important cases.

The first one is related to the possibility of having
anisotropy with a preferred direction as, for instance, for
directed linear or branched polymers [46, 47]. The same idea
will also be taken up in section 7.3 where the case of the
inclusion of an external force will be discussed.

For directed systems, with a preferred direction, we
introduce a transverse typical radius R⊥ and a longitudinal
radius R‖, along with the corresponding exponents ν⊥ and
ν‖, so that R⊥ ∼ Nν⊥ and R‖ ∼ Nν‖ . The extension of the
free energy (2.10) to the present case then reads in general
dimensionality d [46, 47] as

FN(R⊥,R‖) = F0 + e0

(
R2
⊥

N2b2 +
R2
‖

Nb2

)

+ e1vexc
N2

R‖R
d−1
⊥

. (6.27)

Note that the different N-dependence on the longitudinal
and transverse Gaussian case stems from the fact that the
system is directed along the longitudinal direction (ν0

‖
= 1)

and diffusive along the transversal one (ν0
⊥
= 1/2). As in the

isotropic case, the upper critical dimension dc is found by
assuming the repulsive part to be of the order of unity, thus
obtaining dc = 3. Upon minimizing with respect to R⊥ and
R‖ one obtains a system of two coupled equations involving
ν⊥ and ν‖, whose result is

ν⊥ =
5

2(d + 2)
ν‖ =

d + 7
2(d + 2)

. (6.28)

A second case of great interest and actuality concerns
the case of branched polymers formed by several reacting
multifunctional monomer units, which are often referred to as
star-burst dendrimers [48]. In this case, the N monomers are
distributed into g generations of successive growth, so that the
size of a typical strand of g monomers is R0 ∼ bg1/2.

In this case, specialized to the three-dimensional system
to be specific, the repulsive term for a system of g
monomers embedded into a system of density N/R3, will be
proportional to gN/R3, thus leading to a further generalization
of equation (2.10):

FN(R) = F0 + e0
R2

N
+ e1vexc

gN

R3 . (6.29)

A minimization with respect to R then leads to an equation
for the linear expansion factor R/R0 akin to equation (6.4) for
this case. A recent application of this methodology to several
examples of branched polymers can be found in [49].

7. Temperature induced transition and external
force

The scaling theory discussed in section 6 is an attempt to
go beyond the Gaussian limit in each phase of a polymer.
However, for arbitrary d, the interacting polymer may never
be in the Gaussian limit. We have seen that as the quality of the

solvent is changed, the size exponent takes only three possible
values, one for the repulsive, one for the attractive and one
for the transition point. The universality of the exponents
on the repulsive and the attractive sides (i.e. independent
of the strength) suggests that the special situation is the
transition point, not the Gaussian noninteracting one. The
scaling behaviour should then be in terms of the deviations
from the transition point. This we do now in this section.
The law we obtain is analogous to the scaling observed in
magnetic and fluid phase transitions near tricritical points.
This is not surprising. To get the transition point we need
to tune the two-body interaction and N → ∞. In fact one
more parameter is needed, the concentration of the polymer
in solution, which also needs to be zero (dilute limit). A
transition point with three relevant parameters (parameters
that can destroy or change the nature of the transition) is called
a tricritical point.

As in any phase transitions, in polymer theory too, the
criticality is obtained only in the N → ∞ limit. Near a
phase transition point, a finite system then shows typical,
often universal, size dependence which is characteristic of the
infinite system. This is called finite size scaling. The phase
transition that occurs at T = Tθ requires N → ∞, but its
character can be seen in finite N behaviour. One interesting,
and largely overlooked, consequence of the polymer theory
developed so far lies in the possibility of getting this finite
N � 1 behaviour as one drives the transition upon changing
the temperature. This is discussed in the present section where
the Flory approach will be cast into a more general framework
of a crossover between the three different regimes as driven by
the temperature at large but fixed N. As before, we will study
the dimensionality dependence of the system separately.

The polymer at the theta point is in a very special state
because finiteness of the length or any change in temperature
would take it away from the theta point. In such situations, the
transition behaviour is expressed in terms of the theta point
behaviour as

R = bNνθ9(αNφ), (7.1)

where 9(0) = 1 is the theta temperature behaviour (α = 0).
For higher temperatures, α > 0, as N → ∞, 9(x) ∼ xq in
such a way that the N dependence becomes the Flory value,
the characteristic of the swollen phase. This requires νθ+qφ =
νF. This is nicely corroborated by the Flory theory, as shown
below.

7.1. Case 2 ≤ d ≤ 3

We now go back to the free energy as given by
equation (5.10b), and consider the saddle point equation,
equation (5.15), rearranged as(

R

Lνθ

)2d+2

− α̃L
d−1
d+1

(
R

Lνθ

)d

− 2γ̃ = 0

(νθ = 2/(d + 1)). (7.2)

We consider the θ -regime T → Tθ and restrict to the case 2 ≤
d ≤ 3. To allow for non-Gaussian behaviour, let us introduce
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Figure 5. Theta point region in a T versus 1/N plot (single chain).
The theta point is at T = Tθ , 1/N = 0. There is a crossover region
determined by the crossover exponent φ, emanating from the theta
point (marked theta region) within which the theta point behaviour
could be seen for shorter chains. Beyond the dashed line for T > Tθ
one sees the swollen behaviour for long chains while below a
similar line for T < Tθ one sees a collapse phase. The vertical solid
line gives the width of the theta region for a finite chain. This is used
in figure 8.

an arbitrary scale b with N = L/b2 dimensionless as before.
For the solution R of the steepest descent (equation (7.2)) we
assume a scaling form of the type

R = bNνθ9(z), (7.3)

where we have generalized the scaling variable

z = |α|Nφ,

involving the crossover exponent

φ =
d − 1
d + 1

.

The scaling function 9(z) (> 0) is a clear generalization
of equation (4.6). Equation (7.2) can then be cast into the
following form:

92d+2(z)− χ(T)z9d(z)− 2γ = 0, (7.4)

where the function χ(T) is equal to 1 for T > Tθ and −1
for T < Tθ . Because of this, we must distinguish two cases
depending on T , and we will denote as 9+ (9−) the solution
of (7.4) when T > Tθ (T < Tθ ).

7.1.1. Case T > Tθ . Equation (7.4) has only one solution
for 9+ > 0 which, at large z, behaves as

9+(z) = z
1

d+2

(
1+

2γ
d + 2

1

z
2d+2
d+2

+ · · ·

)
. (7.5)

On the other hand, for z→ 0 (T → T+θ ) we find 9+(z) ∼
(2γ )1/(2d+2). The scaling function then has the following
behaviour:

9+(z) =

{
z

1
d+2 z� (2γ )

d+2
2d+2

(2γ )
1

2d+2 z� (2γ )
d+2
2d+2 .

(7.6)

Figure 6. Plot of R/(bNνθ ) = 9±(z) as a function of z as given by
equation (7.9) in d = 3 when T > Tθ and T < Tθ .

7.1.2. Case T < Tθ . Now χ(T) < 1 and α = −|α|. Again
equation (7.4) has only one solution:

9−(z) =
2γ
z

1
d (

1− 2γ d+2
+ dz

2d+2
d+2 + · · ·

)
. (7.7)

For z→ 0 we have the same behaviour as before, so that

9−(z) =


2γ

1
d

z
z� (2γ )

d/2
2d+2

(2γ )
1

2d+2 z� (2γ )
d/2

2d+2 .

(7.8)

7.1.3. Phase diagram. Inserting these findings for9(z) into
the scaling ansatz (7.3) we obtain

R

b
≈



(T − Tθ )
1

d+2 NνF ,

when N � |T − Tθ |
−1/φ, T > Tθ

(Tθ − T)−
1
d Nνc ,

when N � |T − Tθ |
−1/φ, T < Tθ

Nνθ , when N � |T − Tθ |
−1/φ

or T = Tθ .

(7.9)

A schematic diagram of the three regions is shown in
figure 5. The crossover expressed by the exponent φ above is
represented by the dashed (blue) lines. The region enclosing
the x-axis is the theta region.

This behaviour is depicted in figure 6 in the particular
case of d = 3.

7.2. Case d > 3

In this case the steepest descent solution of the modified free
energy equation (6.1), accounting for Flory’s correction, reads

R2

Nb2 − 1−
[

2γ b2d N3

R2d
+ · · ·

]
= αN2 bd

Rd
(7.10)

where we have not included higher correction terms γij that
are necessary to ensure the convergence of the saddle point in
equation (5.18) in the case α < 0.
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In analogy with what we have attempted in the previous
case, we assume a scaling of the form

R = bN1/29(z) (7.11)

in view of the fact that νθ = 1/2 when d > 3. This yields

92d+2(z)−92d(z)−

[
2γ

Nd−3 + · · ·

]
=

α

Nd/2−29
d(z).

