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Emergence of universality 
in the transmission dynamics 
of COVID‑19
Ayan Paul1,2*, Jayanta Kumar Bhattacharjee3, Akshay Pal3 & Sagar Chakraborty4

The complexities involved in modelling the transmission dynamics of COVID‑19 has been a roadblock 
in achieving predictability in the spread and containment of the disease. In addition to understanding 
the modes of transmission, the effectiveness of the mitigation methods also needs to be built into any 
effective model for making such predictions. We show that such complexities can be circumvented 
by appealing to scaling principles which lead to the emergence of universality in the transmission 
dynamics of the disease. The ensuing data collapse renders the transmission dynamics largely 
independent of geopolitical variations, the effectiveness of various mitigation strategies, population 
demographics, etc. We propose a simple two‑parameter model—the Blue Sky model—and show that 
one class of transmission dynamics can be explained by a solution that lives at the edge of a blue sky 
bifurcation. In addition, the data collapse leads to an enhanced degree of predictability in the disease 
spread for several geographical scales which can also be realized in a model‑independent manner 
as we show using a deep neural network. The methodology adopted in this work can potentially be 
applied to the transmission of other infectious diseases and new universality classes may be found. 
The predictability in transmission dynamics and the simplicity of our methodology can help in building 
policies for exit strategies and mitigation methods during a pandemic.

The spread of SARS-CoV-2 has left significant instabilities in the socioeconomic fabric of the society. While 
the spreading dynamics of the disease is not  novel1, the instabilities it has caused has made various parts of the 
society, and notably, various governance, respond to containing its spread in very different  manners2–6. The 
determination of the optimal strategy has been quite a challenge and highly dependent on the socio-economic 
condition of the country or  region7–10. A lot of effort has been spent trying to bring some predictability in the 
spread of the pandemic and even a few weeks of foresight can not only save an economy from being jettisoned but 
also save a considerable number of lives that need not be lost. Moreover, the experience of the past few months 
indicate that controlling the resurgence of the disease is a formidable task.

Various kinds of models have been used to describe the spread of COVID-19 with varying degree of success. 
These include several variants of the SIR (Susceptible, Infected , Recovered) model like  SEIR11–14—E for exposed, 
SEIRD—D for deceased, and Stochastic  SIR14,15. There are more realistic delay differential equation  models16–20, 
renormalization group  equations21–23 and the highly computation intensive (and arguably the most detailed) 
agent-based network  models24–32. There are even purely data-driven  models33–35. In all these approaches, sets 
of parameters have to be tuned precisely to analyse a particular country or region to obtain predictions, since 
every region seems to have its own special time evolution for disease propagation, making this a Herculean task. 
Although all models’ assumptions cannot strictly describe every detail of any real-world system, it is believed 
that such systems may possess certain universal behaviours independent of these  details36.

We propose to establish that there is a universality in the spreading of this disease which can be seen by sub-
jecting the available data of all the countries or regions to a scaling analysis reminiscent of the data collapse in 
the study of critical  phenomena37,38 in the sixties and seventies of the previous century. Data collapse leading to 
universality has been observed in a large variety of systems and we provide a short overview of the literature in the 
Supplementary Information. We emphasize that the procedure we follow is model-agnostic and does not require 
the assumption of a model for the transmission and mitigation dynamics. In addition, this method lies open to 
model-based interpretations as we later point out. Interestingly, we find that the universal curve is well described 
by a simple, yet non-trivial, mean-field model where the carrying capacity of the infected population depends on 
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the population size. The model—that we call Blue Sky model (BSM)—undergoes a blue sky  bifurcation39 (also 
called the saddle-node bifurcation or the fold bifurcation) which is a ubiquitous, structurally stable bifurcation 
found in variety of systems, such as power  systems40, viscous  profiles41, neural  networks42, excited  molecules43, 
 plasmas44, and the Ginzburg–Landau  systems45. At the edge of the blue sky bifurcation point, appears a uni-
versal data collapse. Furthermore, given that the scaling and data collapse have stood well the test of time for a 
very diverse set of systems and is grounded in well understood physical principles, we are proposing a robust 
method for making long-term predictions that will help in evaluating disease mitigation efficacies and planning 
exit strategies for the future. We hope to convince the readers that we have established a method which does not 
require parameter tuning or model selection to gain a handle over the prediction of disease spread.

