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Abstract Evolution in time of an arbitrary initial state
for a parametrically driven quantum oscillator is an
interesting problem since there exist regions in param-
eter space (defined by the amplitude and frequency of
the driving) where the moments of the probability dis-
tribution can diverge in time. While the first moment
satisfies aMathieu equation, the higher-order moments
followMathieu like equations of order greater than two.
It is not very often that a physical problem gives rise
to higher-order Mathieu equations. Hence, we give a
detailed study of the different stability zones associ-
ated with the parametric quantum oscillator, using per-
turbative techniques traditionally associated with the
Mathieu equation. We verify our results by numerical
analysis, thus demonstrating that for the higher-order
Mathieu equations, the traditional perturbation theory
methods give a consistent account of the stability zones.
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1 Introduction

Mathieu equations describe parametrically drivenoscil-
lators. They have been investigated for decades using a
variety of techniques like harmonic balance,Lindstedt–
Poincare perturbation theory, multiple timescale tech-
niques and Krylov–Bogoliubov amplitude and phase
equations. An important feature of the Mathieu equa-
tion is that systems described by it show instability in
a set of tongue-shaped regions in the parameter space
spanned by the driving frequency and the amplitude
of the drive. The tongues emanate from certain points
on the frequency axis where the natural frequency is
n
2 times the driving frequency with n = 1, 2, 3 . . .

being the set of integers. The motion is strictly peri-
odic only on the lines separating the stable from the
unstable zones. In the stable zone, the motion is quasi-
periodic in general. The techniques referred to above
are used to study the boundaries where the motion is
periodic. These techniques have been covered compre-
hensively in various texts and lecture notes (e.g. [1–3]).
The study of coupled Mathieu equations became pop-
ular about three decades ago and can be found in the
treatment of elastic pendula (two coupled degrees of
freedom) [4], in the study of colliding particle beams in
a two-dimensional accelerator [5] or in the description
of two-mode dynamics of rotating rings with variable
spin-speed [6]. The fact that the usual techniques for
obtaining the boundaries of the single- variable Math-
ieu equation can be used to calculate the unstable zones

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-019-04818-9&domain=pdf
http://orcid.org/0000-0003-3184-5295


738 S. Biswas, J. K. Bhattacharjee

of the coupled system was demonstrated clearly by
Mahmoud [7].

More recently, a different perspective on this class
of problems was discussed by Landa et al. [8]. While
the usual emphasis had been on finding the instability
zones and the periodic solutions on the boundary of
the instability zones, these authors developed a tech-
nique for finding the classical as well as the quantum
solutions in the region where the motion is bounded.
One of the important problems addressed in this work
is the one-dimensional quantum parametric oscillator
which describes themotion of a single ion confined in a
radio-frequency trap [9]. A comprehensive account of
the existence of periodic orbits for a variety of gener-
alised forms of the Mathieu equation was provided by
Younesian et al. [10]. This included nonlinear Math-
ieu equations treated by harmonic balance and averag-
ing [11], bifurcations in cubic Mathieu equations [12]
and resonances in quasi-periodic Mathieu equations
[13]. Another direction in which theMathieu equation
was extended was the introduction of time delay [14].
That the usual perturbative techniques associated with
the Mathieu equation could be used for a nonlinear
Mathieu equation with delay was established by Mor-
rison and Rand [15]. Yet another extension of these
driven systems has been the introduction of systems
with fractional derivatives. The appropriateness of the
usual perturbative techniques for exploring the regions
of bounded motion has recently been established [16–
18].

While the second-order (recently even fractional
order) non-autonomous differential equations, which is
the class to which the Mathieu equation belongs, have
been studied from a formal mathematical standpoint as
well as from the applicational viewpoint of perturba-
tion theory, the higher-order equations have been, to the
best of our knowledge, studied only from a formal per-
spective [19–22]. It turns out that the one-dimensional
quantum parametric oscillator discussed above gives
rise to an infinite set of higher-orderMathieu like equa-
tions. Our aim in this paper will be to explore the effec-
tiveness of the usual perturbative techniques to study
the unstable zones of these higher-order Mathieu-like
equations. We will use known perturbative techniques
to find the boundaries between the regions where the
solution is bounded and where they are unbounded.
It will turn out that the boundaries thus obtained will
agree with the boundaries obtained numerically.

A combination of Heisenberg’s equation of motion
and Ehrenfest’s theorem in quantum mechanics
describes the timedevelopment of the expectationvalue
of any operator O(x) under a given HamiltonianH. If
Ψ (x, t) is the wave function at any time t (we con-
sider only one- dimensional space), then the expecta-
tion value is 〈O〉 = ∫ ∞

−∞ Ψ ∗(x, t)O(x)Ψ (x, t)dx and
Ehrenfest’s theorem states

i h̄
d

dt
〈O〉 = 〈[O,H]〉 (1)

where 〈[O,H]〉 is the commutator of O and H. A
quantum mechanical state is prescribed by Ψ (x, t)
which is a complex valued function generally writ-
ten as Ψ (x, t) = √

P(x, t)eiφ(x,t), where P(x, t) =
|Ψ (x, t)|2 is the probability distribution associated
with the state at any time t. Ehrenfest’s theorem has
rarely been used except to study classical trajecto-
ries. However, it can provide useful information about
various moments of the probability distribution and
as such can yield information regarding the form of
the distribution. A particularly interesting situation
is the motion of a particle in a time-dependent har-
monic trapping function represented by the potential
V = 1

2mω2x2(1 + ε f (t)) where f (t) is a periodic
function with period T = 2π

Ω
. The Hamiltonian oper-

ator for the quantum parametric oscillator is [23]

H = p2

2m
+ 1

2
mω2x2(1 + ε f (t)) (2)

with f (t) = f (t + T ) = f (t + 2π
Ω

). In the above,

p = −i h̄ d
dx is the momentum operator. In this case,

for an initial wave function which isGaussian, the time
development of Ψ (x, t) can be found if the dynam-
ics is in the part of ω − ε space where the classical
motion is bounded [24–27]. For arbitrary initial wave
functions, it is virtually impossible to arrive at the time
development exactly. In this situation, Ehrenfest’s the-
orem is very useful since it provides exact equations
for all the moments. Each moment gives rise to a non-
autonomousdynamical [28] system, and this very phys-
ical problem gives rise to the whole set of interesting
mathematical systemswhich areworth studying in their
own right. In this work, we will focus on the mathe-
matical aspects of the dynamical systems arising from
Ehrenfest’s theorem for the moments.

The process of arriving at the equations of motion
is straightforward. One needs to use Eq. (1) and carry
out evaluation of [O,H] with the H of Eq. (2). As an
example, we explicitly work out the first moment 〈x〉
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which represents themean position of the quantum par-
ticle. From Eq. (1) and the basic commutation relation
[x, p] = i h̄, we see that

d

dt
〈x〉 = 1

i h̄

〈[

x,
p2

2m
+ 1

2
mω2x2 (1 + ε f (t))

]〉

= 1

i h̄

〈[

x,
p2

2m

]〉

= 〈p〉
m

(3)

and

d

dt
〈p〉 = 1

i h̄

〈[

p,
p2

2m
+ 1

2
mω2x2 (1 + ε f (t))

]〉

= 1

i h̄

1

2
mω2

〈[
p, x2 (1 + ε f (t))

]〉

= −mω2 〈x〉 (1 + ε f (t)) (4)

One move derivative of Eq. (3) and use of Eq. (4)
leads to

d2

dt2
〈x〉 + ω2(1 + ε f (t))〈x〉 = 0 (5)

This is the dynamics of the mean position of the parti-
cle, and it follows the classical trajectory obtained from
the Hamiltonian of Eq. (2).

