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ABSTRACT 
 

Concentrations of fine particulate matter (PM2.5) that exceed air quality standards affect human health and have an 
impact on the earth’s radiation budget. The lack of round the clock ground-based observations from a dense network of air 
quality stations inhibits the understanding of PM2.5’s spatio-temporal variability and the assessment of its health and 
climate effects. Aerosol optical depth (AOD) values retrieved from satellite based instruments can be used to derive 
surface PM2.5 concentrations. This study integrates Moderate Resolution Imaging Spectroradiometer (MODIS) AOD 
retrievals and simulations from the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) to 
determine the ground-level PM2.5 concentrations at a 36 km resolution across India. WRF-Chem simulations provide the 
factor relating the AOD with the PM2.5. Satellite-derived PM2.5 mass concentrations are compared with the available 
ground-based observations across India for the year of 2011. The results show a correlation between the satellite-derived 
monthly PM2.5 estimates and the ground-based observations for 15 stations in India with coefficients of 77% and diurnal 
scale coefficients varying from 0.45 to 0.75. The best estimations of PM2.5 mass concentrations on a spatio-temporal scale 
across India address various environmental issues. 
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INTRODUCTION 
 

Mass concentration of fine particulate matter (PM2.5) 
frequently exceeds beyond its air quality standards in most 
of the megacities in the South Asia which attracted attention 
of researchers for its environmental impact assessments (Li 
et al., 2015; Chowdhury and Dey, 2016; Chew et al., 2016; 
Ghude et al., 2016), regional air quality (Tiwari et al., 2012; 
Ali et al., 2013; Trivedi et al., 2014; Apte, 2015; Ghude et 
al., 2016; Parkhi et al., 2016; Srinivas et al., 2016; 
Balasubramanian et al., 2017) and climatic effects (Lin et 
al., 2013; Stocker et al., 2013; Tiwari et al., 2015; Gupta et 
al., 2006) including visibility during fog episodes (Ghude 
et al., 2017). PM2.5 emits from the variety of sources and 
shows good correlations with the ambient concentrations of 
sulphate, ammonium, nitrate, sea salt, carbonaceous aerosols, 
and dust particles. The rapid economic development, in 
conjunction with increased transportation activity and energy 
consumption, PM2.5 pollution is an important environmental 
problem in India (Lelieveld et al., 2001; Badarinath et al.,  
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2010). 
Few studies have examined PM2.5 distribution due to 

man-made aerosols emissions (Pillai et al., 2002; Latha et 
al., 2005; Kulshrestha et al., 2009; Bala Krishna et al., 
2011; Gummeneni et al., 2011; Tiwari et al., 2012b, 2013; 
Deshmukhet al., 2013; Su et al., 2014; Yadav et al., 2014; 
Balasubramanian et al., 2017) in India. The ground-based 
in-situ monitoring networks provide the most accurate 
measurements of PM2.5 but these point measurements are 
generally representative of local conditions and scattered in 
space and time which makes it difficult to use them in the 
assessment of regional scale variability (Ghude et al., 2016). 
Measurement of aerosol optical depth (AOD) from satellite 
platform provides an alternative tool to assess the ground-
level PM2.5 concentrations at regional and global scale but 
their application requires derivation of relationships between 
AOD and PM2.5 (Hoff and Christopher, 2009; Van Donkelaar 
et al., 2010; Reis et al., 2015; Chew et al., 2016; Zheng et 
al., 2016; Bilal et al., 2017; Yeganeh et al., 2017). 