(7.12)

Note that, unlike the case 2 ≤ d ≤ 3, it is not possible to cast
equation (7.12) in terms of an equation for a single scaling
variable z as both terms multiplying α, γ and higher terms
depend upon N. We then assume z= |α|/N(d−4)/2 and χ(T)=
1 when T > Tθ and −1 for T < Tθ , so that the left-hand side
of equation (7.12) reads χ(T)z9d(z).

Again we consider two cases.

7.2.1. Case T > Tθ (α > 0). In this case, equation (7.12)
becomes

92d+2
+ (z)−92d

+ (z)− 2γN3−d
− z9d

+(z) = 0, (7.13)

where z > 0 and 9+ > 0. For small z and d > 3, the last
two terms in the above equation (7.13) are negligible and
9+(z) ≈ 1. On the other hand, if z� 1 the first and last terms
of equation (7.13) dominate leading to

9+(z) ≈ (αz)1/(d+2). (7.14)

Depending on dimensionality d, we then get, using
equation (7.11),

R

b
≈



N1/2 1� N � (T − Tθ )
−2/(4−d)

3 < d < 4

(T − Tθ )
1/(d+2)NνF

N � (T − Tθ )
−2/(4−d) 3 < d < 4

N1/2 N � 1 d > 4.

(7.15)

Notice that, for this case, the Flory correction term (the second
term in equation (7.13)) is important for the relatively small
N regime but not for the large N regime where self-avoidance
dominates. The γ term is, on the other hand, always irrelevant.

7.2.2. Case T < Tθ (α < 0). Equation (7.12) becomes in
this case

92d+2
− (z)−92d

− (z)− 2γN3−d
+ z9d

−(z) = 0. (7.16)

Again, when z� 1 and N � 1 we have 9−(z) ≈ 1.

When z� 1 since 9−(z) > 0 we have

9−(z) ≈

(
2γ

zNd−3

)1/d

= (2γ )1/d(Tθ − T)1/dN−
d−2
2d

(7.17)

leading to

R

b
≈



N1/2 1� N � (Tθ − T)−2/(4−d)

3 < d < 4

(Tθ − T)−1/dNνc

N � (Tθ − T)−2/(4−d) 3 < d < 4

N1/2 N � 1 d > 4.

(7.18)

In this phase both terms, the Flory correction and the
γ -term, are relevant depending on the N regime. Thus, the
annoying N-dependence in equation (7.13) for T > Tθ can be
neglected and 9+ depends on z only in the large N regime,
whereas when T < Tθ , the N-dependence enters through the
dangerous irrelevant γ -term which is necessary to ensure the
convergence of the integral in equation (5.18).

7.3. Inclusion of an external force

The standard approach to probe any system is to perturb it
by a small amount and look for the response. One would
therefore like to obtain the response of a polymer in different
phases to perturbations that try to change its size or shape.
This would tell us about the stability of the size and also
would give us information about the distribution function. One
such perturbation would be an external force pulling at one
end keeping the other fixed. This is equivalent to pulling the
two ends with equal force in opposite directions. This is the
fixed-force ensemble.

The Flory free energy given in equation (5.10b) can be
extended to include the effect of an external force. A detailed
analysis of this situation in the case of semiflexible polymer is
given in section 8, but we here discuss the Flory result for the
flexible case. Equation (5.10b) modifies as

βFL(R) =
d

2
R2

Nb2 + α
N2

Rd
+ γ

N3

R2d
+ · · · − f ·R, (7.19)

where the last term accounts for the reduction in free energy
for chain alignment along the (reduced) external force per unit
of length f. From a thermodynamic point of view, we are going
from a fixed-R ensemble to a fixed-force ensemble.

The force introduces a cylindrical anisotropy so that

R = R‖ + R⊥, (7.20)

where R‖ = (R · f̂)f̂ and f̂ = f/f is the unit vector of f.
In analogy with equation (5.16) we assume here a

different scaling in the directions parallel and perpendicular
to the applied force

R‖ = bNν‖x‖ R⊥ = bNν⊥x⊥, (7.21)

where one expects ν‖ ≈ 1 > ν⊥ so that x‖ > x⊥/Nν‖−ν⊥ .
In the α > 0 case, i.e. for T > Tθ , both the interaction

terms in equation (7.19) (those proportional to α and γ ) are
subdominant with respect to the Gaussian and the force terms,
so that one finds in the N � 1 limit

βFL ≈ N

[
d

2
x2
‖
− fbx‖

]
+

d

2

R2
⊥

Nb2 −
αd

2xd+2
‖

R2
⊥

Ndb2

+ less dominant terms, (7.22)
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whose minimization with respect to R⊥ leads to R⊥ ∼ bN1/2

implying ν⊥ = 1/2. Then

βFL ≈ N

[
d

2
x2
‖
− fbx‖

]
. (7.23)

This yields the saddle point

x∗
‖
=

fb

d
(7.24)

which can be inserted back into equation (7.23) to give the
minimum of the swollen phase free energy

(βFL)S = −N
(bf )2

2d
. (7.25)

In the opposite case α = −|α| (i.e. T < Tθ ) the phase
is compact and hence both terms in equation (7.21) coincide
with

R = bN1/dx. (7.26)

The external force term is then subdominant and one has to
match the two interaction terms as in the absence of external
force. Thus, equation (7.19) yields

βFL = N

[
−
|α|

xd
+

γ

x2d

]
. (7.27)

This yields the saddle point equation

x∗ =

(
2γ
|α|

)1/d

(7.28)

and a minimum of the compact phase free energy

(βFL)C = −N
α2

4γ
. (7.29)

A first-order transition between the swollen and compact
phase occurs when the two free energies (7.25) and (7.29) are
equal, that is at the critical force fc given by

bfc = |α|

√
d

2γ
. (7.30)

As α is proportional to (T−Tθ )/Tθ , Flory theory then predicts
linear dependence of the critical force f on the reduced
temperature, as schematically illustrated in figure 7. This
approach has been exploited to infer the unzipping transition
in DNA [50–52].

7.4. Polymer solution

The single chain behaviour discussed so far is for a very dilute
solution. The monomers on different chains also interact like
monomers on the same chain. We discuss qualitatively the
combined effect of additional chains and temperature. See
figure 8.

For polymers in good solvent, one may start from a very
dilute regime where each chain has its own size and they are
too far apart to have any mutual interaction. Taking each chain
to be a sphere of radius R ∼ Nν , the dilute limit corresponds to

Figure 7. Schematic phase diagram, in the force–temperature
plane, as predicted by the Flory theory.

the regime where the separation of the centre of the spheres3
is much greater than R,3� R. Like any dilute solution, the
polymers then exert an osmotic pressure well described by the
perfect gas law,

5 = kBT cp, (3� R), (7.31)

where cp is the polymer number concentration (number of
polymers per unit volume). If we have np polymers in the
solution of volume V, cp = np/V .

Polymers are not hard spheres and so they start
interacting when 3 ∼ R. They start to interpenetrate. Under
such a condition, monomer concentration

c =
Nnp

V
= Ncp, (7.32)

is a more appropriate variable than cp because the end
points do not matter. In the dilute limit, the polymers are
identifiable, the end points acting as labels for them. For
the interpenetrating case, there is no noticeable distinction
between the interior of the solution of np polymers each of
N monomers and the interior of a single chain of length
npN. The chain length ceases to be a suitable measure to
characterize the solution. This regime is called the semi-dilute
regime or a semi-dilute solution of polymers. The change
from the dilute to the semi-dilute case is not a phase
transition but a smooth crossover involving a concentration
dependent length scale. From the transient network created
by the interpenetration, one may identify a spatial length ξ
within which a polymer segment is free and assumes the
behaviour of a swollen chain (ξ ∼ nν). It looks like a solution
of blobs of size ξ . Thanks to the interaction with other
monomers, the long-range correlation of a single chain is lost.
As a result, a long polymer, N � n, will be in a Gaussian
state. This is a screening effect—the repulsive interactions
with other monomers screening out the long-range effect of
self-repulsion. In a T–c plane for a finite N, there will be a
crossover line separating the dilute and the semi-dilute cases.
See figure 8(a).
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Figure 8. T versus c (concentration) diagram for (a) a finite chain and (b) infinite chain length. In (a) there is no true theta point but instead
a critical point for phase separation of polymer solutions. With concentration, there is a crossover line for theta-like polymer solution to
repulsive polymer solution (blue horizontal dashed lines). The dilute to semi-dilute crossover takes place at the overlap concentration where
the polymer spheres in the dilute solution start to touch each other. This is indicated by a red dash–dotted line. The blue hashed line
indicates the variation of the overlap concentration with N (the locus of a typical point on the red dashed line). Near the critical point the
solution behaviour is controlled by the concentration fluctuations. In (b) there is a theta point (for c = 0) which is the end point of the line of
critical points of phase separation. This is a tricritical point. There is a phase coexistence line from the theta point for infinitely long
polymers. On this line the osmotic pressure is zero. The critical point is coincident with the c = 0 theta point. For any nonzero concentration
it is a semi-dilute solution. The swollen and the collapsed states exist only on the c = 0 line.