If f (t) = cos(Ωt), then we have the familiarMath-
ieu equation.

d2

dt2
〈x〉 + ω2(1 + ε cos(Ωt))〈x〉 = 0 (6)

The dynamics of all moments 〈xn〉 have to be
obtained by a process of repeated differentiation and
use of Eq. (1). The moments 〈xn〉 are associated with
different features of the probability distribution. In par-
ticular for n = 2,

V = 〈x2〉 − 〈x〉2 (7)

is the variance. This is the most important moment as
its nonzero value signals a complete departure from
classical physics. For n = 3, we have

S =
〈
(x − 〈x〉)3

〉
, (8)

which is the skewness, and for n = 4

K =
〈
(x − 〈x〉)4

〉
, (9)

which is the kurtosis of the distribution.Wewrite down
the equations of motion (the derivation of the dynamics
of V is shown in “Appendix A”, the others follow in a
similar manner)

d3

dt3
V + 4ω2(1 + ε f (t))

d

dt
V + 2ω2ε ḟ V = 0 (10)

d4

dt4
S + 10ω2(1 + ε f (t))

d2

dt2
S + 9ω4(1 + ε f (t))2S

+ 10ω2ε ḟ
d

dt
S + 3ω2ε f̈ S = 0 (11)

and

d5

dt5
K + 20ω2(1 + ε f (t))

d3

dt3
K + 24ω2ε ḟ

d2

dt2
K

+ 64ω4(1 + ε f (t))2
d

dt
K + 18ω2ε f̈

d

dt
K

+ 64ω4ε(1 + ε f (t)) ḟ K + 4ω2ε
...
f K = 0 (12)

For the discussions in this paper, we will focus
entirely on f (t) = cos(Ωt).

The properties ofMathieu equation (Eq. 6) are well
known [1–3].Wewill recall them in Sect. 2 to carefully
explain the perturbation theory technique that we will
use and the numerical procedure that we will follow in
the rest of the paper.

If we consider the dynamics of the variance V and
redefine 4ω2 as ω̄2, then Eq. (10) becomes for f (t) =
cos(Ωt)

d3V

dt3
+ ω̄2(1 + ε cos(Ωt))

dV

dt

− εω̄2

2
Ω sin(Ωt)V = 0 (13)

We further simplify by redefining the combination
εω̄2 as ε̄, so that

d3V

dt3
+ ω̄2 dV

dt
+ ε̄ cos(Ωt)

dV

dt

− ε̄

2
Ω sin(Ωt)V = 0 (14)

The above equation corresponds to the dynamical
systemwith the structure Xi = Ai j (t)X j with Ai j (t) =
Ai j (t + 2π

Ω
) = Ai j (t + T ).

Explicitly,

V̇ = U (15a)

U̇ = W (15b)

Ẇ = −ω̄2U − ε̄ cos(Ωt)U + ε̄

2
Ω sin(Ωt)V (15c)

The trace of the matrix Ai j (t) is clearly zero, and
hence, the three Floquet multipliersμ1, μ2 andμ3 sat-
isfyμ1μ2μ3 = 1. Consequently, the periodic solutions
can have the periods T, 2T and 3T . For a subharmonic
response of period 3T (frequency Ω

3 ), we would have
periodic solutions originating from ω̄ = Ω

3 , 4Ω
3 . . . ,

etc. For a periodic response of period 2T , the solutions
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start at ω̄ = Ω
2 , 3Ω

2 . . . , etc and for a response of period
T , the solutions start at ω̄ = Ω, 2Ω . . . , etc.

In a similar fashion, the equations of motion of S
and K are in principle capable of showing periodicities
T, 2T, 3T, 4T and T, 2T, 3T, 4T, 5T , respectively.

Using different perturbation techniques [2], we will
study the properties of the dynamical systems shown
in Eqs. (10)–(12). The techniques (harmonic balance
and Krylov–Bogoliubov) will be geared to finding the
periodic trajectories. In the case of Eq. (13) specifically,
we obtain the following:

– A) Harmonic balance shows that period 3T trajec-
tories exist only on a curve emanating from ω̄ = Ω

3
with no instability zones in the vicinity of Ω

3 .
– B) A similar situation holds in the vicinity of ω̄ =

Ω
2 , although the structure of Eq. (13) would have
indicated otherwise.

– C) In the vicinity of ω̄ = Ω , the Krylov–
Bogoliubov technique reveals the existence of two
curves corresponding to the periodic orbits emanat-
ing from this point. In the regionboundedby the two
curves lies the instability zone where the solutions
are unbounded. The boundaries, quite surprisingly,
happen to be identical to that for Eq. (6) a result
confirmed by our numerical studies.

For Eq. (11), the conclusions are qualitatively sim-
ilar with the unstable zone emanating from ω̄ = Ω

alone. For Eq. (12), however, we have instability zones
emanating from ω̄ = Ω

4 , Ω
2 and Ω . In this case, the

instability zone emanating from ω̄ = Ω is far wider
than those for Eqs. (6), (10) and (11).

We briefly recapitulate the primary results of the
Mathieu equation in Sect. 2. In Sect. 3, we deal with
the dynamics of the variance in detail, and in Sect. 4,
we study the skewness and the kurtosis. We conclude
with a short summary in Sect. 5.

2 Properties of Mathieu equation

In this section, we review the properties of theMathieu
equation which is a second-order differential equation

Ẍ + ω2X + ε cos(Ωt)X = 0. (16)

It has the dynamical system form Ẋ = Y and Ẏ =
−(ω2 + ε cos(Ωt)X). Since the dynamical system
is traceless, the two Floquet multipliers μ1,2 satisfy
μ1μ2 = 1. This means that the system can have

responses of period T and 2T . Since T = Ω
2π ,

harmonic balance indicates that period 2T solutions
should emerge from ω = Ω

2 and period T solution
should emerge from ω = Ω . We first explore the
straightforward perturbativemethod for obtaining peri-
odic solutions of period 2T , around ω = Ω

2 . Accord-
ingly, we write

ω = Ω

2
+ Δω(ε) = Ω

2
+ δ1ε + δ2ε

2 + · · · (17)

and expand

X = X0 + X1ε + X2ε
2 + · · · (18)

Substituting into Eq. (16) and equating the coefficient
of each power of ε to zero, we have

Ẍ0 + Ω2

4
X0 = 0 (19a)

Ẍ1 + Ω2

4
X1 = −Ωδ1X0 − cos(Ωt)X0 (19b)

Ẍ2 + Ω2

4
X2 = −Ωδ2X0 − δ21X0 − Ωδ1X1

− cos(Ωt)X0 (19c)