Several studies have investigated quantitative relationship 
between satellite-derived AOD and ground-level PM2.5 
measurements using numerous methods. Most of the studies 
have used simple empirical observation based methods 
(Wang and Christopher, 2003; Engel-Cox et al., 2004; 
Schaap et al., 2009; Lin et al., 2014; Li et al., 2015) that 
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rely on the relationship between air quality measurements 
and different observations (Maciejewska et al., 2015). Some 
investigations often have used the local meteorological 
information to better relate AOD and PM2.5 (Liu et al., 
2005; Gupta et al., 2006; Koelemeijer et al., 2006). Locally 
derived AOD-PM2.5 relationships cannot be extended 
easily to other regions because of aerosol sources and a wide 
range of weather conditions associated with the regional 
geography (Schaap et al., 2009). Local time-dependent 
AOD-PM2.5 relationships are necessary to derive regional 
estimates of PM2.5. However, ground-based measurements 
of aerosol vertical profiles and properties often suffer from 
insufficient coverage to estimate regional and PM2.5 
relationships. Advanced method such as simple regression 
(Chu et al., 2003); multiple regression (Dirgawati et al., 
2015; Gupta and Christopher, 2009); generalised additive 
models (Liu et al., 2009); geographically weighted regression 
(Ma et al., 2014) and semi-empirical model (Koelmeijer et 
al., 2006) have been used to accurately represent the 
relationship between AOD and surface PM2.5 concentration.  

As an alternative to statistical models, predicting ground-
level PM2.5 using numerical-based models that includes 
dispersion, chemistry and meteorology has also been 
shown to produce reasonable results (Liu et al., 2004; 
Gupta et al., 2006; Van Donkelaar et al., 2006, 2010; Li et 
al., 2015; Bilal et al., 2017). These studies build a local 
relationship between AOD and PM2.5 mass concentrations 
at every model grid point by taking advantage of aerosol 
profile information from chemical transport models (van 

Donkelaar et al., 2006, 2010; Kessner et al., 2013). Using 
this method one can reasonably estimate ground-level PM2.5 
concentrations in regions without monitoring sites at a 
resolution of tens to hundreds of kilometers. These results 
are limited by uncertainties due to emission inventories, 
chemical and dynamical processes of aerosols in the 
atmosphere (Chate and Devara, 2005; Kondragunta et al., 
2008; Gupta and Christopher, 2009; Chate and Murugvel, 
2010; Lin et al., 2015). 

Liu et al. (2004) developed a simple, yet effective 
approach to estimate the surface PM2.5 concentrations by 
applying local scaling factors to AOD retrieved from 
MODIS from a global atmospheric chemistry model. In this 
study, we followed Liu et al. (2004) approach and estimated 
the local scaling factor for each MODIS pixel using PM2.5 
and AOD simulations from the regional chemical transport 
model WRF-Chem. We then apply this relationship to each 
MODIS AOD retrieval to backtrack the surface PM2.5 
concentrations for India. We aim to develop a satellite-
based estimate of ground-level PM2.5 at a spatial resolution 
of 36 km. We further, validate derived PM2.5 against the 
ground-based observational datasets from different sampling 
locations collected under Modelling Air Pollution and 
Networking (MAPAN) project, and also against various 
published research articles in India. The location of these 
observation sites is shown in Fig. 1. 

By integrating the MODIS AOD retrievals with the 
WRF-Chem model, we derive a satellite-based estimate of 
monthly mean surface PM2.5 at a spatial resolution of 36 ×

 

 
Fig. 1. Observational sites (Daily and monthly) all over India. 
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36 km2 for entire India for the year 2011. Satellite-derived 
surface PM2.5 concentrations are compared with the National 
Ambient Air Quality Standard for PM2.5 to identify the 
regions that exceed the safety limit set by the government. 
Rest of the manuscript is organized as follows. Section 2 
provides details of the materials and methods used in this 
study. The spatial and temporal variability in satellite-
derived PM2.5 estimates is discussed and evaluated in 
Section 3 and summarized in Section 4. 
 
MATERIALS AND METHODS 
 
Estimating PM2.5 from Satellite AOD 

The MODIS instrument aboard the Terra and Aqua 
satellite measures aerosol optical depth (AOD) at 550 nm 
with a wide range of spatial information and provides near-
daily global coverage (Levy et al., 2007). Terra satellite 
crosses the equator at 10:30 local solar time. Here we used 
MODIS Terra Level 2, Collection 5 (C5) Dark Target (DT) 
aerosol retrievals at 10 km resolution, available from the 
Goddard Earth Sciences Data Information Service Center 
(https://modis-atmos.gsfc.nasa.gov/products.html). MODIS 
operational C5 retrievals employ two algorithms for 
retrieving aerosol properties over land and oceans: the 
Dark Target (DT) algorithm over land, the DT algorithm 
over ocean and the Deep Blue (DB) algorithm over land. A 
MODIS cloud mask with 99% cloud free criteria is used to 
filter out the cloudy pixels. 

