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Abstract: The building blocks of life, amino acids, are believed to have been synthesized in the
extreme conditions that prevail in space, starting from simple molecules containing hydrogen,
carbon, oxygen and nitrogen. However, the fate and role of amino acids when they are subjected
to similar processes largely remain unexplored. Here we report, for the first time, that shock
processed amino acids tend to form complex agglomerate structures. Such structures are formed on
timescales of about 2 ms due to impact induced shock heating and subsequent cooling. This discovery
suggests that the building blocks of life could have self-assembled not just on Earth but on other
planetary bodies as a result of impact events. Our study also provides further experimental evidence
for the ‘threads’ observed in meteorites being due to assemblages of (bio)molecules arising from
impact-induced shocks.
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1. Introduction

The origin and evolution of life on Earth is one of the greatest unsolved mysteries in science.
It is still unclear if life originated in “Darwin’s pool”, a hydrothermal vent, the ocean, a tidal pool
or indeed elsewhere in the solar system [1]. The Miller–Urey (MU) experiment [2,3] provided direct
experimental support for the “prebiotic soup” theory proposed by Oparin [4]. The results of MU
experiments reported the chemical synthesis of organic compounds, including amino acids from
simple gases probably synthesized by the Strecker pathway. The next step in evolution is proposed
to be the formation of self-assembling complex organic molecules and polymers from simple amino
acids [5]. The formation of peptides from amino acids is thus one of the crucial steps in the origin
of life as peptides can form self-assembling molecular structures and interact with other classes
of biomolecules, such as nucleic acids, lipids, etc. and enhance their structure and function [6].
Peptides are essential and are the structural building blocks that form supramolecular structures, such
as helices, sheets, globules, fibers and tubes that can be used to build the basic architecture of a living
cell [7]. Indeed, peptides form numerous structures useful for the cellular and molecular function of
life due to different intermolecular interactions, such as electrostatic, hydrophobic, van der Waals and
hydrogen bonding, etc. [7,8]. However, prebiotic availability of such structures was never explored.

Many studies have reported different abiotic mechanisms for peptide synthesis during prebiotic
conditions, including synthesis in hydrothermal vents [9], irradiation [10–12], activation agents and
oligomerization [1,5,13,14]. Impact shock events have also been responsible for the synthesis of organic
matter that is presumed to be the prebiotic inventory of life on Earth [15]. Organics can also be
produced by the shock processing of cometary gases [16]. The observation of large scale craters on
the surface of the planetary bodies reminds us of the role of impact processes in planetary and lunar
evolutions whilst many cometary bodies appear to be the result of collisions of constituent bodies.
Such impacts release significant amounts of energy and, therefore, may provide pathways for large
scale molecular synthesis.

Experiments have shown that shock processes, mimicking impact-induced shock events, on simple
molecules lead to the synthesis of amino acids [17,18]. Recent studies have also reported the role
of extraterrestrial impacts on the abiotic synthesis of amino acids [19,20] and peptides [5,21,22].
Molecular dynamics simulations have also shown that impact shock can drive the synthesis of complex
organics like amino acids [23–25]. Further studies have reported survivability of amino acids under
impact bombardment [26–28]. Along with amino acids, other biomolecules, such as nucleobases,
sugars and amines are also known to be the product of impact driven processes [18,29–31]. Thus the role
of impacts in prebiotic chemistry and formation of the first complex self-replicating macromolecules
must be studied [1]. Blank et al. [21] used an impactor to process the amino acid ‘soup’ and observed
peptide bonds to be present in the shocked solution. However, despite the recent impact induced
formation of complex molecules, such as amino acids, its role in the origin of life is still unexplored.
Therefore, it is imperative to subject amino acids to impact-induced shock conditions if we are to
understand the next step in the evolution of life after the formation of complex molecules.

In the present study, we have investigated the effect of impact by strong shock waves on amino
acids in a shock tube. We exposed various amino acids to strong shock waves at temperatures of
around 2500 K–8000 K. Our experimental conditions mimic a small portion (<104 K) of the extreme
conditions experienced in real impact events. To the best of our knowledge, this is the first report on
the synthesis of complex structures by the impact of strong shock on amino acids.