From Eq. (19a), X0 = A cos(Ω
2 t) + B sin(Ω

2 t) and
inserting this solution in Eq. (19b),

Ẍ1 + Ω2

4
X1=−Ωδ1

(

A cos

(
Ω

2
t

)

+B sin

(
Ω

2
t

))

− cos (Ωt x)

(

A cos

(
Ω

2
t

)

+ B sin

(
Ω

2
t

))

= −Ωδ1A cos

(
Ω

2
t

)

− Ωδ1B sin

(
Ω

2
t

)

− A

2

(

cos

(
3Ω

2
t

)

+ cos

(
Ω

2
t

))

− B

2

(

sin

(
3Ω

2
t

)

− sin

(
Ω

2
t

))

(20)

For X1 to be finite, we cannot have cos(Ωt
2 ) or

sin(Ωt
2 ) terms on the right-hand side. These terms are

known as secular terms and have to be removed order
by order in perturbation theory. This requires B = 0
and δ1 = − 1

2Ω if the solutions are of the cos(Ωt
2 ) vari-

ety and A = 0 and δ1 = + 1
2Ω if the solutions are of the

form sin(Ωt
2 ). Thus, the curves on which the solution

is periodic are given by

X = A cos

(
Ωt

2

)

on ω = Ω

2
− ε

2Ω
+ O

(
ε2

)

(21a)
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On the properties of a class of higher-order Mathieu equations 741

X = B sin

(
Ωt

2

)

on ω = Ω

2
+ ε

2Ω
+ O

(
ε2

)

(21b)

That the solution is divergent between the two lines of
periodicity above and quasi-periodic outside is shown
by the technique of Krylov–Bogoliubov. It proceeds by
writing the solution X (t) as

X (t) = A(t) cos

(
Ωt

2

)

+ B(t) sin

(
Ωt

2

)

(22)

near the point ω = Ω
2 . We will assume A(t) and B(t)

to be slowly varying (so that Ȧ << Ä and similarly
for B) and find the dynamical systems for A and B.
The fixed point will give the periodic solutions. Taking
derivatives and keeping the relevant terms

Ẋ(t) = Ȧ(t) cos

(
Ωt

2

)

+ Ḃ(t) sin

(
Ωt

2

)

+Ω

2
B(t) cos

(
Ωt

2

)

− Ω

2
A(t) sin

(
Ωt

2

)

(23)

Ẍ(t) = −Ω Ȧ(t) sin

(
Ωt

2

)

+ Ω Ḃ(t) cos

(
Ωt

2

)

−Ω2

4

(

A(t) cos

(
Ωt

2

)

+ B(t) sin

(
Ωt

2

))

(24)

With ω2 = Ω2

4 +Ωδ to the lowest order in δ, we insert
Eqs. (22) and (24) in Eq. (16) to write

−Ω Ȧ(t) sin

(
Ωt

2

)

+ Ω Ḃ(t) cos

(
Ωt

2

)

+ δ ε Ω

(

A(t) cos

(
Ωt

2

)

+ B(t) sin

(
Ωt

2

))

+ ε cos (Ωt)

(

A(t) cos

(
Ωt

2

)

+ B(t) sin

(
Ωt

2

))

= 0 (25)

Setting the coefficients of cos(Ωt
2 ) and sin(Ωt

2 ) to zero,
we get

Ȧ = (δ − ε

2Ω
)B (26a)

Ḃ = −(δ + ε

2Ω
)A (26b)

leading to the solution

A(t) = C1 e
i

(√

δ2− ε2

4Ω2

)

t

+ C2e
−i

(√

δ2− ε2

4Ω2

)

t

(27)

The answer reveals that the slow variation of A(t)
comes from the fact the coefficient of t in the expo-
nential is small. It also shows that if δ2 > ε2

4Ω2 , the

solutions are periodic with frequency
√

δ2 − ε2

4Ω2 and
hence the solution for X (t) [as seen from Eq. (22)] is
quasi-periodic. For δ = ± ε

2Ω , the solution X (t) is peri-
odic as A(t) and B(t) become constants. This agree
exactly with the curves we found from the perturba-
tion theory for periodic solutions. For δ < | ε

2Ω | (the
region bounded by the curveswhere the solution is peri-
odic), X (t) diverges. Hence, we have a situation where
quasi-periodic solutions are separated from diverging
solutions by curves on which the solution is periodic.
Searching for periodic solutions is a good strategy
for finding zones where the solutions may diverge. It
should be noted that the Krylov–Bogoliubov technique
is extremely versatile as it gives a complete picture of
what is going on, in the vicinity of the periodic solution.
It should be noted that the multiple timescale technique
(see Ref. [29]) yields identical answers. The numeri-
cally obtained picture of solutions of theMathieu equa-
tion are shown in Fig. 1.

To solve the higher-order differential equations, we
used theRunge–Kutta (RK) recursion formula. Higher-
order differential equations can be represented by a set
of first-order differential equations. Runge–Kutta algo-
rithm has the form yi+1 = yi +hφ(xi , yi , h), to numer-
ically solve the first-order differential equation, where
φ is an increment function of the approximation of

0 /4 /2 3 /4 5 /4
0

0.2

0.4

0.6

0.8

1

Fig. 1 Zones of bounded and unbounded solutions for 〈x〉. The
red shaded regions show the unstable zones. The boundaries
obtained around ω = Ω

2 from perturbation theory are shown
by the blue dashed lines. (Color figure online)
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f (x, y) in the interval of xi ≤ x ≤ xi+1. We have used
fourth-order RK formulas, where φ is the weighted
average of four derivative evaluations k1, k2, k3 and k4
on the interval xi ≤ x ≤ xi+1, that is,

yi+1 = yi + h

6
(k1 + 2k2 + 2k3 + k4),

where,

k1 = f (xi , yi ) ,

k2 = f

(

xi + h

2
, yi + h

2
k1

)

,

k3 = f

(

xi + h

2
, yi + h

2
k2

)

,

k4 = f (xi + h, yi + hk3) .

Wehave used a step size of h = 0.01. Smaller values
of h do not change the computed boundaries.

With this introduction to the techniques to be used,
we now turn to a fairly elaborate discussion of the third-
order equation Eq. (14) satisfied by V (t). The deriva-
tion of the equation is given in “Appendix A”.

3 The properties of the third-order
non-autonomous equation for the variance

The general discussions of Eqs. (10–12) from themath-
ematical point of view can be found in Refs. [19–22].
We begin by noting the fact that Eq. (13) can have peri-
odic motion with periods 3T, 2T and T and by asking
for the region in (ω̄ − ε) space where the solution of
period 3T should be obtained. This has to be the pri-
mary resonance near ω̄ = Ω

3 and we write

ω̄ = Ω

3
+ Δω̄(ε) = Ω

3
+ δ1ε + δ2ε

2 + · · · (28)

Perturbation theory is what we want to begin with
and write

V = V0 + εV1 + ε2V2 + · · · (29)

Substituting the expansion in Eq. (13), we have
( ...
V 0 + ε

...
V 1 + ε2

...
V 2 + ..

