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Density functional theory (DFT) based computation is performed on the endohedrally
encapsulated Li3 cluster inside the B40 and C60 cages namely, Li3@B40 and Li3@C60. For
both these systems, the Li-Li bond lengths are shorter than that in the free Li3 cluster. Due
to confinement, the Li-Li vibrational frequencies increase in both the systems as compared
to that in the free Li3 cluster. Thermodynamically, the formation of these two systems is
spontaneous in nature as predicted by the negative values of Gibbs’ free energy changes
(ΔG). For both the systems one non-nuclear attractor (NNA) is present on the middle of the
Li3 cluster which is predicted and confirmed by the electron density analysis. The NNA
population and the percentage localization of electron density at the NNA of the Li3@C60

system are higher than that in the Li3@B40 system. At the NNA the values of the Laplacian
of electron density are negative and an electron localization function basin is present at the
center of the Li3 cluster for localized electrons. Both systems show large values of nonlinear
optical properties (NLO). Both the Li3 encapsulated endohedral systems behave as
electrides. Electrides have low work function and hence have a great potential in
catalytic activity toward the activation of small molecules (such as CO2, N2). Even
some electrides have greater catalytic activity than some well-studied metal-loaded
catalysts. As the systems under study behave as electrides, they have the power to
show catalytic activity and can be used in catalyzing the activation of small molecules.

Keywords: endohedral encapsulation, electride, non-nuclear attractor, electron localization function basin,
nonlinear optical properties properties

INTRODUCTION

Electrons trapped inside the cavity of some interesting ionic systems behave as anions giving rise to
electrides (Dye, 2003; Garcia-Borra;̀s et al., 2012; Postils et al., 2015; Zhao et al., 2016; Saha et al.,
2019). In recent year’s electride properties of materials have generated great attention in experiments
as well as in the theoretical studies. The inception of the concept of an electride took place during the
study of the solvated electrons in the solution of alkali metal systems in ammonia (Greenlee and
Henne, 1946; Zurek et al., 2009). Dye et al., 1970; Dye, 1990; Dye, 1991; Dye, 1997; Dye, 2003)
provided valuable studies on electride materials. The trapped electrons are not attached to any
particular atom but located at the cavities and the interstices of cryptands and solid crystals,
respectively (Zhao et al., 2016; Dale and Johnson, 2018). The electron density analysis confirmed the
presence of confined electrons in the cavities of solid alkali metals (Marqués et al., 2009; Mei et al.,
1993). Ellaboudy et al. (1983) synthesized the first stable organic electride, Cs+(18-crown-6)2e

–in the
crystalline form and Matsuishi et al. (2003) synthesized the first stable inorganic electride,
[Ca24Al28O64]

4+·(4e–). In both cases, the excess electrons are confined in the empty area of those
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crystals. This is followed by the synthesis and characterization of
six temperature and air-stable electride systems (Ward et al.,
1988, Ward et al.,1990a; Ward et al., 1990b; Wagner et al., 1994;
Huang et al., 1997; Xie et al., 2000; Redko et al., 2005). In these
systems, the cryptand ligands or crown ethers are complexed
with alkali metals. Electride materials are very sensitive to
temperature and air (Sun et al., 2016). So, it becomes a
challenging task to generate and characterize electride
materials which are stable related to air and temperature.
The presence of cavity trapped loose electrons causes a
lowering of the work function of electrides so that they can
be used as an electron donor in chemical reactions. Moreover,
the presence of loose electrons is responsible in making the
electride systems very important because of their potential
applications for example the emitting diodes for organic light
(Yanagi et al., 2009), reversible hydrogen storage materials
(Kitano et al., 2012), catalyst for the CO2 activation (Toda
et al., 2013), splitting of N2 molecule (Kitano et al., 2012,
2015; Lu et al., 2016), powerful reducing agents
(Buchammagari et al., 2007; Choi et al., 2014; Kim et al.,
2014), and superconductivity (Miyakawa et al., 2007). The
experimental identification of the position of localized
trapped electrons is very difficult because of the low density
of these localized electrons. So, experimentalist used indirect
evidence for its experimental characterization (Singh et al.,
1993; Dye, 1997). Therefore, computational studies can be
helpful for the identification of electride materials. For that
purpose, people used different computational tools to
characterize electride materials. One can in silico characterize
a material to behave as an electride and the necessary conditions
for the same are, 1) presence of non-nuclear attractors (NNA) of
the electron density (Dye, 2003; Lee et al., 2013; Dale et al.,
2014); 2) the Laplacian of electron density (∇2ρ) should be
negative at the NNAs; 3) existence of electron localization
function (ELF) basin at the NNA region; 4) high values of
NLO properties. Some molecules which do not possesses
confined electrons in electronic structure can show one or
more of the above-mentioned properties. Thus, none of these
conditions alone can be used to characterize electride systems,
unambiguously. Some previous studies reported some
molecules as electride material based on large NLOPs are not
considered to be materials with electride properties on these
days. When all of these four criteria are simultaneously satisfied,
we can say that a cavity-trapped electron is present within the
structure of a molecule and it constitutes a real electride
material. We will analyze all of the above criteria in detail to
check whether they present systems qualify to be termed as
electrides. Most recently one theoretical work has shown that
binuclear sandwich complexes of Be and Mg atoms bonded with
isoelectronic C5H5