2. Results and Discussion

2.1. Complex Structure Formation and Consequences for the Studies of the Origin of Life

Single amino acids, such as glycine, a combination of two amino acid mixtures, four amino acid
mixtures and 18 amino acid mixtures were exposed to impact-induced shock using a shock tube.
We started with the simplest amino acid, glycine, and further combinations of two and four amino
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acids were chosen on the basis of positively charged, negatively charged and neutral amino acids
as suggested by Miller and Orgel [32]. The eighteen amino acids were used from the 20 standard
amino acids. The various operational parameters and experimental shock conditions, such as the
Mach number, the reflected shock temperature (estimated) and the pressure conditions are listed in
Table S1. Increasing the number of amino acids in the mixture (Table S1), in equal proportions weight
percentage ratio (w/w), resulted in a shocked sample with a sticky consistency and the structures
observed by scanning electron microscopy (SEM) were solid clumps along with twisted and a few
cylindrical threads like helices. No structures were observed in SEM imaging of the unshocked
sample (control: Figure S5a,b). This indicates that shock processing of amino acids leads to the
synthesis of complex macrostructures. The shocked sample of pure glycine revealed the formation of a
distinct globule of ~ 45 to 50 µm diameter, with a smooth texture and a spongy appearance (Figure 1).
Interestingly, a ribbon/thread structure similar to filamentous peptide fibrils [33], stretching to a few
tenths of a micron, was also observed (Figure 1). Adding another amino acid, glutamic acid, in equal
weight proportions with glycine, shows the formation of an entirely different macrostructure in the
shocked sample (Figure 2). The structures formed in Figure 2 resemble hierarchical ordered floral
structures viz. rose flower petals and shorter bunched threads. Similar hierarchically ordered structures,
floral structures formed by diphenylalanine peptide, have been reported earlier with peony-like flower
morphology [34]. Similarly, the shock processed mixture of asparagine and glutamic acid samples
presented different complex microstructures (Figure 2e).
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Figure 1. SEM images of the residues obtained after shock processing glycine. (a) globule structure,
(b) fine filamentous thread feature and (c) cylindrical fibril feature.
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Figure 2. SEM images of residues obtained after shock processing of two amino acid mixtures (Table S1).
(a–c) Short feather like features, (d) shows the formation of ordered scale features in a glycine-glutamic
acid mixture, (e) rose petal like features in an asparagine–glutamic acid mixture and (f) short thread
like features in a glycine-glutamic acid mixture.
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Further experiments performed with the addition of two more amino acids, to create a mixture
of four amino acids, namely lysine, aspartic acid, arginine and glutamic acid (Table S1) in equal
weight proportions, resulted in a dark black sticky residue. SEM imaging of this last sample showed
threads (Figure 3) and, a much more surprising result, the formation of a porous cylindrical structure
(Figure 3), a few microns in diameter. Porous and cavity structures are vital in the assembly and proper
functioning of proteins [35]. Additionally, such porous and multi-chambered structures are feasible
candidates for primitive abiotic cellularity due to their energy capture and conversion capacity [36].
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Figure 3. SEM images of residues obtained after shock processing of equal proportions of four amino
acids (Table S1). (a) Thick thread feature containing fine threads running all along, (b) shows many
porous features and (c) the porous cylindrical feature.
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By further increasing the number of amino acids to eighteen in the mixture (Table S1), mixed
in equal weight proportion, a thick black sticky residue resulted and many different structures were
observed, including threads and ribbons as well as twisted and cylindrical (Figure 4). Upon closer
inspection, we could clearly see that the threads were made of small (about a micron size) features.
By reducing the shock temperature to 4000 K–5000 K (Table S1), the number of threads formed was
found to increase. The length of the threads formed was quite surprising as they spanned more
than one mm (Figure S7). Formation of such long-range ordered structures from basic building
blocks is of crucial importance to complex biological systems with multiple functional properties [37].
The twisted threads were observed to split (Figure 4), which is an indication of an even more complex
structure. Most of the threads were observed to be solid; nevertheless, our visual inspections suggest
tubular structures were also found (Figure 4). So a variety of structures were observed when many
amino acids were mixed and subjected to extreme shock conditions. As different amino acids possess
different physicochemical properties, depending upon their size, charge and polarity of the side chain,
etc., they can self-assemble into various structures depending upon the amino acid sequence [7].Molecules 2020, 25, x FOR PEER REVIEW 6 of 12 
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Figure 4. SEM images of the residue obtained after shock processing of 18 amino acids (Table S1).
Several features, including (a) a thin ribbon, (b) a typical helical structure, (c) a branching filamentous
thread and (d–f) a hollow tubule, were observed.

Further, transmission electron microscopy (TEM) analysis of the shocking amino acids revealed
membrane like structures with branching features being clearly observed with fine threads running



Molecules 2020, 25, 5634 6 of 12

throughout (Figure S8). Hence an amazing variety of structures were observed when a mixture of
many amino acids was subjected to extreme shock conditions. Overall, the effect of impact on amino
acids resulted in residues that demonstrated the formation of structures that resembled supramolecular
cellular structures, such as fibrils, α-helical peptides, thread like microfibrils, hierarchical ordered floral
structures and self-assembled hollow nanotubes [7,33,34,38].