)
+

(
Ω2

9
+ 2

Ω

3
δ1ε

+2
Ω

3
δ2ε

2
)(

V̇0 + εV̇1 + ε2V̇2 + ..
)

+ ε cos (Ωt)

(
V̇0 + εV̇1 + ..

) − εΩ

2
sin (Ωt) (V0 + εV1 + ..) = 0

(30)

The analysis of the above equation up to O(ε2) is
presented in “AppendixB”.Wefind that there is no zone

of instability to O(ε2) and the periodic orbits appear

on the curve ω̄ = − 27ε2

128Ω3 .

Wenow focus on the orbits of period 2T .Aharmonic
balance argument suggests that these will exist in the
vicinity of ω̄ = Ω

2 . We write ω̄ = Ω
2 + δ, where δ is

small and try a Krylov–Bogoliubov technique with the
trial solution

V (t) = A1(t) cos

(
Ωt

2

)

+ B1(t) sin

(
Ωt

2

)

+ A2(t) cos

(
3Ωt

2

)

+ B2(t) sin

(
3Ωt

2

)

(31)

We provide the expressions for V̇ , V̈ and
...
V in

“Appendix B”.
From the coefficients of sin(Ωt

2 ), cos(Ωt
2 ), sin( 3Ωt

2 )

and cos( 3Ωt
2 ) in Eq. (B.10) of “Appendix B”,

− Ω2

2
Ȧ1 + δ Ω2

2
B1 + ε Ω

2
B2 = 0 (32a)

− Ω2

2
Ḃ1 − δ Ω2

2
A1 − ε Ω

2
A2 = 0 (32b)

− 13Ω2

2
Ȧ2 − 3Ω3B2 + ε Ω

2
B1 = 0 (32c)

− 13Ω2

2
Ḃ2 + 3Ω3A2 − ε Ω

2
A1 = 0 (32d)

The eigenvalues λ of this set of equations are
obtained from the condition
∣
∣
∣
∣
∣
∣
∣
∣

λ −δ 0 − ε
Ω

δ λ ε
Ω

0
0 − ε

13Ω λ 6Ω
13

13ε
Ω

0 − 6Ω
13 λ

∣
∣
∣
∣
∣
∣
∣
∣

= 0 (33)

which gives the following quadratic equation in λ2:

λ4 + λ2
(
36Ω2

169
+ δ2

)

+ 36Ω2δ2

169

+12ε2δ

169Ω
+ ε4

169Ω4 = 0

The two roots for λ2 are obtained as

λ2 = −1

2

(
36Ω2

169
+ δ2

)

±
√
1

4

(
36Ω2

169
+ δ2

)2

−
(
36Ω2δ2

169
+ 12ε2δ

169Ω
+ ε4

169Ω4

)

(34)
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We note that neither of the roots can be positive,
and hence, there is no instability zone around ω̄ =
Ω
2 . The periodic orbit is obtained for λ = 0 which

corresponds to δ = − ε2

6Ω3 . This is interesting since
the anticipated instability zone is not there. It can be
traced to an accidental cancellation of terms in cos(Ωt

2 )

and sin(Ωt
2 ) coming from the third and fourth terms of

Eq. (14).
We now try to find out the solutions of period T

which are expected to occur near ω̄ = Ω . Setting ω̄ =
Ω + δ, we carry out the Krylov–Bogoliubov method
with the ansatz,

V (t) = A0(t) + A1(t) cos(Ωt) + B1(t) sin(Ωt)

+ A2(t) cos(2Ωt) + B2(t) sin(2Ωt) (35)

where A0, A1, B1, A2, B2 are all slowly varying func-
tion of time. Our calculation technique is exactly the
same as detailed in the derivation of Eqs. (29)–(32d)
and finally yields

Ȧ0 = −εΩ

4
B1

Ȧ1 = 2δ

Ω
B1 + 3

8
εΩB2

Ḃ1 = −2δ

Ω
A1 − 3

8
εΩA2 − εΩ

4
A0

Ȧ2 = − 6

11
ΩB2

Ḃ2 = 6

11
ΩA2 (36)

0 /8 /4 /2 3 /4 5 /4
0

0.2

0.4

0.6

0.8

1

Fig. 2 Zones of bounded and unbounded solutions for Δ2. The
golden colour shaded regions show the unstable zones. The
dashed line shows where periodic orbits occur according to per-
turbation theory. The difference from Fig. 1 lies in the extra peri-
odic line originating at ω = Ω

4 . (Color figure online)

The eigenvalue λ satisfies a fifth-order equation
which always has a zero eigenvalue.Of the four remain-
ing eigenvalues, two are purely imaginary and the other

two have the form±
√

ε2Ω2

16 − 4δ2, and hence, there is a
zone of divergent solution bounded by δ = ± ε

8 exactly
as for the Mathieu equation near ω = Ω

2 .
We have solved Eq. (14) numerically using Runge–

Kutta methods to obtained the instability zones as
shown in Fig. 2. The instability zones agree exactly
with those found in Fig. 1 for small values of ε. As seen
from our calculation, the first instability zone appears
at ω̄ = 2ω = Ω and its width is exactly the same
as the instability zone in Fig. 1 around ω = Ω

2 . This
explains why the recent numerical work of Hashemloo
et al. [27] finds that the width increases indefinitely
only in the parameters zones where the mean posi-
tion increases. We end this section by noting that the
absence of an instability zone around ω̄ = Ω

3 (which
corresponds to ω = Ω

6 ) is presumably due to the fact
that in the absence of the periodic forcing, the system
exhibits a zero mode. The absence of a zone around
ω = Ω

4 is accidental because of the coefficients of f
and ḟ in Eq. (10) differing exactly by a factor of two.

4 The properties of the fourth- and fifth-order
equations for the skewness and kurtosis

We begin our discussion with the skewness S, rewriting
Eq. (11) to O(ε). This leads to

d4

dt4
S + 10ω2 d2

dt2
S + 9ω4S + 10ω2ε f (t)

d2

dt2
S

+ 18ω4ε f (t)S + 10εω2 ḟ
d

dt
S + 3ω2ε f̈ S = 0

(37)

with f = cos(Ωt). Writing this as a fourth-order
dynamical system Ẋi = Ai j X j with periodic coeffi-
cients, we find that Mi j is traceless and hence the solu-
tions X (t) can have periodicities 4T, 3T, 2T and T .
There are solutions with frequency Ω

4 , Ω
3 , Ω

2 and Ω .
The difference between Eq. (37) and the system stud-
ied in Sects. 2 and 3 is that the unperturbed solution S0
of Eq. (37) [i.e. solution for ε = 0] is a two-frequency
solution (this is a significant difference that can occur
with the higher-order Mathieu equation)

S0(t) = A1 cos(ωt) + B1 sin(ωt) + A2 cos(3ωt)

+B2 sin(3ωt). (38)
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Fig. 3 Zones of bounded and unbounded solutions for skewness.
The blue shaded regions show the unstable zones. The red dashed
lines show the boundaries obtained from perturbation theory.
(Color figure online)

The expected resonant response can happen when
eitherω or 3ωmatches Ω

4 , Ω
3 , Ω

2 andΩ . Harmonic bal-
ance indicates which matching would lead to dominant
effect and inspection shows that the conditions ω = Ω

6
or Ω

2 are the ones capable of producing response at
O(ε). The details of the calculations are presented in
“Appendix C”. Here we simply report that there is no
divergent region near ω = Ω

6 , while in the vicinity of
ω = Ω

2 , we have the boundaries given by the curves
shown in Eq. (C.8a).