The scale c∗ for the crossover from dilute to semi-dilute
case can be obtained from a physical picture. This is the
concentration at which the individual spheres of size R just
start to touch each other, 3 ∼ R. In a sense, the overall
monomer concentration matches the concentration inside a
single polymer sphere, namely,

cp ∼
1

3d
∼

1

Rd
, so that c∗ ∼

L

Rd
∼ N1−dν . (7.33)

With this scale, the osmotic pressure takes the form

5 = kBT cp f (c/c∗) = kBT (c/N) f (c/c∗)

where the function f (x) is such that for c � c∗,5 is
independent of N. It then follows that 5 ∼ c1/(dν−1). The
nonlinear dependence 5 ∼ c5/4 in three dimensions (using
the Flory value) has been observed experimentally in many
polymer solutions [5].

The dilute–semi-dilute crossover is indicated by a
dash–dotted line in figure 8(a). As N is decreased the
crossover line shifts to higher values as indicated by a hashed
blue line. For infinitely long chains any solution is in the
semi-dilute regime (c∗→ 0) as in figure 8(b).

For attractive interaction, the theta temperature is strictly
for an infinitely long chain. A solution of polymers of
finite chains with attractive interaction would show a phase
separation between very dilute and semi-dilute solutions
similar to the phase separation of any binary mixture or alloy.
Such a phase separation, in addition to a region of coexistence,
would also have a critical point in the temperature
concentration plane. The critical point is expected at a
temperature Tc < Tθ with Tc→ Tθ at c→ 0 as N→∞. The
behaviour close to the critical point (‘critical phenomenon’) is
identical to other binary mixtures, controlled by concentration
fluctuations. In a three-dimensional T–c–1/N phase diagram

a line of these critical points ends at the theta point at
1/N = 0, c = 0. See figure 8(b). We see the special status
of the theta point: it is the confluence of two independent
phenomena, the criticality of phase separation in solution and
the collapse of a single long chain. Such a point is defined
as a tricritical point. A tricritical point requires three critical
lines meeting at a point. For N →∞, c = 0, the T > Tθ line
is a critical line showing power law behaviour at every T .
We therefore see two critical lines meeting at the theta point.
Unfortunately, N, c are strictly positive and so a complete
picture of the tricritical behaviour is not achievable. For N →
∞, there is a phase separation between the collapsed phase
and a semi-dilute solution. The phase separation line has zero
osmotic pressure.

Figure 8(a) shows the various crossovers in the T–c plane
for a fixed N, a slice of the three-dimensional phase diagram.
There is a region close to the theta point with small c, marked
by the horizontal lines Tθ ± N−φ in the dilute regime where
the signature of the theta point is visible.

There have been experimental attempts [53] to generate
such a phase diagram for polymers in terms of theta point
scaling but a Flory-like theory for these rich phenomena
remains elusive.

8. Semiflexible chain under tension

So far we have discussed the properties of flexible chains,
where the chain is Gaussian in the absence of any external
interactions. The discussed Edwards model is then the
continuum counterpart of a freely jointed chain. The two
matched nicely because all the properties were controlled by
the configurations near the peak of the distribution. We now
discuss a case where one needs the extreme states for which
the Gaussian approximation is not sufficient.
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In addition to the three phases we have seen, there is the
possibility of a stretched state or a rod-like state with ν = 1
as, e.g., one expects for a repulsive polymer in d = 1. This
state can be produced by stretching by a force or by bending
rigidity. In both cases there is a competition with entropy.
Since an extended state would correspond to configurations
in the tail of a Gaussian distribution, the continuum model we
used would not be of much use.

In this section, for completeness and for practical
usefulness, we consider the situation of a polymer with
bending rigidity, called a semiflexible polymer, in the
presence of an external pulling force acting on one end of the
chain [25, 26]. The small force and the large force regions are
determined, from which an approximate interpolation formula
is derived.

8.1. Discrete approach

Let us start with the FJC of section 2, with normalized bond
vectors by T̂j = τj/b. Instead of free joints, we admit a
bending energy at every joint where there is an energy penalty
if the two bonds are not parallel. This energy cost is taken as
∝ −T̂j−1 · T̂j. If one end is fixed at the origin, then the force
on the other end is equivalent to a orientational force on every
bond because of the relation R =

∑
jτj. The Hamiltonian can

then be written as

βH = −K
N∑

j=1

T̂j+1 · T̂j −

N∑
j=1

bf · T̂j, (8.1)

with the partition function10

e−βF
= Z =

∫ [
N∏

j=1

d3T̂j

2π
δ(T̂2

j − 1)

]
e−βH . (8.2)

The delta function in equation (8.1) maintains the fixed length
constraint of each bond. It is this constraint that prevents the
unwanted extensions (in the tail of the Gaussian distribution)
of a continuous chain. We choose our axes such that the force
is in the z-direction fj = f ẑ and the quantity of interest is the

extension 〈z〉 = b
∑

i〈T
(‖)
i 〉, where ‖ indicates the z-direction.

Incidentally, the Hamiltonian equation (8.2) is identical to a
classical ferromagnetic one-dimensional Heisenberg model in
a field, if T is treated as a fixed length spin vector.

Let us first consider the small force regime, where a linear
response is expected, 〈z〉 = b2χT f , with the response function

χT =
∑

ij

〈T(‖)i T(‖)j 〉0, (8.3)

where the correlations are evaluated in the zero-force
condition indicated by the subscript 0. For the classical one-
dimensional model, these correlations decay exponentially for
all temperatures,

〈T(‖)i T(‖)j 〉0 ∼ exp(|i− j|b/lp). (8.4)

10 The factor 2π appearing in equation (8.2) in place of the usual
normalization 4π is due to the presence of the T̂2

− 1 in the argument of
the δ-function, and to the fact that δ(x2

− 1) = [δ(x− 1)+ δ(x+ 1)]/2 with
the second term not contributing to the result of the radial integral.

Here T‖ = ẑ(T̂ · ẑ) and this also defines the perpendicular
component T⊥ as given in equation (8.6).

The decay length lp is the persistence length. The
correlation here may be compared with the flexible case,
equation (2.2). Ignoring end point effects (equivalent to
assuming a circular polymer), and converting the sum to an
integral, we get χT ∼ Nlp. Therefore for small forces, we
expect

〈z〉 = Nblpf +O(f 2). (8.5)

For large forces, the polymer is going to align with
the force and be completely stretched except for thermal
fluctuations. The fully stretched condition means z = bN and
therefore the delta function constraint in equation (8.2) is
going to play an important role. The deviation from the fully
stretched state comes because of transverse fluctuations and it
would go to zero as f →∞. By writing

T̂j = T(‖)j + T(⊥)j (8.6)

with small transversal part, i.e. |T(⊥)j | � 1 for b f � 1, we
have

〈z〉 =
N∑

l=1

b〈T̂l · ẑ〉 = b
N∑

l=1

〈√
1− T(⊥)

2

l

〉

≈ Nb−
b

2

N∑
l=1

〈T(⊥)
2

l 〉. (8.7)

Under the same approximation for f � 1 as in equation (8.7),
the Hamiltonian can be approximated, dropping redundant
terms, as

βH = −K
N∑

j=1

T(⊥)j+1 ·T
(⊥)
j +

1
2

N∑
j=1

(bf + Kj)T
(⊥)2

j , (8.8)

where Kj = 2K, for all j except K1 = KN = K. In the
following, we neglect this boundary effect and set Kj = 2K.
For a very large force, the leading term of the Hamiltonian is

βH ≈ 1
2

∑N
j=1b f T(⊥)

2

j . By the equipartition theorem, we then

expect b f 〈T(⊥)
2

j 〉 = 2. By using this result in equation (8.7),
the behaviour is

〈z〉

Nb
≈ 1−

1
bf
, f →∞. (8.9)

Both equations (8.5) and (8.9) agree with the small and
large f limits obtained by the more elaborate calculation
of sections 8.3 and 8.4. It is then possible to generate
an interpolation formula that satisfies the two asymptotes,
namely f → 0 and f → ∞. The interpolation formula is
derived below after taking the continuum limit b→ 0 which
requires a more detailed evaluation of the large force limit.