−, N5
−, P5−, As5− ligands obeyed all these

above-mentioned criteria to behave as electride materials (Das
and Chattaraj, 2020).

After the discovery of buckminsterfullerene (C60) in 1985,
people became interested in using its cavity for the
encapsulations of metals, and gas molecules (Kroto et al.,
1985). Endohedral fullerenes are very useful in biology (Cagle
et al., 1996), in molecular electronics (Jaroš et al., 2019), in

nuclear magnetic resonance (NMR) analysis, and in magnetic
resonance imaging (Kato et al., 2003). The exterior surface of
fullerenes has been used for various chemical reactions to take
place (Levitt, 2013). The first experimentally synthesized
endohedral fullerene is La@C60 (Heath et al., 1985).
Experimentally, Hiroshi et al. reported the endohedral
encapsulation of Li+ ion inside the C60 cage (Ueno et al.,
2015). Experimentally Li, Ca, Pr, Y, Ba, Ce, Nd, Gd metals
(Ding and Yang, 1996; Kubozono et al., 1996; Wan et al., 1998;
Okada et al., 2012) and He, Ne, Ar, Kr, Xe noble gases (Saunders
et al., 1993; Saunders et al., 1994; Ohtsuki et al., 1998) were kept
inside the C60 cage. Using the “molecular surgery” approach, it
is experimentally reported for the endohedral encapsulation of
H2 (Komatsu et al., 2005; Murata et al., 2008), H2O (Kurotobi
and Murata, 2011), HF (Krachmalnicoff et al., 2016), CH4

(Bloodworth et al., 2019) molecules inside fullerene. Several
theoretical works have been reported for the encapsulation of
different noble gases and metals inside the C60 cage (Andreoni
and Curioni, 1996; Bühl et al., 1997; Strenalyuk and Haaland,
2008). Theoretically, Krapp and Frenking have studied the
possibility of the encapsulation of noble gas dimers inside the
C60 cage and showed the formation of noble gas-noble gas (Ng-
Ng) ‘genuine’ chemical bond for Ar, Kr, and Xe, whereas weak
interactions are present for He and Ne (Krapp and Frenking,
2007). Theoretically, Khatua et al. (2014a) studied the
confinement of HF dimer inside the C60, C70, C80, and C90

cages. Using the ab-initio molecular dynamics study the
movement of Ng2 dimer inside the C60 cage has been
reported (Khatua et al., 2014b). Recently, endohedral
encapsulation of Mg2 molecule inside the C60 cage and the
bonding interactions therein have also been studied (Das et al.,
2020).

Borospherene, the boron analogue of fullerene has achieved
great attention to the scientist. The first reported borospherene is
B40 having a cage-like structure (Zhai et al., 2014). After that
several borospherenes such as B28, B38, B44, B46, B29