We show the instability zones obtained from our
computational work and the boundaries obtained from
perturbation theory in Fig. 3.

We now turn to the dynamics of the kurtosis K
Eq. (12) and writing it as a dynamical system find that
once again the matrix A is traceless and the possible
time periods of the solution can be 5T, 4T, .., T with
frequencies Ω

5 , Ω
4 , ..,Ω . Noting that the ε = 0 system

has a solutionwith frequencies 2ω and 4ω, wefind from
a visual inspection of harmonic balance that at O(ε),
the possibilities are the matches at ω = Ω

8 and ω = Ω
4

and ω = Ω
2 . We rewrite Eq. (12) in a more streamlined

form by writing 2ω as ω̄ and εω̄2 as ε̄. With there new
redefinition, we have (keeping terms to O(ε̄) only as
our calculations will be done to the order)

.....

K + 5ω̄2 ...K + 4ω̄4 K̇ = −5ε̄ cos(Ωt)
...
K

− 8ω̄2ε̄ cos(Ωt)K̇ + 6ε̄Ω sin(Ωt)K̈

+ 9

2
ε̄Ω2 cos(Ωt)K̇ + 4ω̄2ε̄Ω sin(Ωt)K

−Ω3ε̄ sin(Ωt)K (39)

To explore ω near Ω
8 , we need to set ω̄ = Ω

4 + δ.
Expanding δ as δ1ε̄+δ2ε̄

2, we retain the first term alone
and write Eq. (39) as

.....

K + 5
Ω2

16

...
K + 4

(
Ω

4

)4

K̇ + 5Ω

2
δ1ε̄

...
K + Ω3

4
δ1ε̄ K̇

= −5ε̄ cos(Ωt)
...
K − Ω2

2
ε̄ cos(Ωt)K̇

+ 6ε̄Ω sin(Ωt)K̈

+ 9

2
ε̄Ω2 cos(Ωt)K̇ − 3

4
ε̄Ω3 sin(Ωt)K

At O(1)

.....

K0 + 5
Ω2

16

...
K 0 + 4

(
Ω

4

)4

K̇0 = 0 (40)

with the solution

K0 = A0 + A1 cos(
Ω

4
t) + B1 sin(

Ω

4
t)

+ A2 cos(
Ω

2
t) + B2 sin(

Ω

2
t) (41)

At O(ε̄)

.....

K1 + 5
Ω2

16

...
K 1 + 4

(
Ω

4

)4

K̇ = −5Ω

2
δ1
...
K 0

−Ω3

4
δ1 K̇0 − 5 cos(Ωt)

...
K 0 + 4Ω2 cos(Ωt)K̇0

+ 6Ω sin(Ωt)K̈0 − 3

4
Ω3 sin(Ωt)K0 (42)

The relevant resonance-inducing terms on the r.h.s.
of Eq. (41) are of the two varieties: one set proportional
to A1 cos(Ω

4 ) and B1 sin(Ω
4 ) which have δ1 as a pref-

actor and the other set proportional to A2 cos(Ω
2 ) and

B2 sin(Ω
2 )where coefficients contain termswith δ1 and

also without. Setting δ1 = 0 to remove resonance is not
an option. Hence, the resonance is removed by setting
A1 = B1 = 0 and

δ1 = + 1

Ω
for the solution A2 cos

(
Ωt

2

)

= − 1

Ω
for the solution B2 sin

(
Ωt

2

)

(43)

This produces a zone starting at ω = Ω
8 where the

solutions diverge in time. On the boundaries of this
zone, the solution is periodic with a period 2T .
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An identical calculation holds near ω = Ω
4 , but now

the width of the zone is exactly double that the zone
around ω = Ω

8 .
We finally consider the caseω = Ω

2 +δ. In this case,
as for V (t), the perturbative technique used above does
not work. With ω = Ω

2 + δ, we write Eq. (12) to the
lowest order in δ and ε as
d5K

dt5
+ 5Ω2 d

3K

dt3
+ 4Ω4 dK

dt

= −20Ωδ
d3K

dt3
− 32Ω3δ

dK

dt

−5εΩ2 cos(Ωt)
d3K

dt3
+ 6εΩ3 sin(Ωt)

d2K

dt2

−7

2
εΩ4 cos(Ωt)

dK

dt
+ 3εΩ5 sin(Ωt)K (44)

We use the Krylov–Bogoliubov method with

K (t) = A0(t) + A1(t) cos(ωt) + B1(t) sin(ωt)

+A2(t) cos(2ωt) + B2(t) sin(2ωt)

+A3(t) cos(3ωt) + B3(t) sin(3ωt) (45)

where A0, A1, A2, A3, B1, B2, B3 are slowly varying
function of time. We had to include three harmonics in
this case as opposed to the two harmonics in Eqs. (31)
and (35) because the zeroth-order solution of Eq. (44)
has the structure K = A0+ A1 cos(ωt)+ B1 sin(ωt)+
A2 cos(2ωt)+ B2 sin(2ωt). AtO(ε), we consequently
generate the cos(3ωt) and sin(3ωt) terms which need
to be in the Krylov–Bogoliubov method.

Straightforward algebra now leads to

Ȧ0 = −3ε

16
B1

Ȧ1 = 2δB1 − εB2

Ḃ1 = −2δA1 + εA2 − ε

2
A0

Ȧ2 = 4δB2 + 3ε

32
B1 + 49

32
εB3

Ḃ2 = −4δA2 − 3ε

32
A1 − 49

32
εA3

Ȧ3 = − 60

137
B3 + 27

274
εB2

Ḃ3 = 60

137
A3 − 27

274
εA2 (46)

As expected there is a zeromode, as therewas for the
variance. The other eigenvalues are λ = ±i 60

137 +O(ε)

and the remaining four obtained from the solution of

λ4 + λ2
(

20δ2 − 9ε2

32

)

+ 64δ4 + 153

1024
ε4 = 0

Fig. 4 Zones of bounded and unbounded solutions for kurtosis.
The green shaded regions show the unstable zones. The dashed
lines show the calculated instability zones. For ω = Ω

2 , it is dis-
cussed why the actual bounding can be somewhat wider. (Color
figure online)

For real value of λ2, one requires
(
20δ2 − 9ε2

32

)
>

256δ4 + 153
256ε

4. If λ2 is real, then clearly for λ2 to have

a positive root(instability) 20δ2 < 9ε2
32 which would

mean δ2 < 9ε2
640 which would imply the unstable zone

is δ < | 3
8
√
10

|ε which is very close to ε
8 . However,

this is not the complete story since this is true only
when λ2 has real roots. If λ has complex roots with
λ2 having the structure λ2 = −α ± iβ, where α is
positive being in the stable zone δ > | 3