8.2. Continuum limit: a detour

The continuum limit of the discrete chain with bending energy
does not follow from the procedure adopted for the FJC. The
reason for this is that in the Edwards model the length L is

20



J. Phys.: Condens. Matter 25 (2013) 503101 Topical Review

like an area or the chain is not a space curve. A semiflexible
polymer configuration involves the tangent vectors T for
which it has to be taken as a space curve [54, 55]. Therefore
two points on the polymer r and r+dr separated by a contour
length ds have to satisfy (∂r/∂s)2 = 1. This condition at
every point on the curve can be enforced by a δ-function in
the partition function and the Gaussian term of the Edwards
model does not appear. By writing−2Ti ·Tj = (Ti−Tj)

2
−2,

a continuum limit for the bending energy for b→ 0 would
give a derivative of

T̂(s) =
∂r
∂s
, (8.10)

i.e., ∂2r/∂s2.
With the above introduction, let us introduce the partition

function and the free energy for a semiflexible chain under the
action of an external force [25, 26],

e−βF
= Z =

∫
Dr

[∏
s
δ(T̂2(s)− 1)

]
e−βH, (8.11)

with a Hamiltonian

βH =
lp
2

∫ L

0
ds

(
∂T̂
∂s

)2

−

∫ L

0
ds f(s) · T̂(s). (8.12)

In equation (8.12) lp is the persistence length which is the
tangent correlation length defined as

〈T̂(s) · T̂(s′)〉 ∼ exp
[
|s− s′|

lp

]
, (8.13)

the continuum analogue of equation (8.4). The fact that the
lp introduced in equation (8.12) coincides with the actual
persistent length given in equation (8.13) will be shown below.
If f is a constant, then the last term in equation (8.12) becomes
f · [r(L)− r(0)] which is the standard force term.

If one softens the rigid constraint by a Gaussian weight
factor, i.e., the δ(T̂2(s) − 1) by exp(−T̂2/2σ 2), and absorb
this extra term in the Hamiltonian, we get

βH =
lp
2

∫ L

0
ds

(
∂2r
∂s2

)2

+
1

2σ 2

∫ L

0
ds

(
∂r
∂s

)2

−

∫ L

0
ds f(s) · T̂(s), (8.14)

which allows discussions of a crossover from the Gaussian to
the semiflexible case [56].

We follow a discrete approach of [27, 28], that is simpler
than a continuum formulation and yields the same results.

8.3. Large f limit: detailed calculations

Let us start with equation (8.2). We further assume the
transversal part to be small, i.e. |T(⊥)j | � 1, an assumption
that holds in the large f limit. Then, to leading order,

δ(T̂2
j − 1) =

1

2
√

1− T(⊥)
2

j

δ

(
T(‖)j −

√
1− T(⊥)

2

j

)
, (8.15)

where the additional term containing δ(T(‖)j +

√
1− T(⊥)

2

j ) has
been neglected since it leads to subdominant contributions.
To leading order, the square root term appearing in
equation (8.15) can be exponentiated as

(1− T(⊥)
2

j )−1/2
≈ eT(⊥)

2
j /2

, (8.16)

and in equation (8.2) we can further split d3T̂j = dT(‖)j d2T(⊥)j .
The integral over the longitudinal part can be carried out
immediately so that equation (8.2) can be written as

e−βF
= (const)

[∫ (
N∏

j=1

dTj

)

× exp

(
−

1
2

N∑
ij=1

TiMijTj

)]2

, (8.17)

where Mij is a tri-diagonal matrix

Mij = (bf + 2K + 1)δij − K(δij+1 + δij−1), (8.18)

and Tj is any of the two transversal components of T̂j

whose range can be extended to the whole real line, −∞ <

Tj < ∞. The multiplicative constant appearing in front of
equation (8.17) is irrelevant and can be dropped. Being of
Gaussian form, the computation of any correlation function of
(8.18) can be easily done as it is related to the inverse matrix
M−1

ij (see appendix A). With the use of the result∑
l

〈T(⊥)
2

l 〉 = 2
∑

l

M−1
ll , (8.19)

one then finds from equation (8.7),

〈z〉

Nb
= 1−

1
N

Tr M−1. (8.20)

In order to compute the trace of the inverse matrix M−1

one may switch to Fourier variables for diagonalization (since
the boundary conditions are not relevant in the large N limit,
we use periodic boundary conditions, as already done for Kj),

N∑
l=1

Mlmeiωn(l−m)
= λ(ωn), ωn =

2nπ

N
(8.21)

where the eigenvalues are

λ(ω) = u− 2K cosω (8.22)

with u = bf + 2K + 1. Then in the N →∞ limit

1
N

N∑
l=1

M−1
ll =

1
N

N−1∑
n=0

1
λ(ωn)

N→∞
−→

∫
+π

−π

dω
2π

1
λ(ω)

=
1√

(bf + 1)2 + 4K(bf + 1)
. (8.23)

The last equality in equation (8.23) has been obtained in the
N → ∞ limit by contour integration. Note that condition
u ≥ 2K is required to ensure positive eigenvalues of the Mlm

matrix and well defined integral in equation (8.17). This can
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be inserted into equation (8.7) so that (assuming bf � 1)

〈z〉

Nb
= 1−

1√
b2f 2 + 4Kbf

, (8.24)

whose leading-order terms agree with equation (8.9).

8.4. Small force limit: detailed calculations

In the f → 0 limit, we can expand the partition function
Z given in equation (8.1). If Z0 is the partition function
associated with the f = 0 Hamiltonian in equation (8.1), we
have

Z = Z0

[
1+ 1

2 b2
∑

ij

∑
µ,ν=x,y,z

fµfν〈T̂
µ
i T̂νj 〉0 + · · ·

]
(8.25)

where the first-order term in the expansion vanishes because
〈T̂j〉0 = 0 by symmetry. The averages denoted by the subscript
0 are with respect to Z0. Because of the rotational invariance
of the zero-force Hamiltonian (8.1), we have that 〈T̂µi 〉0 = 0
and 〈T̂µi T̂νj 〉0 = (1/3)δ

µν
〈T̂i · T̂j〉0. Hence, one gets

Z = Z0

[
1+ 1

6 b2f 2
∑

ij

〈T̂iT̂j〉0 + · · ·

]
, (8.26)

where

〈T̂iT̂j〉0 =
1
Z0

∫ [
N∏

n=1

d3T̂n

2π
δ(T̂2

n − 1)

]

× eK
∑N

l=1 T̂l+1·T̂l(T̂iT̂j). (8.27)

In equation (8.27) we have assumed periodic boundary
conditions so that T̂N = T̂1. Now, R = b

∑
jT̂j so that the

quantity

N∑
i=0

N∑
j=0

〈T̂i · T̂j〉0 = 〈R
2
〉/b2 (8.28)

is the mean square end-to-end distance. We then have from
equation (8.26)

Z = Z0[1+ 1
6 f 2
〈R2
〉 + · · ·], (8.29)

and hence

〈z〉 =
∂

∂f
ln Z =

1
3

f 〈R2
〉 + · · · , (8.30)

which is consistent with the expected linear response
mentioned earlier.

The connection between the response function and
the polymer size raises an interesting question on the
thermodynamic limit. This is discussed in appendix D.

8.4.1. Evaluation of 〈R2
〉. We now evaluate 〈R2

〉. Consider
the quantity

I(K, T̂j−1) =

∫
d3T̂j

2π
δ(T̂2

j − 1)eKT̂j−1·T̂j . (8.31)

This can be easily computed as an integral over the solid
angle. With γj as the angle between T̂j and T̂j−1, one gets

I(K, T̂j−1) =
1

2π

∫
d�jeK cos γj =

sinh K

K
≡ I0(K), (8.32)

independent of T̂j−1. Then one can clearly integrate T’s in
equation (8.3) with f = 0, term by term, with the result

Z0 = [I0(K)]
N+1. (8.33)

Likewise one can also compute the average involved in
equation (8.27) as (assuming without loss of generality j > i)

〈T̂iT̂j〉0 =
1

[I0(K)]|j−i|

∫
d3T̂i

2π
δ(T̂2

i − 1) · · ·

×

∫
d3T̂j

2π
δ(T̂2

j − 1)

× eK
∑j−1

l=i T̂l+1·T̂l T̂iT̂j. (8.34)

One then observes that

1
I0(K)

∫
d3T̂j

2π
δ(T̂2

j − 1)eKT̂j−1·T̂jT̂j = L(K)T̂j−1, (8.35)

where

L(K) =
∂

∂K
log I0(K) = coth K −

1
K
. (8.36)

Here L(K) is the Langevin function appearing in the exact
solution of the FJC subject to an external force discussed
in appendix F. In deriving equations (8.35) and (8.36) we
have neglected subdominant terms in the limit N � |i −
j|, and exploited the rotational invariance of the zero-force
Hamiltonian (8.1).