The questions that we try to address in our work are as follows:

• Even though the pattern of disease spread is diverse in different geographical regions due to several important 
factors that include local socioeconomic  conditions46, population demographics and  dynamics47, mobility 
 patterns48 and factors like climate, pollution, etc.49–55, is it possible to rescale the data so that the universality 
in the transmission dynamics can be extracted?

• Can this universality lead to greater predictive power for certain phases of the disease spread and allow the 
explanation of the transmission dynamics in terms of a simple universal model leading to a vast reduction 
of the number of parameters necessary for predicting the spread of the disease?

The primary contributions of our work are:

• We show that there exists a universality in the spread of the disease once proper scaling is applied to the data.
• Two universality classes emerge that give us a window into understanding how well a country or region 

performed in mitigating the disease. These universality classes are independent of geographical scales.
• We propose the BSM—an extension of the logistic growth model—which explains the existence of these two 

classes, the first, through a solution that lives at the edge of blue sky bifurcation and a second that maps the 
BSM onto the logistic growth model. To our knowledge, this model has not been discussed in the literature 
before.

• We show how predictability can be realized from this analysis in a model-agnostic manner relying only on 
the inference drawn from the first phase of the disease spread. For this, we construct a deep neural network 
(DNN) based predictive model. We also show that an equally good prediction can be made using the BSM. 
We give a few examples from the ongoing phase of the pandemic in several countries and states.

• Our work focuses more on explaining the progression of the spread past the peak on the daily case rates for 
infection since the initial growth is well explained by the logistic model and some of its extensions that we 
discuss in the Supplementary Information.

There have been a few recent attempts to explore universality in the spreading of COVID-19. In Ref.56 the 
focus is on the early exponential growth of the disease and the analogy with the growth of the phase separation 
following a quench from the one-phase to the two-phase region on either side of the critical point of a fluid. In 
Ref.57, the stress is on the asymmetric dependence of the daily infection rate on time. The claim made in this 
reference is that the tail of the distribution can be described by the double exponential Gompertz function. 
This is to be contrasted with the power-law tail which can be inferred from Ref.58. Other works have focused on 
extracting universal quantities that quantify the dynamics of disease spread appealing to renormalization group 
 techniques21–23. In the following sections we will describe in detail our method of scaling the data that leads to 
the emergence of universality and the consequent predictability gained.

Theoretical framework: emergence of universality in transmission dynamics
To bring about some semblance of order in what looks like a disparate set of data from several countries, we first 
focus entirely on phase-1 of the pandemic. We denote the total number of cases (individuals who have tested 
positive for the COVID-19) at time t as N(t) with t being measured in days. The derivative dN(t)/dt is the number 
of new cases detected on a given day. Phase-1 refers to the situation, for a given country or region, where the 
dN(t)/dt increased from zero or a small value, went through a maximum and then decayed to almost zero (Type 
I transmission) or to a small value (Type II transmission). It stayed near zero or near the small value for a few 
weeks before starting to rise again at the onset of the next phase. We need to differentiate quantitatively between 
the phrase “near zero for a few weeks” and “a small value for a few weeks”. We do this by inspecting the rise in 
the total number of cases, N(t), over four weeks past phase-1. If the change is more than 4% of N(t), we mark the 
transmission as being of Type II, otherwise it is Type I.

Taking a more careful look at Fig. 1, we note that the total number of cases and the total duration of phase-1 
are very different for each country. This is to be expected as these countries have very different population densi-
ties and different patterns of inhomogeneities in the density of population. Moreover, the policies of the govern-
ment and the acceptance of these by the governed affect the implementation of precautionary  measures8–10,59. The 
policies and exit strategies towards the end of a phase in any country also determines whether the spread of the 
disease lingers on, albeit, at a much reduced rate, or is completely routed. The latter essentially divides the world 
into two classes in our formalism. However, looking at bare case numbers, one is bound to conclude that each 
country or region is a unique case study requiring a detailed modelling of transmission dynamics and incorpo-
rating the effects of mitigation and containment measures, a task that seems formidable right from the onset.
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The top left and right panels of Fig. 1 show some examples of countries that went through a phase-1 transmis-
sion of Type I and Type II respectively. The disparity in the spreading patterns is apparent. In the lower panels 
of Fig. 1 we focus on the states of the USA and Germany. In the USA we see that the spreading pattern in the 
different states was somewhat decorrelated. This is where our formalism is particularly useful. The physical 
principles that we advocate being independent of geographical scales can be applied to countries, states or even 
counties and districts given they have seen a significant spread of the disease within the region. On the other 
hand, the spread of COVID-19 in Germany in the various states has been quite correlated. What is important 
to note here is not only are the scales of the disease spread different, but also the shapes of the distribution over 
time vary considerably, hinting at various timescales characterizing each region. Hence a key part of our work 
will be to bring about a data collapse in both these dimensions which cannot be achieved by simple rescaling 
the numbers alone.