8
√
10

|ε then

λ = 4
√

α2 + β2e±iθ/2 where cos(θ) = α√
α2+β2

and

sin(θ) = β√
α2+β2

. A negative cos(θ) puts θ in the

range π
2 to 3π

2 and cos( θ
2 ) is in the range π

4 to 3π
4 . This

implies cos( θ
2 ) is positive for π

2 < θ < 3π
4 and this

is what magnifies the instability zone around ω = Ω
2 ,

way beyond what happens for 〈x〉, V and S. As can be
seen from Fig. 4, our perturbative calculations are in
accordance with the numerical data. It should be seen
that at this order of Mathieu equation, the main fea-
ture of instabilities arising at lower frequencies than
the second-order equation is clearly borne out as the
accidental cancellation no longer happen. However, in
this case as ε increases, the region in parameter space
where the kurtosis diverges becomes very large as seen
from our numerical work and this makes the long time
quantum dynamics in such systems of particular inter-
est. The long time shape of the probability distribution
needs to have a power law fall off in the regions where
the kurtosis diverges.
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5 Conclusions

Linear differential equations with periodic coefficients
and of order greater than two are a rarity physical sci-
ences. The quantum parametric oscillator provides a
real physical system [24–27] where such equations
make anatural appearancewhen the dynamics of higher
moments is considered. Since description of the quan-
tum state is in terms of probabilities one studies the
dynamics of the mean value 〈x〉 instead of the position
of x itself. But the mean is not sufficient to picture the
distribution and hence moments like the variance are
essential. The fact that the moments follow Mathieu
equations of higher order imply that while the mean
may remain bounded, the fluctuation around the mean
or the spread parameter kurtosismay diverge with time
leading a drastic change in shape of the probability
distribution. Hence, the quantum parametric oscilla-
tor provides the physical justification for investigating
higher-order Mathieu equations.

The discussion on higher-order Mathieu-like equa-
tions have till now been restricted to mathematical
analysis. We wanted to explore the practical issue of
whether the perturbation techniques that work so well
for finding the instability zones of the Mathieu equa-
tions would be equally useful for higher-orderMathieu
equation. As seen from Figs. 2, 3 and 4, that is indeed
the case. It will be noted that we never found any insta-
bility zone around lowest admissible frequencyω = Ω

6
in our study of the variance in Sect. 3. This we attribute
to the existence of a zero mode in the system. The fact
that there was no instability zone around ω = Ω

4 was
due to an accidental cancellation. This did not occur for
the kurtosis and instability zones can be seen emanat-
ing from ω = Ω

4 and ω = Ω
8 in Fig. 4. From a purely

technical point of view, the fact that traditional tech-
nique like harmonic balance and Krylov–Bogoliubov
provides results which could be verified in their zones
of validity by numerical analysis indicates the robust-
ness of these methods and should lead to interesting
future investigations.
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Appendix A

In the appendix, we provide the derivation of the
dynamics of the variance V = 〈x2〉 − 〈x〉2 which is
the first signature of the existence of genuine quantum
effects. Using the Ehrenfest equation shown in Eq. (1)
with O = x2, we get
d

dt

〈
x2

〉
= 〈xp + px〉

m
(A.1)

d2

dt2

〈
x2

〉
= 1

m

d

dt
〈xp + px〉

= 2

〈
p2

〉

m2 + 2ω2
〈
x2

〉
(1 + ε f (t)) (A.2)

At this point, we need to point out that if an operator
O has explicit time dependence, then Eq. (1) becomes

i h̄
d

dt
〈O〉 = i h̄

∂

∂t
〈O〉 + 〈[O,H]〉 (A.3)

Another derivative of Eq. (A.2) yields

d3

dt3

〈
x2

〉
= 2

m2

d

dt

〈
p2

〉
− 2ω2(1 + ε f (t))

d

dt

〈
x2

〉

−2ω2ε ḟ
〈
x2

〉
(A.4)

Using Eq. (1) with O = p2 gives
d

dt
〈p2〉 = −mω2 (1 + ε f (t)) 〈xp + px〉

= −m2ω2 (1 + ε f (t))
d

dt
〈x2〉 (A.5)

where in the second step Eq. (A.1) is used. Substituting
the above in Eq. (A.4) yields

d3

dt3
〈x2〉 = −4ω2 (1 + ε f (t))

d

dt
〈x2〉 − 2ω2ε ḟ 〈x2〉

(A.6)

The expression for the
d3

dt3
〈x〉2 can be found from

Eqs. (3) and (4) and subtracting that from Eq. (6), we
obtain Eq. (10).

Appendix B

In this appendix, we provide the details behind the
perturbation analysis of the dynamics of the variance
present in Sect. 3. We begin with Eq. (30) and note that
at O(1), we get
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...
V 0 + Ω2

9
V̇0 = 0 (B.1)

with

V0 = A0 + A1 cos

(
Ω

3
t

)

+ B1 sin

(
Ω

3
t

)

(B.2)

...
V 1 + Ω2

9
V̇1 + 2

Ω

3
δ1V̇0 + cos (Ωt) V̇0

−Ω

2
sin (Ωt) V0 = 0 (B.3)

Using Eq. (B.2)

...
V 1 + Ω2

9
V̇1

= −2
Ω

3
δ1

(

−A1
Ω

3
sin

(
Ω

3
t

)

+ B1
Ω

3
cos

(
Ω

3
t

))

− cos(Ωt)

(

−A1
Ω

3
sin

(
Ω

3
t

)

+ B1
Ω

3
cos

(
Ω

3
t

))

+Ω

2
sin(Ωt)

(

A0 + A1 cos

(
Ω

3
t

)

+ B1 sin

(
Ω

3
t

))

= −2
Ω2

9
δ1

(

−A1 sin

(
Ω

3
t

)

+ B1 cos

(
Ω

3
t

))

+Ω

2
A0 sin(Ωt)

+ΩA1

(
5

12
sin

(
4Ωt

3

)

+ 1

12
sin

(
2Ωt

3

))

+ΩB1

(
1

12
cos

(
2Ωt

3

)

− 5

12
cos

(
4Ωt

3

))

(B.4)

For the solution V1 to exist, we cannot have resonat-
ing terms on the right-hand side and hence δ1 = 0. At
this order

V1 = 9

16Ω
A0 cos (Ωt) + 3

16Ω2 A1 cos

(
4Ωt

3

)

+ 3

8Ω2 A1 cos

(
2Ωt

3

)

− 3

8Ω2 B1 sin

(
2Ωt

3

)

+ 3

16Ω2 B1 sin

(
4Ωt

3

)

(B.5)

At O(ε2)

...
V 2 + Ω2

9
V̇2

= −2
Ω

3
δ2V̇0 − cos(Ωt)V̇1 + Ω

2
sin(Ωt)V1

= −2
Ω2

9
δ2

(

−A1 sin

(
Ω

3
t

)

+ B1 cos

(
Ω

3
t

))

− cos(Ωt)

[

− 9

16
A0 sin(Ωt) − A1

4Ω
sin

(
4Ωt

3

)