Then, by iteration,

〈T̂iT̂j〉0 = L(K)〈T̂iT̂j−1〉0 = [L(K)]|i−j|, (8.37)

in the form of equation (8.4) with

lp = b/| ln L(K)|. (8.38)

For an explicit computation of 〈R2
〉, note that

b−2
〈R2
〉 =

N∑
i=0

N∑
j=0

[L(K)]|i−j|

=

N∑
l=0

l∑
m=0

Ll−m(K)+
N∑

l=0

N∑
m=l+1

Lm−l(K). (8.39)

With the help of the summation formula

N∑
l=0

l∑
m=0

xl−m
=

1
1− x

[
N + 1−

x

1− x
(1− xN+1)

]
, (8.40)

and

N∑
l=0

N∑
m=l+1

xl−m
=

x

1− x

[
N + 1−

(1− xN+1)

1− x

]
, (8.41)
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the final form is

〈R2
〉 = b2(N + 1)

1+ L(K)
1− L(K)

− 2b2 L(K)
1− LN+1(K)

(1− L(K))2
. (8.42)

Because |L| < 1, we do see 〈R2
〉 ∼ N for N → ∞, as

claimed in section 2 (see below equation (2.7)). For N �
lp/b, a polymer would look like a rod in an extended state
but for N � lp/b it would be Gaussian. The semiflexible
regime corresponds to the intermediate case N > lp/b. Since
|L(K)| < 1, lp is always finite, except for K →∞. For large
K,L(K) ≈ 1 − 1

K so that, from equation (8.38), lp ≈ Kb. In
this limit, (1 + L(K))/(1 − L(K)) ≈ 2K, so that the size can
be written as

〈R2
〉 = 2lpLc − 2l2p(1− e−Lc/lp), (8.43)

in terms of the length Lc = Nb. Note that in the limit N �
lp/b, equation (8.43) predicts a ballistic dependence 〈R2

〉 ∼

N2, as expected.

8.5. An interpolation formula

The result given in equation (8.24) can be reduced to
its continuum counterpart [28], by considering the b → 0
limit with N,K → ∞, keeping the persistence length lp =
Kb fixed and also the chain length Lc = Nb [27]. From
equation (8.1) we see that f has dimensions of the inverse of
a length. Upon introducing the ‘physical’ force fphys = f /β,
and the dimensionless ratio ζ = 〈z〉/(Nb), one obtains from
equations (8.24) and (8.30)

ζ = 1−
1

2
√

lpβfphys
(8.44)

in the large force limit. Notice that we are working in the
limit lp � Lc so that the first term in the right-hand side of
equation (8.43) is the dominant one.

The opposite limit f → 0 can be obtained directly in
the βfphysb � 1 limit as given in section 8.4.1. Indeed, from
equation (8.42) in the b→ 0 and N � 1 limit we get from
equation (8.43)

〈z〉 = 2
3 lpLcβfphys + · · · , (8.45)

and hence

ζ = 2
3βfphyslp + · · · . (8.46)

Similar results can be obtained by considering a Gaussian
chain subject to an external force. Within the discrete limit, we
have the FJC model that can be solved exactly, as discussed in
appendix F.

Notice that it can be shown that b = 2lp within the WLC
model [9, 10], so that this relation agrees with equation (8.5).

The two above relations (8.44) and (8.46) can be inverted
to yield

lpβfphys =


3
2ζ if ζ � 1

1

4(1− ζ )2
if ζ . 1.

(8.47)

Both regimes can be embodied into an interpolation
formula [28]

lpβfphys = ζ +
1

4(1− ζ )2
−

1
4

(8.48)

that reduces to the two limits given in equation (8.47) in
the respective regimes. Additional discussions can be found
in [57–61], while a recent discussion on the numerical
supporting results can be found in [62].

8.6. Structure factor and end-to-end distance

A very useful quantity to connect with experiment is given by
the structure factor. In the absence of external force, this was
obtained by Shimada et al [63].

In the discrete representation, the structure factor is
defined as

S(k) =
1
N

〈
N∑

ij=1

exp[ik · (ri − rj)]

〉
. (8.49)

For a Gaussian FJC chain this can be easily evaluated
by Gaussian integrals, as reported in appendix E with the
result [5]

S0(k) = NFD(3R2
gk2) (8.50)

where Rg = (Nb2/6)1/2 is the radius of gyration and FD(x) is
the Debye function

FD(x) =
2

x2 [e
−x
− 1+ x]. (8.51)

This structure factor was used in the study of a semi-dilute
solution. Now consider the WLC model in the continuum
formulation. Unlike the case of the Edwards model, we can
consider the limit b→ 0 and N � 1 with Lc = Nb fixed. Then
S(k) reads

S(k) =
1

Lcb

∫ Lc

0
ds
∫ Lc

0
ds′

× 〈exp[ik · (R(s)− R(s′))]〉. (8.52)

Consider now the case f = 0. As discussed, the
continuum limit of equation (8.37) is

〈T̂(s) · T̂(s′)〉0 = exp
[
−

1
lp
|s− s′|

]
. (8.53)

This can be alternatively viewed by using a different
scheme as detailed in appendix H (see equation (H.3)).

Next we consider the exact evaluation of the structure
factor for the WLC model as an expansion in powers of k,
that can be computed terms by terms.

The discretized version of equations (8.11) and (8.12)
when f = 0 is equation (8.2), that is

Z =
∫ [

N∏
j=0

d3Tj

2π
δ(T2

j − 1)

]

× exp

[
−

1
2

lp
b

N∑
j=1

(Tj − Tj−1)
2

]
. (8.54)
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As before, Tj is a vector tangent to the polymer axis at position
rj and d3Tj = dT̂jdTjT2

j so that the integrals over all dTj
can be carried out immediately because of the delta function
appearing in equation (8.54). Upon introducing the Green
function

G0Lc(T̂0, T̂N) =

∫ [
N∏

j=0

dT̂j

4π

]

× exp

[
−

1
2

lp
b

N∑
j=1

(Tj − Tj−1)
2

]
(8.55)

we then have

Z =
∫

dT̂0

4π

∫
dT̂N

4π
G0L(T̂0, T̂N). (8.56)

The Green function (8.55) has the following form in the
b→ 0 limit with Lc = Nb fixed as remarked (this is done in
appendix G):

G0Lc(T̂0, T̂N)

= 4π
+∞∑
l=0

+l∑
m=−l

e−Lcl(l+1)/(2lp)Ylm(T̂0)Y
∗

lm(T̂N). (8.57)

Next, we expand the exponential in the structure factor
(8.52) in powers of k up to second order:

S(k) =
1

Lcb

∫ Lc

0
ds
∫ Lc

0
ds′

×

[
1− 1

2 〈[rz(s)− rz(s
′)]〉k2

+ · · ·

]
(8.58)

where we have assumed k = kẑ, and where (for s > s′) we
have defined

〈[rz(s)− rz(s
′)]〉 =

∫ s

s′
ds1

∫ s

s′
ds2〈T̂z(s1)T̂z(s2)〉. (8.59)

Note that all odd powers vanish by symmetry, so the power
expansion is formed by even powers only. The integral (8.59)
is computed in appendix H (see equation (H.4)), and can be
inserted back into the expansion equation (8.58). Elementary
integrations, along with the relation b = 2lp [10], then lead to

S(k) =
Lc

2lp

{
1−

4
3

l5p
Lc

[
1
6

(
Lc

lp

)3

−
1
2

(
Lc

lp

)2

+
Lc

lp
− 1+ e−Lc/lp

]
k2
+ · · ·

}
. (8.60)

As a by-product of this calculation, we can obtain the
end-to-end distance that can be compared with the mean-field
calculation reported in [26]. Indeed, using equation (8.59), the
end-to-end distance is given by

〈R2
〉 ≡ 〈[r(Lc)− r(0)]2〉 = 3〈[rz(Lc)− rz(0)]2〉

= 2l2p

[
Lc

lp
− 1+ e−Lc/lp

]
, (8.61)

where the last equality again stems from equation (H.4) (see
appendix H). This agrees with the direct result obtained in

equation (8.43). Note that this result coincides also with
that obtained in [26] with f = 0, provided that a mean-field
translation 2lp/3→ lp is carried out.

9. Outlook

The aim of this review was to introduce some well-known and
less-well-known features of polymer physics, within a unified
framework hinging upon the Flory theory as a pillar. In doing
this, we have reviewed some formalisms, approximations and
results briefly, but in a self-contained way, so that the review
can be used as a first approach to these methods at the graduate
student level.

Starting with the simplest and well-known version of the
Flory approach given in section 2, we have proceeded by
introducing the Edwards continuum approach in section 3
that is used as a toolbox for field-theoretical approaches to
polymer physics.