Now, let us see how universality can emerge from a scaling of the COVID-19 confirmed case rate data. We 
introduce a number Nmax which is the total number of infected people at the end of phase-1. For Type I trans-
mission the value of Nmax is easy to infer. It is the the total number of cases at which the N(t) curve flattens out 
after the close of the phase. For Type II transmission, where N(t) is never completely flat, we determine the close 
of phase-1 following the procedure described above. A perfect example is the case of Germany. For the period 
May 31st, 2020 to July 17th, 2020, the value of dN(t)/dt hovered around 400 which is more than an order of 
magnitude smaller than the peak value of 6000. In this case Nmax corresponds to the number of cases at the end 
of this period of stagnancy in the growth rate, i.e., the number of cases on July 17th, 2020. Of course, there are 
some degree of variability associated with the choice of the end-date for a phase. However, an estimation error 
of a few days does not change the onset of universality. Therefore, we choose the end-date for phase-1 as the first 
day when the N(t) curve flattens out for Type I transmission and the last day before the onset of the next phase 
for Type II transmission.

Our conjecture is that universality emerges from the scaling given by

The ratio Ñ(t̃) is relatively insensitive to the testing policies, the inhomogeneity in the population density, the 
size of the country or region, the details of the mitigation methods advocated, etc. The rescaling of the time by 
an appropriate time scale for each country or region, irons out the nuances brought about by the government 
policies like the duration of lockdown, exit strategies, etc., at the lowest order of approximation. Therefore, for 
each country or region a natural time scale to choose is t1/2 which is the time at which N(t) = Nmax/2.

The choice of the characteristic timescale is subjective. For instance, choosing t = t1/n corresponding to the 
time when N(t) = Nmax/n , with n being a positive definite number would not affect the nature of this analysis. 
However, choosing n = 2 allows for an easy interpretation of the characteristic time scale and, as we see later, 

(1)t̃ =
t

t1/2
, and Ñ(t̃) =

N(t̃)

Nmax

.

Figure 1.  The variation in the spreading of COVID-19 in various countries and some states of the USA and 
Germany. Top left: the countries for which the first phase of spreading falls into the category defined as Type I. 
Top right: the countries for which the first phase of spreading falls into the category defined as Type II. Bottom 
left: some states in the USA that show very different spreading patterns for the disease. Bottom right: some states 
in Germany that show very similar pattern in the spreading of COVID-19.
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places the peak of dÑ(t̃)/dt̃ at t = t1/2 for a simple logistic growth. According to our conjecture, Ñ(t̃) plotted 
against t̃ should show a data collapse opening up avenues for simple predictive modelling and generalization 
beyond socioeconomic and geopolitical variations.

Data‑collapse in transmission dynamics of COVID‑19. In the light of the preceding discussion we 
present the Ñ(t̃) vs. t̃ plots for several countries and states in left-most plots of Fig. 2. The data collapse is clearly 
evident. We see that independent of variabilities in transmission dynamics the universality in the rescaled data 
dictates that there are two distinct classes. The plots in the middle of Fig. 2 show the functional dependence of 
dÑ(t̃)/dt̃ on t̃ . For the Type I transmission one clearly sees that tail of the distribution at higher t̃ dips to very 
low values. This implies that after phase-1 ended, the daily case rate actually went down to a negligible number, 
which, originally, was our basis for identifying Type I transmission. On the other hand, for the same curve in the 
lower middle plot of Fig. 2, the tail of the distribution at higher t̃ never really goes to as low values as that for Type 
I transmission. This is because in a transmission of Type II the countries and regions never saw a complete rout-
ing of the spread of the disease. To show the independence of geographical scales of our formalism, we include 
New York, USA and Bayern, Germany as two states tracking them over phase-1 of the spread of COVID-19. We 
see that both the states show transmission of Type II.