−, B37−, B38−,
B39

−, B44−, B39+, B40+, B41+, B422+, and their various metal doped
homologues have been reported experimentally as well as
theoretically (Lv et al., 2014; Chen et al., 2015; Zhao et al.,
2015; Li et al., 2016a; Li et al., 2016b; Tai and Nguyen, 2016;
Tian et al., 2016; Li et al., 2017; Tai and Nguyen, 2017). Pan et al.
(2018) studied the endohedral encapsulation of noble gas
monomer and dimer inside the B40 cage and the bonding
interactions between Ng-B and Ng-Ng using density
functional theory (DFT). Furthermore, the endohedral
encapsulation of noble gas dimer inside the cavitand of
cucurbit[6]uril and octa acid has been reported (Pan et al.,
2015; Chakraborty et al., 2016). Theoretically, Das and
Chattaraj (2014) studied the encapsulation of alkali and
alkaline earth metals inside an aza crown analogue,
[(N4C2H2)4]

2- and the bonding interactions therein.
In this article we attempt to analyze molecules with electride

property and for that purpose, we have encapsulated the Li3
cluster in two different cages, B40 and C60 and they are denoted
as Li3@B40 and Li3@C60. We have used density functional theory
(DFT) for the study of the structure, stability, and nature of
bonding in these systems. We have computed the Gibbs’ free
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energy change for the formation of both the electride systems in
gas phase as well as in toluene and benzene solvent phases. The
molecular orbital analysis and the electron density analysis of
both these systems have been performed. Then we have
calculated and compared the NLO properties of these
systems. Finally, the electride characteristics of these two
systems have been analyzed and the same between them have
been compared.

COMPUTATIONAL DETAILS

We have used BP86-D3/def2-TZVPP method (Perdew, 1986;
Becke, 1988; Weigend and Ahlrichs, 2005; Grimme et al., 2010)
for geometry optimization and subsequent frequency
calculations. The real harmonic frequency values indicate
that these are the energy minimum structures on their
respective potential energy surfaces. The Gaussian 16
program package has been used for all the computations
(Frisch et al., 2016).

The atom centered density matrix propagation (ADMP)
simulation has been carried out at BP86/6–31G method to
know about the dynamical behavior of our systems at 300 K
and 500 K temperatures and 1 atm pressure over 700 fs of time.

We have carried out the natural bond orbital (NBO) analysis
to know the charge distribution on each atom. The computation
for this analysis has been carried out at BP86-D3/def2-TZVPPD//
BP86-D3/def2-TZVPP level of theory using NBO 3.1 version
(Reed et al., 1988; Glendening et al., 1990) as implemented in
Gaussian 16.

Multiwfn program package (Lu and Chen, 2012) has been
used for atoms-in-molecule analysis (AIM) (Bader, 1990) of
electron density. We have used BP86-D3/def2-TZVPPD//
BP86-D3/def2-TZVPP method for this analysis and various
bond critical points (BCP) have been generated. Both AIM
and ELF basin population have been analyzed.

For the calculation of the average polarizability (α), first
hyperpolarizability (β), and second hyperpolarizability (c‖),
B3LYP/6-31+G(d)/6-31+G//BP86-D3/def2-TZVPP method has
been used, where, 6-31+G(d) basis set is used for Li atoms and 6-
31+G basis set is used for C and B atoms.

To compute the α, β and c‖ values the following equations
have been used (Bishop and Norman, 2001),

α � 1
3

∑
i�x,y,z

αii,

β � ⎛⎝ ∑
i�x,y,z

β2i⎞⎠
1/2

,

where, βi �
1
3

∑
j�x,y,z

(βijj + βjij + βjji),
c‖ �

1
15

∑
i,j�x,y,z

(ciijj + cijij + cijji).

RESULTS AND DISCUSSION

Geometries and Energetics
The optimized geometries of B40 and C60 cages and the Li3@B40 and
Li3@C60 systems without any symmetry constraint are given in
Figure 1. The B40 and C60 cages have D2d and C2h point groups of

FIGURE 1 | The optimized geometries of B40, C60 cages, and Li3@B40 and Li3@C60 systems at BP86-D3/def2-TZVPPmethod. The values in red color indicate Li-Li
bond lengths (rLi-Li). The bond lengths are in the Å unit.