One of the reasons that stimulated us to review
this topic derives from the fact that the Flory theory is
frequently exploited, in different forms, as a theoretical tool
to tackle remarkably complex systems. Mean-field theories
are the generic tools to handle interacting systems in a
nonperturbative way, especially in problems without any
small parameter. It ignores fluctuations and so provides results
too coarse to distinguish the subtle effects of dimensionality
and correlations. As a result the predictions of the nature
of phase transitions or of the emergent phases become
questionable. Although technically the Flory theory uses
the saddle point, steepest descent method associated with
mean-field theories, it remarkably provides us with signatures
of dimensionality dependence. This is a point that often gets
glossed over. Except for rare exact solutions and full fledged
renormalization group calculations, no approaches other than
the Flory theory give d-dependent results. Often the Flory
results are very close to the correct ones.

The Flory theory can be used for systems with long-range
correlations or with no relevant length scale other than the
large one determined by the size. In this respect the approach
is expected to be applicable to problems faced by different
communities that hardly communicate with one another.
Hence, our aim here was to focus on some specific aspects
of the Flory theory that we regarded as the most useful
for graduate students, rather than performing an exhaustive
review. As a result, many important aspects and contributions
to this topic have not been covered, nor cited, by the present
work. One example of that is polymer solutions that have been
synthesized in a short summary in section 7. The trade-off lies
in the fact that we could stress some nuances and details—for
instance the case of sections 5–7, where we have discussed
in some detail the steepest descent approach to the Flory
theory (section 5), the interpolation formula (section 6), and
an interesting crossover effect related to finite size effects and
tricritical point. We have also tried to cast the Flory theory
within some modern perspectives (see section 4) that included
the scaling theory and critical exponents.

The Flory mean-field approach can be simply modified
by the addition of an external force, as described in section 8,
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and this technique has become particularly useful in the last
two decades due to the remarkable improvements in the
experimental control of single-molecule stretching, with far
reaching consequences in various biological systems, most
notably DNA.

All in all, the Flory theory, and its variants, continues to
be a very powerful tool in the study of polymer systems. We
hope that this review will help to convey this message and to
understand many different scale-invariant problems.

Appendix A. Gaussian integrals and the
Hubbard–Stratonovich transformation

Consider the following Gaussian identity:∫
+∞

−∞

dφe−
1
2 aφ2
−iφx
=

√
2π
a

e−
1
2

x2
a (A.1)

that can be easily proved by completing the square.
A generalization of this to n variables reads

e
1
2
∑
ij
ξiKijξj

= [(2π)n det K]−1/2
∫ [∏

l

dφl

]

× e
−

1
2
∑
ij
φiK
−1
ij φj+

∑
j
ξjφj

, (A.2)

where K is any symmetric matrix with positive eigenvalues,
and it is the basis of the so-called Hubbard–Stratonovich
transformation.

For Gaussian variables, correlation functions of the type
〈φiφj〉 are related to the inverse matrix appearing in the
interactions. This can be seen as follows. From equation (A.2)
we have

〈φiφj〉 =

∫
[
∏
l

dφl]φiφje−
1
2
∑

lm φlK
−1
lm φm

∫
[
∏
l

dφl]e−
1
2
∑

lm φlK
−1
lm φm

= [(2π)n det K]1/2
∫ [∏

l

dφl

]

× φiφje
−

1
2
∑
lm
φlK
−1
lm φm

=
∂2

∂ξi∂ξj

[
e

1
2
∑
lm
ξlKlmξm

]
{ξ=0}

= Kij. (A.3)

Appendix B. Distribution of the end-to-end distance
in d dimensions

Introduce the bond τj = rj − rj−1, j = 1, . . . ,N, as depicted
in figure 1, and let p(τj) be the probability distribution of the
jth bond.

Then the probability distribution function for the end-to-
end distance, P(R,N), as given in equation (2.1) reads

P(R,N) =
∫ N∏

i=1

ddτi δ
d

(
R−

N∑
j=1

τj

)
N∏

l=1

p(τl), (B.1)

where one can use the integral representation

δd(τj) =

∫
ddk
(2π)d

eik·τj , (B.2)

to obtain

P(R,N) =
∫

ddk
(2π)d

eik·R
[p̂(k)]N

=

∫
ddk
(2π)d

eik·R eN ln p̂(k), (B.3)

where

p̂(k) =
∫

ddτje−ik·rjp(τj) (B.4)

is the Fourier transform of p(τj).
The normalization condition guarantees that p̂(k = 0) =

1, while a spherically symmetric distribution implies p̂(k) =
p̂(k). With these, a Taylor series expansion yields

p̂(k) = 1− 1
2 (kσ)

2
+ O(k4), (B.5)

where σ 2 is the variance of the distribution p(τ).
For N � 1, our interest is in the overall description of

the polymer set by the scale 1/k which is much larger than
the microscopic scale set by σ , i.e., we can assume kσ � 1.
Therefore,

ln p̂(k) ≈ − 1
2 (kσ)

2 (kσ � 1). (B.6)

Substituting in equation (B.3) we then get

P(R,N) ≈
∫

ddk
(2π)d

eik·R exp
[
−

N

2
(kσ)2

]
≈

(
1

2πNσ 2

)d/2

exp
[
−

1
2

R2

Nσ 2

]
. (B.7)

In d = 3 this reduces to equation (2.5).

B.1. Examples

We consider two examples. One is the example of the
distribution for the FJC

p(τj) =
1

Sdτ
d−1
j

δ(τj − b), (B.8)

where Sd = 2πd/2/0(d/2) is the surface of a unit sphere in
d-dimensions, and 0(z) is the Gamma function [65]. Note that
this choice ensures

∫
ddτjp(τj) = 1. Another possibility is a

Gaussian distribution:

p(τj) =

(
1

2πb2

)d/2

exp

[
−

1
2

τ 2
j

b2

]
. (B.9)

There is the obvious difference between the two—the first one
has a fixed length but the second one has no fixed length.
Many other choices are possible.
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By using equation (B.8), one can easily compute that

p̂(k) =
∫
+∞

0
dr rd−1

∫
d�de−ikrk̂·r̂ 1

Sdrd−1 δ(r − b)

=
1
Sd

∫ 2π

0
dθ1

∫ π

0
dθ2 sin θ2 . . .

∫ π

0
dθd−1

× sind−2θd−1e−ikb cos θd−1

=
Sd−1

Sd

∫ π

0
dθd−1sind−2θd−1e−ikb cos θd−1 . (B.10)

In the limit of small kb, we expand the exponential
exp(x) = 1 + x + x2/2 · · ·. The first-order term will vanish
by symmetry. The second-order term involves an integral∫ π

0 sind−2θcos2θdθ =
√
π0[(d − 1)/2]/(20[1+ d/2]). This

matches equation (B.5) with σ 2
= b2/d.

The integral in equation (B.10) can be handled exactly.
We use the following result [64]:∫ π

0
dθsin2νθeiβ cos θ

=
√
π

(
2
β

)ν
0

(
ν +

1
2

)
Jν(β) (B.11)

where Jν(z) is a Bessel function with the property Jν(−z) =
(−1)νJν(z) [65], to obtain

p̂(k) =
(

2
kb

)d/2−1

0

(
d

2

)
Jd/2−1(kb). (B.12)

By making use of the expansion [65]

Jν(z) =

(
1
2

z

)ν +∞∑
n=0

1
n!0(ν + n+ 1)

(
−

1
4

z2
)n

(B.13)

and the property of the Gamma function 0(z + 1) = z0(z),
one obtains equation (B.5) with σ 2

= b2/d.
For the Gaussian distribution, p̂(k) = exp(−k2b2/2) and

its Taylor series expansion around k = 0 matches with
equation (B.5). Here σ = b.

B.2. Non-Gaussian case

The above derivation, a version of the central limit theorem,
is valid only if σ < ∞, otherwise the expansion in
equation (B.5) is useless. There are important distributions
which may not have finite variances. In those cases, a
Gaussian distribution is not expected. An example is the
Cauchy distribution

p(x) =
1
π

b

x2 + b2 , (in one dimension), (B.14)

with infinite mean and variance. P(R,N), in equation (B.14),
for large N, does not converge to a Gaussian but to another
Cauchy distribution. The difference from the Gaussian
distribution lies mainly in the tail (large |x| behaviour) of
this distribution—the large |x| behaviour of equation (B.14)
is responsible for the divergent mean and variance. It is
precisely for this reason that we do not consider such
distributions in this review. Our interest is in the behaviour
of a polymer whose properties do not require special or
exceptional contributions from very large sizes.

Appendix C. Perturbation theory

Instead of the Flory approach that explores the large z region
directly, we here consider the small z case which in principle
can be handled in a perturbative way. The ultimate difficulty
is in tackling the series which in most cases turns out to be
asymptotic in nature.