It is important to point out here that the data collapse that we see effectively filters out the variances in the 
dynamics of the disease spread and the policies for disease mitigation. It also effectively filters out how quickly 
the response to the pandemic was orchestrated (a matter of government policy), how drastic these measures were 
and all other geopolitical demographics that make the disease propagation dynamics in each country or state look 
very different in Fig. 1. The key difference between the two classes reduces to the effectiveness of the countries 
in fully containing the disease itself, each using their own set of mitigation methods and exit strategies. Indeed, 
this data collapse removes all necessity of fine-tuning a large number of parameters to examine each country or 
state separately and shows that there is a common pattern in the spread of COVID-19.

Interpretation of t
1/2. The parameter t1/2 gives us a distinct insight into how well the spread of the disease 

was mitigated in a particular phase. A shorter t1/2 implies a more effective mitigation strategy. For example, from 
Fig. 2 we see that the t1/2 for South Korea is 18 days, which means that the spread of the disease was stopped 
very rapidly as compared with UK for which t1/2 is 57 days. However, despite being effective in slowing down the 
spread rapidly, South Korea falls into Type II since the spread was not completely stopped but lingered on. On 

Figure 2.  The emergence of universality in the transmission dynamics of COVID-19. Left panels: The rescaled 
total number of confirmed cases, Ñ(t̃) = N(t)/Nmax , and the its derivative, dÑ(t̃)/dt̃ , with respect to the scaled 
time t̃ = t/t1/2 for Type I transmission where the disease spread was almost completely routed after phase-1 
and Type II transmission where the disease spread was not completely routed after phase-1. The data collapse 
is evident and independent of the country or state being considered showing the emergence of two universality 
classes in the transmission dynamics of COVID-19 independent of social and geopolitical variations. Right 
panels: The fit to the rescaled data using the Blue Sky model (solid blue line) and the model agnostic fit (dashed 
black line) with a deep neural network. Note that α̃ = 0.918 in the rightmost bottom panel is practically 
the value expected at the edge of the blue sky bifurcation at 1/4κ̃2lgm = 1/(4× 0.5242) = 0.910 . The good 
agreement between the two approached can be clearly seen.
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the other hand, Ireland, even being of type I, has a relatively longer t1/2 of 39 days showing that while the spread 
of the disease was almost completely routed it took a longer period of time to do so hinting as possibilities of 
drafting better mitigation strategies.

Blue sky model. Among the four broad classes of models (with possibility of overlap among them) of infec-
tious disease spreading—viz, data-driven phenomenological  models60,61, compartmental or lumped parameter 
 models62, agent-based  models63, and stochastic differential equation  models64—while the former two are math-
ematically simpler, the latter two are more detailed in their approach. The first two types of models are to the 
last two types, what thermodynamics is to statistical mechanics. The most simple lumped parameter model is 
undoubtedly the well-known one dimensional autonomous logistic growth  model65:

from which we shall begin. Here, β > 0 is the Malthusian growth rate in the presence of unlimited resource, i.e., 
κ → ∞ . Most commonly, the resource is assumed to be unaffected by the population size, N(t), and hence, the 
population grows to settle onto the value N(∞) = κ , which is the carrying capacity. We discuss some variants 
of the the logistic growth model and their fit to the data in the Supplementary Information.

The system of our interest is a population where N(t) represents the number of COVID-19 infected indi-
viduals that can potentially infect healthy individuals so that the infected population grows at a rate β . All the 
depletable conditions that are favourable for the infected population to grow is quantified through the positive 
parameter, κ . One could argue that rather than relying completely on the carrying capacity parameter, one could 
make this model more elaborate by making it higher dimensional to mathematically incorporate the interaction 
among infected, susceptible, exposed, asymptomatic, quarantined, recovered, immune, and deceased individuals. 
However, the fact remains that all such higher dimensional models, despite their share of success, bring in more 
parameters while the only available data is still mostly that of the infected and deceased individuals. Thus, in 
this paper, we are motivated to take the route of simple two-parameter one dimensional model complimented 
with the information extracted from the real data.