FIGURE 2 | The Schematic representation of the reaction path for (A)
Li3@B40; (B) Li3@C60 systems considered in the study. The values without
parentheses are calculated ΔG values at gas phase. The values within
parentheses and within square brackets are calculated ΔG values at
toluene and benzene solvent phases, respectively.
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symmetry, respectively, and the Li3@B40 and Li3@C60 systems have
C1 point group of symmetry. The Li-Li bond lengths are 2.293 Å,
2.294 Å, and 2.467 Å for the Li3@B40 system, and for the Li3@C60

system, the Li-Li bond distances are 2.757 Å, 2.663 Å, and 2.664 Å.
For both the systems the Li-Li bond lengths are shorter than that in
the free Li3 cluster. The confinement effect of B40 and C60 cages can
account for this short Li-Li bond length for Li3@B40 and Li3@C60

systems, respectively. For the Li3@B40 system, the Li-Li bond lengths
are shorter than that in the Li3@C60 systems. This is because of the
comparatively smaller size of the B40 cage than that of the C60 cage.
The numerical values of vibrational frequencies of Li-Li bonds for
both Li3@B40 and Li3@C60 systems are presented in Supplementary
Table S1. From the numerical values of Li-Li vibrational frequencies
for both the systems, it has been found that there is an increase in the
vibrational frequencies as compared to that in the free Li3 cluster
(139.6 cm−1, 185 cm−1, and 301.8 cm−1). Li3@B40 system has higher

values of Li-Li vibrational frequency as compared to that of the Li3@
C60 systems.

For these endohedral encapsulation processes the Gibbs’ free
energy changes (ΔG) in gas phase are −57.36 kcal/mol and
−50.13 kcal/mol for Li3@B40 and Li3@C60 systems, respectively.
For Li3@B40 system the ΔG values are −55.33 kcal/mol and
−55.26 kcal/mol in toluene and in benzene solvents, respectively.
However, for Li3@C60 system the ΔG values are −61.68 kcal/mol
and−59.82 kcal/mol in toluene and in benzene solvents, respectively.
The ΔG values are computed at BP86-D3/def2-TZVPP level of
theory. The negative values of ΔG as shown in Figure 2 indicate the
spontaneous formation of these endohedral systems in gas phase as
well as in the solvents. So, both the hosts, B40 and C60 cages can hold
and stabilize the guest Li3 cluster inside their cavity.

To know about the dynamical behavior of these systems we
have carried out ADMP simulation at BP86/6-31G level of theory

FIGURE 3 | (A) and (C) Time evolution of total energy for Li3@B40 and Li3@C60 systems, respectively, (B) and (D) change in the Li-Li bond lengths with respect to
the corresponding optimized value (at t � 0) against time for Li3@B40 and Li3@C60 systems, respectively.
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at both 300 K and 500 K temperature and at 1 atm pressure over
700 fs of time. We have presented the time evolution of the energy
plots in Figures 3A,C for Li3@B40 and Li3@C60 systems,
respectively. During structural deformation the nuclear kinetic
energy of the systems increases which causes the oscillation in
the time evolution of energy plots. From the time evolution plot of
Li-Li bond length (Figures 3B,D for Li3@B40 and Li3@C60 systems,
respectively) it is shown that the Li-Li bond lengths are fluctuating
around the corresponding equilibrium values without
disintegrating the systems. The different orientations of the Li3
cluster inside the B40 and C60 cages at these temperatures at
different time steps are shown in Figures 4, 5, respectively. At
both temperatures, the Li3 cluster is only moving inside the cages
without breaking the cages. So we can say that these two systems
are stable at room temperature as well as at 500 K temperature. So,
the guest Li3 cluster can stay inside the B40 and C60 cages.

NATURE OF BONDING

Molecular Orbitals
We have used BP86-D3/def2-TZVPP method for molecular
orbital analysis of both systems. The highest occupied

molecular orbital (HOMO), HOMO-1, and lowest unoccupied
molecular orbital (LUMO) for the systems are presented in
Figure 6. For the Li3@B40 system, the HOMO-1 and LUMO
are distributed over the B40 cage but there is no contribution from
the Li3 moiety. For the Li3@C60 system, the HOMO and LUMO
are π-type of orbitals and are distributed over the C60 cage but
there is no contribution from the Li3 moiety. The energy
differences between HOMO and LUMO are 0.62 eV and
0.18 eV for Li3@B40 and Li3@C60 systems, respectively. The
spin density plots are presented in Figures 6C,D for Li3@B40
and Li3@C60 system, respectively. The spin density plots show
that the total spin density is distributed over the guest Li3 cluster
and the host B40 and C60 cages.