We go back to equation (5.3) and expand the right-hand
side in powers of u (for v = 0):

GL(R) = G(0)L (R)− uG(1)L (R)+ · · · (C.1)

where the first-order terms in the expansion of the two-body
term shown in equation (C.1) is

G(1)L (R) = G(0)L (R)
1
2!

bd−2
∫ L

0
ds1

∫ L

0
ds2

× 〈δd(R(s2)− R(s1))〉R. (C.2)

The delta function ensures that there is one contact along the
chain. The series has the interpretation that the first term is the
partition function without any concern about the interactions
while the second term G(1)L is the sum over all configurations
that have one interaction along the chain.

The calculation of the end-to-end distance

〈R2
〉 =

∫
ddR R2GL(R)∫

ddR GL(R)
(C.3)

also involves an expansion in u, coming from both
the numerator and the denominator. It is more or less
straightforward to calculate for the free case:

〈R2
〉0 =

∫
ddR R2G(0)L (R)∫

ddR G(0)L (R)
= Lb. (C.4)

For generality, especially for higher order corrections,
two possible procedures to compute the first-order correction
are discussed below.

C.1. Direct evaluation

The convolution property [5] of the Gaussian distribution

G(0)L (R) =
∫

ddR′G(0)s (R′)G(0)L−s(R− R′) (C.5)

states that the probability of a Gaussian polymer reaching R
at length L can be written as a product of its being at any point
R′ at an intermediate length s and then from R′ to R in the
remaining L− s length, with an integration over R′.

With repeated use of the convolution property, equa-
tion (C.5), the relevant average required for the two-body
correction term is

〈δd(R(s1)− R(s2))〉
(0)
R

=
1

G(0)L (R)

∫ R(L)=R

R(0)=0
DR(s) δd(R(s1)− R(s2))

× e
−

d
2b

∫ L
0 ds

(
∂R
∂s

)2

(C.6a)
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=
1

G(0)L (R)

∫
ddR1

∫
ddR2 δ

d(R1 − R2)G
(0)
L−s2

(R− R2)

× G(0)s2−s1
(R2 − R1)G

(0)
s1
(R1) (C.6b)

=
1

G(0)L (R)

∫
ddR′ G(0)L−s2

(R− R′)

× G(0)s2−s1
(0)G(0)s1

(R′). (C.6c)

=
G(0)L−s2+s1

(R)

G(0)L (R)
G(0)s2−s1

(0). (C.6d)

Equation (C.6b) has the interpretation of a polymer reaching
R′ at length s1 from the origin and then returning to R′ at
length s2 from where it goes to the desired end point R. Since
s1, s2 could be any two points, there are integrals over each
of them. The occurrence of G(0)s2−s1

(0) is the signature of a
loop formation that contains the main aspect of the polymer
correlations because it involves contact of two monomers
which may be nearby (s2 − s2 small) or far apart (s2 − s1

large) along the chain. The eventual Gaussian integrals can be
done. However the s1, s2 integrals are divergent. The integrals
over s1, s2 involve a term of the type

∫ L
0 ds s1−d/2 which is

divergent for d ≤ 4. Such divergent integrals can be handled
by analytic continuation in d by performing the integration
where it is convergent and then analytically continued to other
dimensions. If d is such that the integral converges, then

1
2!

∫ L

0
ds1

∫ L

0
ds2|s2 − s1|

1−d/2

=
4

(4− d)(6− d)
L3−d/2, (C.7)

which can then be extended to all d. The poles at d = 4 and
d = 6 are responsible for the divergence at other values of d.

A similar expansion in z can be performed for the
end-to-end distance given by equation (C.3), by collecting
terms of similar order from both the numerator and the
denominator. To first order the correction would look like

〈R2
〉 = 〈R2

〉0 − u
∫

dR R2 G(1)L (R)+ u
∫

dR R2

× G(0)L (R)
∫

dR G(1)L (R)+ · · · . (C.8)

With the use of equations (C.2) and (C.6d), and the standard
results of Gaussian integrals, the two u-dependent terms can
be written as∫

dRR2 G(1)L (R)

=

∫ L

0
ds1

∫ L

0
ds2(L− s2 + s1)G

(0)
|s2−s1|

(0) (C.9)∫
dR R2G(0)L (R)

∫
dRG 1

L(R)

= L
∫ L

0
ds1

∫ L

0
ds2G(0)

|s2−s1|
(0), (C.10)

so that we are left with the integral of equation (C.7). With the
analytic continuation, the end-to-end distance is given by

〈R2
〉 = 〈R2

〉0

[
1+

4
(4− d)(6− d)

z+ · · ·

]
, (C.11)

with z as in equation (4.5) with c1 = (1/2π)d/2. The
divergence as d → 4 is an important outcome of this
perturbative analysis and its handling is part of the
renormalization group machinery.

C.2. Laplace–Fourier approach

The same result can be obtained by using the Laplace–Fourier
approach [23]. This method requires an integral over the
length from zero to infinity and therefore may be called ‘grand
canonical’ compared to the approach of the previous section,
which may be termed ‘canonical’.

The Laplace–Fourier transform is defined by

F̃E(k) =
∫
+∞

0
dL e−ELF̂L(R)

=

∫
+∞

0
dL e−EL

∫
ddR e−ik·RFL(R) (C.12)

along with its inverse

FL(R) =
∫

ddk
(2π)d

e+ik·RF̂(k)

=

∫
ddk
(2π)d

e+ik·R
∫ γ+i∞

γ−i∞

dE

2π i
eELF̃E(k).

(C.13)

As usual, in equation (C.13) γ is a real constant that exceeds
the real part of all the singularities of F̃E(k).

We now go back to the expansion (C.1) that can be
Laplace–Fourier transformed to obtain

G̃E(k) = G̃(0)E (k)− uG̃(12)
E (k)+ · · · . (C.14)

For simplicity, we limit here the discussion to the two-body
interactions, but additional terms can be also considered.

Given that, the end-to-end distance can be computed from

〈R2
〉 =


∫ γ+i∞
γ−i∞ dE eEL

[−∇k2G̃E(k)]∫ γ+i∞
γ−i∞ dE eELG̃E(k)


k=0

. (C.15)

The great advantage of the Laplace–Fourier transform
is clearly that both the R and s convolutions appearing in
equation (C.6c) can be decoupled so that

G̃(12)
E (k) =

1
2!

∫
+∞

0
dL e−ELbd−2

∫
ddq
(2π)d

× e+ik·R
∫ L

0
ds2

∫ L

0
ds1

× Ĝ(0)L−s2
(k)Ĝ(0)s2−s1

(q)Ĝ(0)s1
(k)

= bd−2
∫

ddq
(2π)d

G̃(0)E (k)G̃(0)E (q)G̃(0)E (k)

(C.16)
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that is

G̃(12)
E (k) = bd−2

[G̃(0)E (k)]2
∫

ddq
(2π)d

G̃(0)E (q) (C.17)

where [23]

G̃(0)E (k) = lim
ε→0

1

E + bk2/(2d)+ εk4 . (C.18)

In equation (C.18) we have included an εk4 term to keep
all integrals convergent, with the understanding that the limit
ε → 0 will be taken at the end of the calculation [23]. The
integral appearing in equation (C.17) is given by

Id(E, ε) ≡
∫

ddq
(2π)d

G̃(0)E (q)

=
Sd

(2π)d

∫
+∞

0
dq

qd−1

E + bq2/(2d)+ εq4 .

(C.19)

Let us now compute the first correction G̃(12)
E (k)

explicitly. Equation (C.14) yields

G̃E(k) = G̃(0)E (k)− bd−26̃
(12)
E [G̃(0)E (k)]2 + · · · (C.20)

where we have introduced the ‘self-energy’

6̃
(12)
E = uId(E, ε). (C.21)

Then we next note that because the Green function is always a
function of k2 rather than the wavevector k itself, we can write

∇kG̃E(k) = 2k
∂

∂k2 G̃E(k) (C.22)

and

∇
2
kG̃E(k)

∣∣∣∣
k=0
= 2d

∂

∂k2 G̃E(k)
∣∣∣∣
k=0

. (C.23)

Using equations (C.20), (C.21) and (C.23) in equation (C.15)
one gets

〈R2
〉 = b

∫ γ+i∞
γ−i∞ dE eEL

[E+uId(E,ε)]2∫ γ+i∞
γ−i∞ dE eEL

[E+uId(E,ε)]

. (C.24)

This completes the scheme for the solution.