It is straightforward to realize that the carrying capacity can easily depend on N(t): e.g., the government may 
practically be incapable of quarantining infected individuals as their numbers grow, thereby effectively increasing 
the carrying capacity because the infected individuals would interact with more and more healthy individuals 
leading to terms which are higher order in N(t). Therefore, if we were to model the realistic scenarios, we should 
let κ depend on N(t) in a nontrivial way. In this context, we find it useful to define an order parameter, ρ , as

Note that lower the value of the order parameter, more is the control on the change of the carrying capacity. The 
case of the order parameter being zero corresponds to the traditional logistic equation governed system where 
the carrying capacity is independent of N(t). We would like to mention here that past  considerations16,66–74 of 
the logistic growth related compartmental models, as applied to the modelling of COVID-19, do not explicitly 
incorporate the natural notion of the state-dependent carrying capacity.

In order to account for the aforementioned variation of the carrying capacity with the change in the infected 
population size, we propose a simple, yet non-trivial, functional form for the carrying capacity:

where κlgm is the constant carrying capacity corresponding to the traditional logistic growth model and α is a non-
negative parameter. In Equation 2 with κbsm as the carrying capacity, we define the Blue Sky model (BSM) that we 
use to explain our findings in this paper. In the BSM, we note ρ = α which renders a significant physical mean-
ing to the (otherwise ad hoc) parameter α . Following the transformations, ˜N(t) = N(t)/Nmax and t̃ = t/t1/2 , 
adopted in the previous discourse, we define β̃ ≡ t1/2β , κ̃lgm ≡ κlgm/Nmax , and α̃ ≡ N

2
maxα . Henceforth, we 

shall consider only the rescaled BSM where these rescaled parameters are used.
In the BSM, the blue sky bifurcation occurs at the nonzero fixed point at α̃ = α̃edge ≡ 1/4κ̃2lgm—the edge of 

blue sky. Beyond the edge of blue sky, i.e., for α̃ > 1/4κ̃2lgm , the two nonzero fixed points vanish and Ñ(t̃) = 0 is 
the sole fixed point in the system which is unstable. In other words, the population size of the infected individual 
grows without any bound, which is a physical impossibility. This sets an important limit that α̃ should respect 
for the model to be physical: one must impose the condition, α̃ ∈ [0, 1/4κ̃2lgm] , so that a stable attracting nonzero 

state of the infected population, viz., Ñ(t̃) = (1−
√

1− 4α̃κ̃2lgm)/(2α̃κ̃lgm) exists. The third fixed point, 
Ñ(t̃) = (1+

√

1− 4α̃κ̃2lgm)/(2α̃κ̃lgm) , is unstable and not of any practical interest to us.
As seen in the rightmost column of Fig. 2, the BSM remarkably segregates the COVID-19 transmission 

dynamics in countries and states into two universality classes—Type I and Type II—characterized by two distinct 
and well separated values of the (rescaled) order parameter, ρ—one close to the logistic growth value ( ̃α ≈ 0 ) and 
the other close to the edge of blue sky ( ̃α ≈ 1/4κ̃2lgm ) respectively. The data collapse onto the respective curves is 
strongly reminiscent of the similar phenomenon observed in the critical phenomena and their universality across 

(2)
dN(t)

dt
= βN(t)

(

1−
N(t)

κ

)

,

(3)ρ ≡
1

κ2

(

dκ

dN

)

.

(4)κ = κbsm ≡
κlgm

1− ακlgmN(t)
,
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a plethora of physical  systems37,38. Thus, we speculate that it may be a potential hint of a hidden renormalization 
scheme present in the microscopic details of the corresponding agent-based models.

Deep neural network. While the BSM provides a very good and intuitive explanation of the data, we feel 
that one should not be limited to exploring the universality in the data through specific models only. Hence, we 
perform a model-agnostic fit using a universal function generator in the form of a deep neural network (DNN). 
We use a three-layers deep, with each layer 16 nodes wide DNN for this purpose. The core of the architechture 
can be found in the Methods and Materials section and a detailed discussion can be found in the Supplementary 
Information. The fit to the data using the DNN can be seen in the rightmost panel of Fig. 2. The back dashed line 
corresponds to the DNN fit. We fit to the Ñ(t̃) distribution. We see that the fit of Type II transmission is almost 
identical to the BSM fit showing that the data-driven and model-dependent methods reach the same conclusion. 
For transmission of Type I the DNN fit is slightly different from the BSM fit and notably so at the center of the 
distribution where dÑ(t̃) is shown to be higher from the DNN fit than from the BSM fit.