Natural Bond Orbital Analysis
The charge distribution over the atoms in both the systems has
been analyzed by natural bond orbital analysis. For Li3@C60

system the natural charges on Li atoms are 0.60 |e|, 0.60 |e|,
and 0.55 |e|. While the charges on Li atoms are 0.60 |e|, 0.73 |e|,
and 0.74 |e| for Li3@B40 system. The charges on the Li atoms are
higher in case of Li3@B40 system as compared to that in the Li3@
C60 system. In both the systems charge transfer takes place from
the guest Li3 cluster to the host B40 and C60 cages. In Li3@B40

FIGURE 4 | Snapshots at different time steps (time in fs) (A) at 300 K temperature, (B) at 500 K temperature of Li3@B40 system.

FIGURE 5 | Snapshots at different time steps (time in fs) (A) at 300 K temperature, (B) at 500 K temperature of Li3@C60 system.
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system, a greater extent of charge transfer takes place from Li3 to
B40 cage as predicted by the greater positive charges on Li atoms
for this system. It is reported that for La@C82 system 3 |e|
transferred from the La atom to the C82 cage (Bethune et al.,
1993). Again, in Sc3N@C80 system charge transfer occurs from
Sc3N fragment to C80 cage by 6 |e| unit (Iiduka et al., 2005). But
for F2@C60 system the charge transfer occurs in a reverse way i.e.
from C60 cage to F2 molecule (Foroutan-Nejad et al., 2018).

Atoms in Molecule Analysis
The electron density descriptors of both these systems have
been computed at relevant bond critical points (BCPs) and the
numerical values are given in Table 1. We have also generated
the corresponding molecular graphs for these systems and are
presented in Figure 7. From this analysis, it is confirmed that
a non-nuclear attractor (NNA) [(3, −3) type of bond critical
point] is present at the center of the Li3 cluster for both these
systems. The negative values of Laplacian of electron density
[∇2ρ(rc)] at both the NNAs indicate the electron localization

therein. We have found that both Li3@B40 and Li3@C60

systems contained three NNA-Li bond paths which are (3,-
1) type of bond critical points. The contour plots of ∇2ρ(r) for
both systems are presented in Figure 8A, which indicates a
portion of the electron localization at the center of the Li3
cluster. The NNA populations are 0.17 |e| and 0.59 |e| with
12% and 46% localization of electron density for Li3@B40 and
Li3@C60 systems, respectively. The population of NNA and
the percentage localization of electron density at the NNA for
Li3@C60 system is higher than that of the Li3@B40 system. The
electron-deficient nature of boron (B) atoms may cause the
lowering of percentage of localization of electron density at
the NNA for Li3@B40 system as compared to Li3@C60 system,
where such an effect is absent. The B40 cage attracts the
electron density from the Li3 cluster more toward itself and
hence decreases the electron density at the center of the Li3
cluster.

We have generated the electron localization function basin
(ELF) plots for both the studied systems and are presented in

FIGURE 6 | Plots of the HOMO-1, HOMO, and LUMO for (A) Li3@B40 system, (B) Li3@C60 system, (C) and (D) are spin density for Li3@B40 and Li3@C60 system,
respectively. The values in the parenthesis are the energies of the corresponding orbitals in the eV unit.

TABLE 1 | Electron Density [ρ(rc)], Laplacian of Electron Density [∇2ρ(rc)], Kinetic Energy Density [G(rc)], Potential Energy Density [V(rc)], Total Energy Density [H(rc)], Basin
Population [N(pop)], Localization Index (LI), Percentage of Localization Index (% LI) at Different Critical Points (CP) of the Li3@B40 and Li3@C60 systems at BP86-D3/def2-
TZVPPD//BP86-D3/def2-TZVPP level.