C.2.1. First-order correction from perturbation theory. In
d = 3, the relevant integral (C.19) reads

I3(E, ε) =
1

4π2

∫
+∞

−∞

dq
q2

E + bq2/6+ εq4 (C.25)

where the integral has been extended to negative values by
taking advantage of the parity of the integrand. The integral
can be easily computed by contour method by extending the
contour in the upper plane and noting that only two of the
four poles are then included. These are to lowest order in
ε, q1 = +i

√
6Eb and q2 = +i

√
b6ε. This produces the result

I3(E, ε) = −
3

2πb

√
6E

b
+

1
4π

√
6
bε
. (C.26)

Once again, only the lowest correction in ε has been included.
Clearly the integral is divergent for ε→ 0 but this divergence
can be accounted for using a renormalizing procedure, as
explained in [24] and they turn out to be irrelevant for the
computation of the 〈R2

〉 as they should.
On dropping the ε dependent term in equation (C.26),

this can be inserted into equation (C.24), that can then be
expanded in powers of βu to first order. The result is

〈R2
〉 = b

([∫ γ+i∞

γ−i∞
dE

eEL

E2 + 2u
3

2π

√
6
b

×

∫ γ+i∞

γ−i∞
dE

eEL

E5/2 + · · ·

])([∫ γ+i∞

γ−i∞
dE

eEL

E

+ u
3

2π

√
6
b

∫ γ+i∞

γ−i∞
dE

eEL

E3/2 + · · ·

])−1

. (C.27)

All integrals can then be performed by using the result∫ γ+i∞

γ−i∞
dE

eEL

Eν
=

Lν−1

0(ν)
. (C.28)

Higher orders and additional details can be found in [23]. The
final result has been quoted in equation (6.9).

Appendix D. Issue of thermodynamic limit

The size of a polymer R is a geometric quantity which
is generally not a conventional thermodynamic variable.
However the discrete polymer model introduced here
allows one to translate the polymer problem to a more
familiar language for which one may associate standard
thermodynamic quantities.

The bond variables introduced in equations (2.1), and
(8.1) can be taken as spin-like variables whose allowed
orientations depend on the dimensionality and the topology
of the space (e.g., continuum or lattice). The interactions
of the monomers can also be expressed as interactions
among the spins, not necessarily restricted to simple two-spin
interactions as in equation (8.1). The polymer problem is then
exactly equivalent to a statistical mechanical problem of a
collection of spins at a given temperature T . The response
function of such a collection of spins is the susceptibility
which measures the response of the total spin (i.e. total
magnetization) to a uniform magnetic field. The end-to-end
distance of the polymer R turns out to be the total spin M =∑

iri, as noted is section 8.1.
The fluctuation-response theorem connects the suscepti-

bility χN to the fluctuation of the total spin, (see section 8.4)
as

χN ∼ 〈M2
〉 − 〈M〉2 ∼ 〈R2

〉 − 〈R〉2, (D.1)

and by symmetry, 〈R〉 = 0. Therefore the susceptibility of the
spin system, as a magnetic model, corresponds to the mean
square end-to-end distance of the polymer. As a magnetic
system, the primary requirement is to have an extensive
susceptibility which means χN ∝ N for N spins, at least
for large N. The stringent requirement of a thermodynamic
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limit as a magnetic model would enforce only the Gaussian
behaviour of the polymer. In contrast, the susceptibility per
spin would behave as

χ ≡ lim
N→∞

χN

N
∼ N2ν−1

→{
∞ (good solvent),

0 (poor solvent),
(D.2)

for the spin models that correspond to an interacting discrete
polymer. Interestingly, the polymer size exponent is linked to
the finite size behaviour of the spin problem as N →∞.

This points towards the care needed in using thermo-
dynamics and extensivity in polymer problems.

Appendix E. The structure factor of a Gaussian
chain

Consider the structure factor

S0(k) =
1
N

N∑
ij=1

〈eik·(ri−rj)〉0. (E.1)

For a Gaussian chain, we know that

〈(ri − rj)µ(ri − rj)ν〉0 =
δµν

d
〈(ri − rj)

2
〉0

=
δµν

d
|i− j|b2, (E.2)

and hence

〈eik·(ri−rj)〉0 = exp

[
−

1
2

∑
µν

kµkν〈(ri − rj)µ(ri − rj)ν〉0

]

= e−
1
2 k2 |i−j|

d . (E.3)

Therefore we find

S0(k) ∼
1
N

∫ N

0
dn1

∫ N

0
dn2e−

1
2 k2 |n1−n2|

d

= NFD

(
N

k2b2

2d

)
, (E.4)

where we have introduced the Debye function

FD(x) =
2

x2 (x− 1+ e−x). (E.5)

Dimensionally, k is like an inverse of length and we see that
the structure factor involves the dimensionless variable kR0.
The scale for k is set by the overall size of the polymer, not its
microscopic scales.

Appendix F. Exact solution of the freely jointed
chain model with external force

The partition function equation (8.2) can be solved exactly in
the absence of the interaction term (K = 0), when the model
reduces to the freely jointed chain (FJC) [5]. In this case each
term of equation (8.2) decouples and we can use the result∫

d3T̂
1

2π
δ(T̂2
− 1)ebf·T̂

=
sinh(fb)

fb
(F.1)

so that the configurational partition function becomes

Z =

[
sinh(fb)

fb

]N

. (F.2)

Introducing the physical force fphys = f /β, we then have that

〈z〉 =
∂

∂(βfphys)
ln Z(fphys). (F.3)

This gives the well-known result

〈z〉

Nb
= L(βfphysb), (F.4)

where the Langevin function L is defined as

L(x) = coth(x)−
1
x
. (F.5)

In the βfphysb� 1 limit, equation (F.3) can be expanded
and gives to leading order [66]

〈z〉

Nb
=

1
3βfphysb+ · · · . (F.6)

Appendix G. Derivation of the Green function for
semiflexible polymer

We start from the following addition theorem [32]:

eµT̂·T̂′
= 4π

√
π

2µ

+∞∑
l=0

+l∑
m=−l

Il+1/2(µ)Ylm(T̂)Y∗lm(T̂
′), (G.1)

where Iν(z) is the modified Bessel function [65] so that
equation (8.55) becomes

G0L(T̂0, T̂N) = e−Nlp/b 1

(4π)N−1

(
πb

2lp

)N/2

(4π)N

×

∑
l1,...,lN

∑
m1,...,mN

Il1+1/2

(
lp
b

)
· · · IlN+1/2

×

(
lp
b

)
Yl1m1(T̂0)Y

∗

lN mN
(T̂N)

×

∫
dT̂1Y∗l1m1

(T̂1)Yl1m1(T̂1) · · ·

×

∫
dT̂N−1Y∗lN1 mN−1

(T̂N−1)

× YlN mN (T̂N−1). (G.2)

Using the orthogonality relation [65]∫
dT̂Yl1m1(T̂)Y

∗

l2m2
(T̂) = δl1l2δm1m2 (G.3)

equation (G.2) reduces to

G0Lc(T̂0, T̂N) = 4π
(
πb

2lp

)N/2 +∞∑
l=0

+l∑
m=−l

IN
l+1/2(µ)

× Ylm(T̂0)Y
∗

lm(T̂N). (G.4)
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In the limit b→ 0 we can use the asymptotic expansion for
the Bessel function for |z| � 1 [65]

Iν(z) =
ez

√
2πz

[
1−

4ν2
− 1

8z
+ · · ·

]
(G.5)

to obtain

G0Lc(T̂0, T̂N) = 4π
+∞∑
l=0

+l∑
m=−l

e−Lcl(l+1)/(2lp)

× Ylm(T̂0)Y
∗

lm(T̂N) (G.6)

which is the result given in equation (8.57). Note that in
obtaining (G.4) and (G.6), we have set Lc = Nb and used the
relation b = 2lp between the Kuhn and the persistence length
for the WLC model [10].

Appendix H. Calculation of 〈[rz(s)− rz(s′)]2〉

To compute 〈[rz(s)−rz(s′)]〉 given in equation (8.59), we need
to compute the average quantity

〈T̂z(s1)T̂z(s2)〉 =

∫
dT̂1

∫
dT̂2Gs1s2(T̂1, T̂2)T̂1zT̂2z∫

dT̂1
∫

dT̂2Gs1s2(T̂1, T̂2)
. (H.1)

Using the first two spherical harmonics [65]

Y00(T̂) =
1
√

4π
Y01(T̂) =

√
3

4π
T̂z (H.2)

and the orthogonality relations (G.3), equation (H.1) reduces
after a few steps to

〈T̂z(s1)T̂z(s2)〉 =
1
3

exp
[
|s2 − s1|

lp

]
(H.3)

which coincides with the expected result (equation (8.53)),
taking into account the other two components x and y.

Upon inserting this result into equation (8.59), one can
use a s-ordering procedure so that (s > s′)

〈[rz(s)− rz(s
′)]2〉 = 2

∫ s

s′
ds1

∫ s1

s′
ds2

1
3 e(s1−s2)/lp

=
2
3

l2p

[
s− s′

lp
− 1+ e−(s−s′)/lp

]
. (H.4)
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