Results and discussions: predicting of COVID‑19 spread from universality
The data collapse that we show leads us to the ability of making predictions in both a model-dependent and a 
model-agnostic way. While the BSM shows a clear explanation of the data, the advantage of a data collapse lies 
in the emergence of universality which allows for model-agnostic predictions from the simple understanding 
that the transmission dynamics described by the rescaled variables are the same in every phase of the the disease 
spread. Hence, we would like to emphasize both possibilities although they lead to similar results in predictions.

It should be noted that the only parameter that needs to be estimated for predictions to be made is t1/2 for 
the ongoing phase for a country or region. Once that is determined, the parameters extracted from the fit to the 
phase-1 data can be used to make predictions for the ongoing phase. For both the approaches we use a common 
algorithm except for the functional form that we use to fit to the data. For the model-dependent approach we 
use the BSM and extract its parameters from data, whereas in the model-agnostic approach we use the trained 
DNN to predict the distribution of Ñ(t̃).

The algorithm used to make the predictions is delineated in Materials and Methods section. To show the 
extent to which our prediction work, we assume that a country or state is just past the peak of dN(t)/dt. The data 
that we use for determining tpeak is represented by the solid dark blue line in the insets of Fig. 3. The data past the 
end of this line, marked with a dotted red line is assumed to be in the future. We use the “past” data to predict 
for the “future” and then extend our prediction to t̃ = 2.5 . Since t1/2 is unique for each country or state, each 
approach and each transmission types, the length of time for which predictions are made differ.

Model‑dependent prediction. The fitting of the BSM to data from phase-1 paves the way for making 
model-dependent predictions for future phases of the pandemic. This can be done by identifying t1/2 and, from 
it, Nmax . This is only possible if, in a current phase of the pandemic, the daily case rate dN(t)/dt has already 
reached a peak. This peak lies at time t = t̃peakt1/2 where t̃peak can be derived from the fit parameters and is 
given in Eq. (7). By definition, t = t1/2 is the time at which the N = Nmax/2 with N(t) being counted from the 
beginning of the phase. Once these two parameters have been extracted, one can make two separate predictions 
for any geographical region: the first assuming a spread of Type I and the second assuming a spread of Type II. 
These predictions for Type I (dashed blue line) and Type II (dot-dashed blue line) are shown in Fig. 3 for several 
countries and states. The bands in blue represent the error in the prediction propagated from the error in the 
estimation of t̃peak.

Model‑agnostic prediction. We also show the predictions from the model-agnostic approach using a 
trained DNN in Fig. 3. The logic that we follow to identify the peak of the dN(t)/dt distribution is the same as 
for the model-dependent predictions. However, t1/2 now varies between the two methods since t̃peak is different 
for the model-dependent and the model-agnostic fits. The dashed gray lines represents transmission of Type I 
and the dot-dashed gray lines represents transmission of Type II. For Type I transmission, the BSM gives pre-
dictions similar to the DNN. However, for Type II the BSM mostly predicts somewhat larger number of cases. 
This is because t̃peak = 0.85 from the BSM fit of the phase-1 data is a bit lower than that from the DNN fit of 
t̃peak = 0.87 . The gray bands show the error in prediction propagated from the error in estimation of t̃peak.

In the model-agnostic approach the regression is completely data driven, and hence, does not represent any 
underlying principle of the disease spread. This can be considered as a drawback of this approach. However, we 
show that the predictions made through this approach is very similar to the one made with the BSM. In addition 
the fit to data is also quite robust as can be seen from Fig. 3.

Discussions on the predictions. There are several subtleties about the prediction that we should mention 
here. Firstly, the most important and sensitive part of the prediction is locating the peak of dN(t)/dt during an 
ongoing phase. For some cases tpeak is easy to locate, for instance, for Italy and Ireland in Fig. 3. However, for 
some other countries like Germany, it is somewhat more involved. Secondly, just past the peak it is difficult to 
gauge whether N(t) will be monotonically decreasing or not. Lastly, in cases like Germany and UK we expect a 
significant margin of error in determining the peak itself since the dN(t)/dt is not strictly unimodal. This uncer-
tainty in the determination of the peak is what the error bars for the predictions quantify. The error in determin-
ing tpeak propagates to an error in determining Nmax . Hence, the error bars are small for Ireland and Italy, while 
they are quite large for Germany and California—the latter being just past the peak in the dataset we use. The 
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spread of COVID-19 in Russia had just reached the peak while we were doing this analysis and hence, we make 
pure predictions without any test data.