In nature, filamentous proteins, such as actin polymers, microtubules, etc. are composed of
monomeric building blocks. These nanosized peptides assemble spontaneously or by other chemical
attraction or bond formation processes to form fibers and filaments that are a few micrometers
in length [33]. These characteristic structures can be observed using electron microscopy [39,40].
Jia & Kuruma 2019 [39] have stated the wide application of state of the art imaging techniques in the
interpretation of various self-assembling systems and thus it could be a useful tool in the origin of
life research.

Further IR spectroscopy of shock processed residues from different mixtures of amino acids show
the presence of an amide I band [41], a signature of peptide bonds, along with amino acid signatures
(Figure S6). This gives us a clue that the various complex structures could be the outcome of peptide
assemblies as it is well known that peptides are masters of self-assembly and are known to form a
variety of structures [7,8].

Nonetheless, such a rich abundance of structures revealed by microscopic technique seem to
achieve the combination of two basic characteristics in the context of life i.e., structural order and
complexity [42]. It has already been shown that vesicle membrane like structures may be formed by
exposure of irradiated prebiotic compounds to water [43]. Electrostatic interactions induced by short,
positively charged, hydrophobic peptides may then attach RNA to vesicle membranes and thus the
first forms of life may have been simple cells containing systems of peptides and short strands of
nucleic acid, such as RNA.

2.2. Implications to the Structure Observed in Meteorites

The various features reported in our studies have a striking resemblance to microstructures
observed in some meteorites [44,45]. These microstructures were titled as “organized elements” by
Claus and Nagy, 1961 [44], which resembled biological forms but their biogenic origin was unknown
and they were also excluded as being of terrestrial contamination [46]. However, existence of such
structures in meteorites was discussed in detail and no convincing evidence was found concerning
their origin [47–50]. Further studies identified these structures as microfossil remains [44,51,52].
Hoover et al. [53] and Hoover 2011 [54], also deciphered these elements as microfossils of extra-terrestrial
life forms, indigenous to the meteorite, by comparing these structures with living and fossilized
cyanobacteria. However, our results on the creation of microstructures in shock processed amino acids
give a more plausible explanation for the formation of these structures in meteorites when they are
subjected to impact induced shock events. A comparison of the structures we have observed with
similar structures in several meteorites is shown in Figures 5 and 6 as well as Supplementary Figures
S9–S11. The striking similarities between the two suggest that shock induced processing of amino
acids, known to be present in meteorites, can lead to the formation of microstructures.
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Figure 5. Photomicrographs of filamentous structures observed of size range ~ 20 µm in (a) Mighei
meteorite, (b) Murray meteorite, (c) Dimmit meteorite [45] and (d–f) similar structures observed in
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Figure 6. (a) A long helical coil observed in the Orgueil meteorite [54]. (b) A similar long thread seen
in shock processing of amino acids.

3. Materials and Methods

The shock tubes used in the current research are the Material Shock Tube (MST1), (Biennier et al.
2017, [55]) in the Department of Solid State and Structural Chemistry Unit, Indian Institute of Science
(Bangalore, India), and the High-Intensity Shock Tube for Astrochemistry (HISTA) in the Physical
Research Laboratory (Ahmedabad, India). Both shock tubes are similar in their construction and the
instrumentation used; therefore, experiments were carried out and repeated at both the shock tube
facilities. The shock tube of 80 mm inner diameter consists of a 2 m long driver section and a 5 m
long driven section separated by a metallic diaphragm (Figure 7). Generally, aluminum diaphragms
(Figure S1), up to about 2 mm thickness, are used with appropriate grooves to guide the proper
bursting pressure to produce shock waves of the required strength. After sterilizing the inner surface
of the shock tube using pure acetone/isopropyl alcohol/ethanol solution to avoid any contamination,
a diaphragm of the desired thickness is placed between the driver section and the driven section.
To obtain different reflected shock temperatures, diaphragms of varying thickness are used. The sample
holder for the study of shock wave interactions with test samples is attached to the end of the shock
tube through a manually operated gate valve. The amino acid sample is uniformly distributed over
the sample holder (Figure S2) parallel to the flow of gas inside the shock tube and the interaction of
strong shock heated gas with the sample occurs at the end flange of the 300 mm long reaction chamber
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(Figure S3). The sample experiences a reflected shock pressure of 12–34 bar and a temperature of
2500 K–8000 K (estimated) with a Mach number of 2–6, for a 1–2 ms duration in the reaction chamber
as listed in Table S1.
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The amino acid mixture/mixtures (Tables S1 and S2) are uniformly deposited for each experiment
over the sample holder (Figure S2). The driven section of the shock tube is purged 2–3 times
with ultra-high pure Argon (99.999%) which removes residual gas impurities and then the driven
section is pumped to a high vacuum, up to 2 × 10−4 mbar, using a turbo molecular pumping system.
Evacuation of the shock tube is performed slowly to prevent any dispersal of the sample inside the
chamber. The driven section is filled with ultra-high pure Argon (99.999%) up to the desired pressure
(Table S1). The driver section is also pumped to a rotary vacuum, up to 0.01 bar, and is then rapidly
filled with high-pressure helium gas at a very high mass flow rate until the diaphragm ruptures.
The sudden rupture of the diaphragm generates a shock wave that travels through the driven section
and is reflected from the end flange of the driven section. The ball valve next to the reaction chamber is
closed immediately after the rupture of the diaphragm. The high pressure inside the reaction chamber
is brought to equilibrium by slowly exhausting into the atmosphere. The solid residue left in the
reaction chamber was collected and stored under inert conditions for further analysis (Figure S3).