− A1

4Ω
sin

(
2Ωt

3

)

− B1

4Ω
cos

(
2Ωt

3

)

+ B1

4Ω
cos

(
4Ωt

3

)]

+ Ω

2
sin(Ωt)

[
9

16Ω
A0 cos(Ωt) + 3

16Ω2 A1 cos

(
4Ωt

3

)

+ 3

8Ω2 A1 cos

(
2Ωt

3

)

− 3

8Ω2 B1 sin

(
2Ωt

3

)

+ 3

16Ω2 B1 sin

(
4Ωt

3

)]

(B.6)

We need to pick out the resonance inducing secular
terms from the right-hand side of Eq. (B.6) and set them
equal to zero. This gives

2Ω2

9
δ2A1 sin

(
Ωt

3

)

− 2Ω2

9
δ2B1 cos

(
Ωt

3

)

3A1

64Ω
sin

(
Ωt

3

)

− 3B1

64Ω
cos

(
Ωt

3

)

= 0

and hence we obtain δ2 = − 27
128Ω3 for both A1 =

0, B1 �= 0 and A1 �= 0, B1 = 0.
This indicates that the period 3T orbit can exist only

along the line ω̄ = − 27
128Ω3 ε

2 + O(ε3) in δ − ε plane
and there are no instability zone.

We now turn to Eq. (31) of the text which is the
input for theKrylov–Bogoliubov technique for study of
Eq. (14) near the frequency ω̄ = Ω

2 . We consequently
need the expression for V̇ (t), V̈ (t) and

...
V (t) keeping in

mind that A1(t), B1(t), A2(t) and B2(t) of Eq. (31) are
slowly varying quantities, hence the above mentioned
derivatives of V (t)will not contain any time derivatives
of A1, B1, A2 and B2 higher than the second.With this,
we get

V̇ (t) = Ȧ1(t) cos

(
Ωt

2

)

+ Ḃ1(t) sin

(
Ωt

2

)

+ Ȧ2(t) cos

(
3Ωt

2

)

+ Ḃ2(t) sin

(
3Ωt

2

)

+ Ω

2

[

−A1(t) sin

(
Ωt

2

)

+ B1(t) cos

(
Ωt

2

)]

+ 3Ω

2

[

−A2(t) sin

(
3Ωt

2

)

+ B2(t) cos

(
3Ωt

2

)]

(B.7)

V̈ (t) = Ω

[

− Ȧ1(t) sin

(
Ωt

2

)

+ Ḃ1(t) cos

(
Ωt

2

)]

3Ω

[

− Ȧ2(t) sin

(
3Ωt

2

)

+ Ḃ2(t) cos

(
3Ωt

2

)]
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− Ω2

4

[

A1(t) cos

(
Ωt

2

)

+ B1(t) sin

(
Ωt

2

)]

− 9Ω2

4

[

A2(t) cos

(
3Ωt

2

)

+ B2(t) sin

(
3Ωt

2

)]

(B.8)

...
V (t) = −3Ω2

4

[

Ȧ1(t) cos

(
Ωt

2

)

+ Ḃ1(t) sin

(
Ωt

2

)]

− 27Ω2

4

[

Ȧ2(t) cos

(
3Ωt

2

)

+ Ḃ2(t) sin

(
3Ωt

2

)]

− Ω3

8

[

−A1(t) sin

(
Ωt

2

)

+ B1(t) cos

(
Ωt

2

)]

− 27Ω3

8

[

−A2(t) sin

(
3Ωt

2

)

+ B2(t) cos

(
3Ωt

2

)]

(B.9)

Inserting in Eq. (14) and keeping only terms in sin(Ωt
2 ),

cos(Ωt
2 ), sin( 3Ωt

2 ) and cos( 3Ωt
2 ), we have

−3Ω2

4

[

Ȧ1(t) cos

(
Ωt

2

)

+ Ḃ1(t) sin

(
Ωt

2

)]

−27Ω2

4

[

Ȧ2(t) cos

(
3Ωt

2

)

+ Ḃ2(t) sin

(
3Ωt

2

)]

−Ω3

8

[

−A1(t) sin

(
Ωt

2

)

+ B1(t) cos

(
Ωt

2

)]

−27Ω3

8

[

−A2(t) sin

(
3Ωt

2

)

+ B2(t) cos

(
3Ωt

2

)]

+
(

Ω2

4
+ Ωδ

)(

Ȧ1(t) cos

(
Ωt

2

)

+ Ḃ1(t) sin

(
Ωt

2

)

+ Ȧ2(t) cos

(
3Ωt

2

)

+ Ḃ2(t) sin

(
3Ωt

2

)

+Ω

2

[

−A1(t) sin

(
Ωt

2

)

+ B1(t) cos

(
Ωt

2

)]

+3Ω

2

[

−A2(t) sin

(
3Ωt

2

)

+ B2(t) cos

(
3Ωt

2

)])

+ ε

2

(

Ȧ1(t) cos

(
3Ωt

2

)

+ Ȧ1(t) cos

(
Ωt

2

)

+Ḃ1(t) sin

(
3Ωt

2

)

− Ḃ1(t) sin

(
Ωt

2

)

+ Ȧ2(t) cos

(
Ωt

2

)

+ Ḃ2(t) sin

(
Ωt

2

)

+Ω

2

[

−A1(t) sin

(
3Ωt

2

)

+ A1(t) sin

(
Ωt

2

)

+ B1(t) cos

(
3Ωt

2

)

+ B1(t) cos

(
Ωt

2

)]

+3Ω

2

[

−A2(t) sin

(
Ωt

2

)

+ B2(t) cos

(
Ωt

2

)])

− εΩ

4

(

A1(t) sin

(
Ωt

2

)

+ A1(t) sin

(
3Ωt

2

)

+B1(t) cos

(
Ωt

2

)

− B1(t) cos

(
3Ωt

2

)

−A2(t) sin

(
Ωt

2

)

+ B2(t) cos

(
Ωt

2

))

= 0

(B.10)

Appendix C

In this appendix, we provide the calculational details
behind the boundaries shown in Fig. 3. As mentioned
in the following Eq. (38), the frequencies ω = Ω

6
and ω = Ω

2 are the ones that are capable of show-
ing parametric resonance. Accordingly, we show in the
appendix, how the perturbation theory and the Krylov–
Bogoliubov technique can be used to obtain the bound-
aries of the unstable zones.