In all the plots in Fig. 3, we see that Type II transmission lasts much longer than Type I transmission. For 
Ireland we see that it was proceeding along the curve for Type I transmission until the next phase started when it 
diverged once more. Form this plot we now get an idea of how the pandemic might have been routed in Ireland 
had the next wave not started. UK on the other hand seemed to be following the trajectory taken by Type II 
transmission until the number of new cases per day started rising once more.

Conclusions
The surfacing of a worldwide phenomenon such as a pandemic is highly disruptive. The social, political, and 
economic disruption that this pandemic has brought resulted in an essentially chaotic response to its mitiga-
tion. Everything from testing strategies to containment procedures followed very different patterns in different 
nations and variation even at the regional levels were very palpable. This has made the analysis of the data to 
model the underlying dynamics of disease spread a formidable task that has rarely yielded to any generalization.

In this paper we show that the emergence of order from within this chaos is made possible by applying well 
tested procedures drawn from the study of critical phenomenon leading to the formation of universality classes. 

Figure 3.  A display of predictability from the emergence of universality classes. We show how predictions 
can be made form scaling data and using knowledge gathered from phase-1 of the pandemic. Once the peak 
in the daily case rate is reached (or has been assumed to have reached), prediction for several weeks or months 
can be made. The solid dark blue lines in the insets show the data being used to find tpeak , and from it, t1/2 and 
Nmax . The dotted red lines in the insets are the test data which lie in the future with respect to the data used to 
determine the peak. The light blue lines and bands are predictions from the model-dependent fit using the Blue 
Sky model (BSM) to phase-1 data and the gray lines and bands are those from the model-agnostic fit using a 
deep neural network (DNN). The dashed lines are prediction for transmission of Type I and the dot-dashed lines 
are for transmission of Type II. All predictions are made till t̃ = 2.5 or t = 2.5t1/2 starting from the beginning of 
the ongoing phase of disease spread. The top and middle rows show predictions for various countries while the 
bottom row shows predictions for two states in the USA and one in Germany.
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Such ordering in the data leads to the possibility of characterizing the transmission dynamics into two classes, 
distinguished by how well the disease has been contained by each country or region. This clearly shows that 
the variation of the transmission dynamics, and the variation in policies related to disease mitigation, testing 
guidelines, exit strategies can be scaled away to instigate a data collapse into two classes that allows us to bring 
about remarkable predictability in the spread of the disease.

We reemphasize that without having to go into the rigours of extracting epidemiological parameters and 
having to formulate fine-tuned models for the spread of the disease, the emergence of universality allows for the 
prediction of future disease spread.

The lack of a definitive understanding of what model to use and how to extract epidemiological parameters has 
been a major hurdle to making mathematically sound predictions during the spread of COVID-19. In addition, 
such methods require that each country and each region be treated separately, quickly leading to a prolifera-
tion of parameters and systems of equations. While being model-agnostic certainly has several drawbacks, the 
universality in the spread of the disease that we bring to surface here circumvents many of these problems by 
exploring the emergence of one single functional form that can be used to make prediction for the spread of the 
disease once a region has reached the peak of the spread. This clearly allows policy decisions to be made around 
exit strategies and lets the responsible governance understand how long it might take for a spreading wave of 
the disease to be contained given the current measures are kept in place.

We would like to point out that the advent of vaccination can be accommodated for in our analysis since 
it effectively reduces the size of the total susceptible population which, in turn, does not affect the rescaled 
parameters since they are scaled by Nmax . Therefore, the validity of our work is not short-lived and have general 
applicability, regardless of the mitigation methods used.

Lastly, we bring to light the proposition of the BSM which explains the data remarkably well. We wish to 
highlight that it is an intriguing coincidence that Type II dynamics should live at almost the edge of blue sky 
bifurcation in the BSM. Looking at the finite nonzero value of the order parameter vis-à-vis the almost vanishing 
value of order parameter for Type I transmission, one is readily reminded of the phase transition phenomenon 
in physical systems. It is tempting to interpret the two types of transmission as two phases quantified by an 
order parameter. Furthermore, it remains to be seen if the newly introduced BSM finds applications in other 
epidemiological systems.

Methods and analysis procedures
All the numerical analysis in this work was performed using Python 3 and several libraries like SciPy, NumPy, 
Pandas and statsmodels. All the code necessary for reproducing our results, further exploring the data, making 
predictions and for making the plots are available in a GitHub repository: https:// github. com/ talis manbr andi/ 
Unive rsali ty- COVID- 19.