Three pressure sensors (Model 113B22, PCB Piezotronics, NY, USA) surface mounted at three
different locations on the driven section, used to obtain a pressure signal, are recorded with the help of
Tektronix digital storage oscilloscope (Model TDS2014B, Tektronix Inc, MS, USA). The shock speed
(Vs) and Mach number (Ms) are calculated by finding the time is taken (∆t) by the shock wave to
travel cross the distance (∆x) of two pressure sensors, with the help of the recorded pressure signal.
The primary and reflected shock pressure signals recorded using the digital storage oscilloscope are
shown in Figure S4. The temperature behind the reflected shock wave is calculated using the following
one-dimensional normal shock equations known as Rankine-Hugoniot relations [56],

Vs =
∆x
∆t

; Ms =
Vs

a
=

Vs
√γRT1

(1)

T5

T1
=

[
2(γ− 1)M2

s + (3− γ)
][
(3γ− 1)M2

s − 2(γ− 1)
]

(γ+ 1)2M2
s

(2)

where γ is the specific heat ratio of the test gas argon, R is the universal gas constant, a is the speed
of sound in the test gas argon and T1 is the ambient temperature of the test gas. The reflected shock
temperature T5 is a function of the shock Mach number MS and γ, as given by the Equation (2).
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The calculated values of the shock Mach numbers and the reflected shock temperatures (T5) and
recorded reflected shock pressures (P5) for each experiment are listed in Table S1.

4. Conclusions

In the present study, we have investigated the effect of strong shock impact at extreme
thermodynamic conditions on several amino acids and their mixtures, which provides insight into
the role of impact events in prebiotic evolution. This is the first reported case on the formation of
complex macroscale structures from the shock processing of simple amino acids. Scanning electron
microscopic analysis provided valuable insights on the self-assembled structures that showed structural
complexity from nanometer to millimeter length scales. These structures resembled supramolecular
cellular structures, such as fibrils, α-helical peptides, thread like microfibrils, hierarchical ordered
floral structures and self-assembled hollow nanotubes. Furthermore, microstructure analysis of the
shock processed organics using electron microscopy revealed hierarchical formation and assembly of
molecular structures that may be produced in impact shock to meteorites and may explain some of the
structures revealed in some meteorite samples in response to impact shock in meteorites. In future
endeavors, we expect this research work will expand towards the formation of more complex structures
which are closer to biological architectures, not only in structural resemblance but also in performance,
by considering the role of other functional biomolecules, such as nucleobases, fatty acids, nucleic
acids, etc. The developed method will also provide a novel application of shock tubes in biomaterial
synthesis to design and engineer a superstructure with long-range order from simple building blocks.

Supplementary Materials: The following are available online. Supplementary materials file 1: Figures S1–S4:
Experimental details, Figure S5: SEM micrographs of unprocessed amino acids, Figure S6: IR spectra of shock
processed residue, Figures S7 and S8: SEM and TEM micrographs of shock processed residue, Table S1: Summarized
the experimental parameters and the estimated shock temperature, Table S2: List of amino acids used in the
experiments. Supplementary materials file 2: Figures S9–S11: Visual comparison of microstructures observed in
meteorite samples with structures observed in shock processed amino acid mixtures.
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