We first explore the regions near ω = Ω
6 , writing

ω = Ω
6 + δ(ε), so that Eq. (37) becomes

....
S + 10

Ω2

36
S̈ + 9

(
Ω2

36

)2

S + 10
Ω

3
δ S̈

+36

(
Ω

6

)3

δS + 10ε cos(Ωt)S̈

+18
Ω2

36
ε cos(Ωt)S + 9ε2 cos2(Ωt)S

−10εΩ sin(Ωt)Ṡ − 3εΩ2 cos(Ωt)S = 0 (C.1)

With δ = δ1ε + δ2ε
2 +· · · as before, we have at the

zeroth order

S0 = A1 cos

(
Ω

6
t

)

+ B1 sin

(
Ω

6
t

)

+ A2 cos

(
Ω

2
t

)

+B2 sin

(
Ω

2
t

)

(C.2)

At O(ε), we have

....
S1 + 10

ω2

36
S̈1 + 9

(
ω2

36

)2

S1 = −10
ω

3
δ1 S̈0

−36
(ω

6

)3
δ1S0 − 10 cos(Ωt)S̈0 − ω2

2
cos(Ωt)S0

+10Ω sin(Ωt)Ṡ0 + 3Ω2 cos(Ωt)S0

= 10
ω

3
δ1

[
Ω2

36
A1 cos

(
Ω

6
t

)

+ Ω2

36
B1 sin

(
Ω

6
t

)

+Ω2

4
A2 cos

(
Ω

2
t

)

+ Ω2

4
B2 sin

(
Ω

2
t

)]

−36
(ω

6

)3
δ1

[

A1 cos

(
Ω

6
t

)

+ B1 sin

(
Ω

6
t

)
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+A2 cos

(
Ω

2
t

)

+ B2 sin

(
Ω

2
t

)]

+10 cos(Ωt)

[
Ω2

36
A1 cos

(
Ω

6
t

)

+ Ω2

36
B1 sin

(
Ω

6
t

)

+Ω2

4
A2 cos

(
Ω

2
t

)

+ Ω2

4
B2 sin

(
Ω

2
t

)]

−ω2

2
cos(Ωt)

[

A1 cos

(
Ω

6
t

)

+ B1 sin

(
Ω

6
t

)

+A2 cos

(
Ω

2
t

)

+ B2 sin

(
Ω

2
t

)]

+10Ω sin(Ωt)

[

−Ω

6
A1 sin

(
Ω

6
t

)

+ Ω

6
B1 cos

(
Ω

6
t

)

−Ω

2
A2 sin

(
Ω

2
t

)

+ Ω

2
B2 cos

(
Ω

2
t

)]

+3Ω2 cos(Ωt)

[

A1 cos

(
Ω

6
t

)

+ B1 sin

(
Ω

6
t

)

+A2 cos

(
Ω

2
t

)

+ B2 sin

(
Ω

2
t

)]

(C.3)

For a finite S1 to exist, there can be no term in
cos(Ω

6 t), sin(
Ω
6 t), cos(

Ω
2 t) and cos(Ω

2 t) on the r.h.s
of Eq. (C.3). It is easy to check that the only term of
this variety are the first two terms which are propor-
tional to δ1 and hence for finiteness, we need δ1 = 0.

Carrying out the calculation to O(ε2) as done in
Sect. 3 for V , we did not find any divergent region near
ω = Ω

6 , and hence, we look for possible divergent
solution in the vicinity of ω = Ω

2 . Writing ω = Ω
2 +

δ1ε + δ2ε
2 + .. we rewrite Eq. (37) to O(ε) as,

....
S + 10

Ω2

4
S̈ + 9

(
Ω2

4

)2

S + 10Ωεδ1 S̈

+36

(
Ω

2

)3
δ1εS + 10ε cos(Ωt)S̈ + 18

Ω2

4
ε cos(Ωt)S

−10εΩ sin(Ωt)Ṡ − 3εΩ2 cos(Ωt)S = 0 (C.4)

Expanding S = S0 + εS1 + · · · , we have

S0 = A1 cos

(
Ω

2
t

)

+B1 sin

(
Ω

2
t

)

+A2 cos

(
3Ω

2
t

)

+ B2 sin

(
3Ω

2
t

)

(C.5)

At the next order, i.e., we get

....
S1 + 10

Ω2

4
S̈1 + 9

(
Ω2

4

)2

S1 = −10Ωδ1 S̈0

−9

2
Ω3δ1S0 − 10Ω2 cos(Ωt)S̈0 − 9

2
Ω2 cos(Ωt)S0

+10Ω3 sin(Ωt)Ṡ0 + 3Ω4 cos(Ωt)S0

= 10Ωδ1

[
Ω2

4
A1 cos

(
Ω

2
t

)

+ Ω2

4
B1 sin

(
Ω

2
t

)]

−9

2
Ω3δ1

[

A1 cos

(
Ω

2
t

)

+ B1 sin

(
Ω

2
t

)]

+5

8
Ω4 cos(Ωt)

[

9

(

A2 cos

(
3Ω

2
t

)

+ B2 sin

(
3Ω

2
t

))

+
(

A1 cos

(
Ω

2
t

)

+ B1 sin

(
Ω

2
t

))]

+5

4
Ω4 sin(Ωt)

[

3

(

−A2 sin

(
3Ω

2
t

)

+ B2 cos

(
3Ω

2
t

))

+
(

−A1 sin

(
Ω

2
t

)

+ B1 cos

(
Ω

2
t

))]

−3

8
Ω4 cos(Ωt)

[

A1 cos

(
Ω

2
t

)

+ B1 sin

(
Ω

2
t

)

+ A2 cos

(
3Ω

2
t

)

+ B2 sin

(
3Ω

2
t

)]

(C.6)

The resonance including terms on the right-hand
side of Eq. (C.6) can be written as

−2δ1

(

A1 cos

(
Ω

2
t

)

+ B1 sin

(
Ω

2
t

))

+18δ1

(

A2 cos

(
3Ω

2
t

)

+ B2 sin

(
3Ω

2
t

))

+ Ω

16
cos

(
Ω

2
t

)

(−8A1 + 12A2)

+Ω

16
sin

(
Ω

2
t

)

(8B1 + 12B2)

+Ω

16
cos

(
3Ω

2
t

)

(12A2)+ Ω

16
sin

(
3Ω

2
t

)

(12B2)

Removal of each of the linearly independent terms
leads to

−2
δ1

Ω
A1 − A1

2
+ 3

A2

4
= 0

−2
δ1

Ω
B1 − B1

2
+ 3

B2

4
= 0

18
δ1

Ω
A2 + 3

4
A1 = 0

18
δ1

Ω
B2 + 3

4
B1 = 0 (C.7)

The periodic solution S(t) = A1 cos(Ω
2 t) + A2

cos( 3Ω2 t) occurs on the line obtained from consistency

of 3
4 A2 = ( 2δ1

Ω
+ 1

2 )A1 and
δ1
Ω
A2+ A1

24 = 0 which leads
to δ1 = −Ω

8 and the solution S(t) = B1 sin(Ω
2 t) +

B2 sin( 3Ω2 t) exists on the line obtained from consis-

tency of 3
4 B2 = (− 2δ1

Ω
+ 1

2 )B1 and δ1
Ω
B2 − B1

24 = 0,
which leads to δ1 = Ω

8 . Around ω = Ω/2, we have
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the periodic boundaries at Fig. 3

ω = Ω

2
− εΩ

8
+ O(ε2) for S = A1 cos

(
Ω

2
t

)

+ A2 cos

(
3Ω

2
t

)

(C.8a)

ω = Ω

2
+ εΩ

8
+ O(ε2) for S = B1 sin

(
Ω

2
t

)

+ B2 sin

(
3Ω

2
t

)

(C.8b)

These boundaries are shown blue shaded region in
Fig. 3.
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