Data sources and curation. In this work we used data from publicly available sources. The two primary 
sources that we used are:

• Data on COVID-19 confirmed case rate obtained from the Johns Hopkins University, Center for Systems 
Science and Engineering  database75 through their GitHu b repos itory. The time-series for all the countries in 
the world and for all the counties in the USA are available from here. For the confirmed case rates in each 
state of the USA we merged the data for the counties in each state.

• For Germany the data is available through the Robert Koch Institute from the RKI COVID 19 datab ase.

For all datasets we worked with the seven day averages to remove the fluctuations due to variations in report-
ing over the period of a week. The last date on the time-series used in this work is 31st of December 2020.

Rescaling of the BSM differential equations. The rescaled BSM can be explicitly written as:

For the purpose of prediction, we need to estimate t̃ = t̃peak at the peak of the distribution of the first deriva-
tive, dÑ/dt̃ . For Type I transmission, t̃peak = 1 to a very good approximation. Numerically, t̃peak = 0.98 from 
the fit shown in Fig. 2 for Type I transmission since the solution lies very close to the pure logistic growth model 
( ̃α = 0 ). However, for Type II transmission, t̃peak depends on the fit parameters. Since the transmission hap-
pens at the bifurcation point—α̃ = 1/4κ̃2lgm—integration of Eq. (5) at the corresponding value of parameters is 
needed. Integration yields:

where Ñ0 = Ñ(t̃ = 0).
In general, the BSM has three extrema in dÑ/dt̃ at Ñ(t̃) = 0 , Ñ(t̃) = 2κ̃lgm/3 , and Ñ(t̃) = 2κ̃lgm . For the 

solution at the bifurcation point, there are only two extrema which are the first two, and the maximum is then 
at Ñ(t̃) = 2κ̃lgm/3 . Putting all of these together, one finds from Eq. (6),

(5)
dÑ(t̃)

dt̃
= β̃Ñ(t̃)

(

1−
Ñ(t̃)

κ̃lgm
+ α̃Ñ(t̃)2

)

.
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1
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[
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∣

∣

∣

∣

∣
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−
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On using the fit parameters for transmission of Type II shown in Fig. 2, we get t̃peak = 0.85 from Equation 7. 
Since Ñ0 ≪ κ̃lgm , we can simplify the expression for t̃peak to:

Numerical solution of BSM. The fit to the BSM was performed by numerical integration of the solution 
to the differential equation given by Eq. (5). For this we used the SciPy  package76.

Deep neural network architecture. To construct the DNN used in the model-agnostic fit we used 
 TensorFlow77. The following are the details of the DNN architecture:

• depth: 3 layers
• width: 16 nodes in each layer
• optimizer: Adam with a learning rate of 0.01
• loss function: mean square error
• regularization: early stopping
• validation split: 0.2

Since the data for Ñ(t̃) is already scaled between 0 and 1, no scaling of the data was necessary. The DNN took 
about 100-200 epochs to train with the regression taking only a few seconds to be completed. A more detailed 
discussion of the architechture can be found in the following sections.

Algorithm for predictions. Once we have the fit to the BSM or have trained the DNN with phase-1 data 
we can make predictions for the subsequent phases. The procedure we follow for this is given by: 

1. Choose a starting date where the cases start to rise (the start-date) from the plot of dN(t)/dt for the second 
or any subsequent phase.

2. Subtract the number of cases up until the start-date from the total number of cases to get the adjusted number 
of cases.

3. Locate the time t = tpeak at which the peak of dN(t)/dt occurs with t = 0 at the start-date.
4. The time tpeak is proportional to t1/2 with the constant of proportionality being approximately 1 for Type I 

transmission and a constant (approximately 0.85) extracted from data for phase 1 of the spread for transmis-
sion of Type II.

5. Find the adjusted number of cases on the date corresponding to t1/2 . Twice that number is the adjusted Nmax

.
6. Use the functions fit from data for phase 1 (the BSM for model-dependent predictions and DNN for model-

agnostic predictions) to estimate the future adjusted number of cases.
7. Now add back the number of cases up until the start-date to get the prediction of the disease spread.

Data and materials availability
All data and materials necessary to reproduce this work is available in a GitHub repository: https:// github. com/ 
talis manbr andi/ Unive rsali ty- COVID- 19.
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