Systems CP Type ρ(rc) ▽2ρ(rc) G(rc) V(rc) H(rc) N(pop) LI %LI

Li3@B40 NNA (3,−3) 0.016 −0.015 0.001 −0.006 −0.005 0.17 0.02 12
NNA−Li (3,−1) 0.015 −0.004 0.003 −0.008 −0.005

Li3@C60 NNA (3,−3) 0.018 −0.018 0.000 −0.005 −0.005 0.59 0.27 46
NNA−Li (3,−1) 0.015 0.004 0.005 −0.008 −0.004
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Figure 8B. From the plot, it is shown that a basin is present at
the center of the Li3 cluster for both systems. The basin
population is 0.58 |e| with 22% localization of electron
density for the Li3@B40 system. However, for the Li3@C60

system, the population of the basin is 1.01 |e| with 56%
localization of electron density. The ELF basin population of
the Li3@C60 system is higher than that of the Li3@B40 system.
The lowering of the basin population for the Li3@B40 system is
due to the electron-deficient nature of boron (B) atoms. From
these results, it can be said that a portion of electron density is
localized at the center of the Li3 cluster in both the systems. The
higher values of NNA and ELF populations at the center of the

Li3 cluster of Li3@C60 system as compared to the Li3@B40

system indicates a greater extent of localization of electron
density in the Li3@C60 system.

FIGURE 7 | The plots of molecular graphs of Li3@B40 and Li3@C60 systems generated at BP86-D3/def2-TZVPPD//BP86-D3/def2-TZVPP level.

FIGURE 8 | The plots of (A) the Laplacian of electron density [∇2ρ(r)], blue dashed and red solid lines indicate ∇2ρ(r) < 0 and ∇2ρ(r) > 0 regions, respectively; (B) the
electron localization function (ELF) basin of Li3@B40 and Li3@C60 systems.

TABLE 2 | Average linear polarizability (α), first hyperpolarizability (β), and second
hyperpolarizability (c‖ ) of Li3@B40 and Li3@C60 systems.

NLO property Li3@B40 Li3@C60

α 554.2 584.7
β 129.4 79.9
c‖ 3.6 × 105 2.1 × 105
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Nonlinear Optical Property
As electride materials contain loosely bound excess electrons,
they showed high values of NLO properties. For this purpose, we
have computed average polarizability (α), first hyperpolarizability
(β), and second hyperpolarizability (c‖) for both the systems, and
the numerical values are given in Table 2. Among both these
systems Li3@C60 system shows higher values of α and the Li3@B40
system shows higher values of β andc‖. We have compared the
NLO values of our systems with some previously reported known
electride materials, for example, M@calix (M � Li, Na; calix �
calix [4]pyrrole), Li@B10H14 (Muhammad et al., 2011), and M2

(TCNQ) (Li et al., 2008) (M � Li, Na; TCNQ �
Tetracyanoquinodimethane) and are presented in
Supplementary Table S2. Our systems show comparatively
higher values of α but lower values of β than the systems
under comparison. The numerical values of c‖ of our systems
are comparable with that of the systems being compared.

Electride Properties
It has been observed that in both the systems an NNA is present
in the middle of the Li3 cluster. An ELF basin has appeared in the
position where the NNA is present and the values of ∇2ρ are
negative therein. Both the systems under study exhibit high values
of NLO properties. All the criteria for an electride material have
been satisfied by these systems. So, Li3@B40 and Li3@C60 systems
can be classified as electrides. Li3@C60 system will show better
electride characteristics than the Li3@B40 system.

SUMMARY AND CONCLUSION

The stability of Li3@B40 and Li3@C60 systems has been studied
using density functional theory (DFT) based computations. The
thermochemical results show the spontaneous formation of both
the systems as predicted by the negative values of Gibbs’ free
energy change (ΔG). Due to the confinement, the Li-Li bonds in
both the systems are shorter than that in the free Li3 cluster and
the Li-Li vibrational frequencies are increased on confinement.
The Li-Li bonds are shorter in the Li3@B40 system as compared to
that in the Li3@C60 system. The numerical values of Li-Li bond
vibrational frequencies in the Li3@B40 system are higher than that
in the Li3@C60 system. The results from the ADMP simulation
showed that the systems are stable both at room temperature
(300 K) and at 500 K temperature and 1 atm pressure. So, the host

B40 and C60 cages can take the Li3 cluster inside their cavity and
stabilize the cluster. The topological analysis of electron density
shows the presence of an NNA at the center of the Li3 cluster of
both these systems and a portion of electron density gets localized
therein. The Laplacian of electron density is negative at the
NNAs. Li3@C60 system has higher values of NNA and ELF
population than that of Li3@B40 system. Our designed
endohedral Li3@B40 and Li3@C60 systems behave as electride.
Li3@C60 system shows better electride characteristics than Li3@
B40 system. As the systems under study behave as electrides, they
have the potential to show catalytic activity.
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