The regional simulations for the entire year 2011 in this 
study are conducted using the WRF-Chem version 3.6.1 
driven by NCEP/FNL meteorological reanalysis fields 
(GFS/NFL). The simulations were run at a spatial resolution 
of 36 × 36 km2 covering South Asia (0–40°N to 60–120°E) 
and 27 vertical levels from surface up to 50 hPa with 
chemical initial and boundary fields from MOZART-4 
(Emmons et al., 2010), anthropogenic emissions from 
Hemispheric Transport of Air Pollution (HTAP-v2), fire 
emissions from Fire INventory from NCAR (FINNv1) and 
biogenic emissions from Model of Emissions of Gases and 
Aerosols from Nature (MEGAN) (Guenther et al., 2006). 
Model for Ozone and Related Chemical Tracers (MOZART-

4) gas-phase chemistry linked to the Goddard Chemistry 
Aerosol Radiation and Transport (GOCART) aerosol scheme 
solves for the temporal and spatial evolution of gaseous 
compounds and aerosols such as sulfate, ammonium, BC, 
OC, mineral dust, and sea salt. Summary of entire model 
setup is given in Table 1. 

Satellite derived ground-level PM2.5 concentration (EPM2.5) 
can be inferred from the total column AOD retrieved from 
the satellite instruments using a conversion factor that 
accounts for their spatio-temporal variability, using the 
following relationship: 
 
EPM2.5 = ξ × AOD  (1) 
 
where, ξ = MPM2.5/MAOD 

MPM2.5 represents the modeled simulated surface PM2.5 
concentration, MAOD the total column AOD simulated from 
the model and AOD is satellite observed aerosol optical 
depth. Here the ratio (MPM2.5/MAOD) is a function of the 
factors that relate satellite observations of AOD with 
aerosol mass which consider the aerosol type, aerosol size, 
relative humidity, vertical profile, diurnal variation from 
van Donkelaar et al. (2006). This method has also been 
used in several previous studies (e.g., Liu et al., 2004; van 
Donkelaar et al., 2006; Liu et al., 2007). The aerosol 
optical properties in WRF-Chem are calculated at 300, 
400, 600 and 999 nm. To derive MAOD at 550 nm, the 
Angström power law is used: 

 
Г λ/Γ λΟ = (λ/λO)–α (2) 
 
where W (λ) is the model AOD at wavelength λ (550) nm 
and α is the Angström exponent calculated from model 
AOD at 400 and 600 nm using the following relation: 
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Table 1. WRF-Chem configuration. 

Atmospheric process Model configuration 
Surface layer Noah Land Surface Model (Chen and Dudhia, 2001) 
Radiation LW: RRTM (Mlawer et al., 1997) 

SW: Goddard (Chou and Suarez, 1994) 
Cumulus Grell 3D Cumulus Parameterization scheme (Grell et al., 2002) 
Planetary boundary layer Bougeault and Lacarrere Planetary Boundary Layer (PBL) scheme (Bougeault and 

Lacarrere, 1989) 
Microphysics Thompson scheme (Thompson et al., 2008) 
Gas-phase chemistry MOZART-4 
Aerosol chemistry GOCART 
Photolysis Madronich F-TUV (Madronich et al., 1987) 
Biogenic emissions Megan (Guenther et al., 2006) 
Fire emissions NCAR version-1 (FINNv1) (Wiedinmyer et al., 2011) 
Dry deposition Wesely (1989) 
Wet deposition Neu and Prather (2012) 
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Eqs. (2) and (3) are consistent with the WRF-Chem 
framework as the model also uses these equations for 
aerosol-radiation interaction in the model by interpolating/ 
extrapolating the AOD (400–600 nm) to RRTM spectra 
(0.2–12 µm). For consistency with satellite retrievals, a 
model factor of the MPM2.5/MAOD ratio at each day is 
interpolated in time and space to the locations of valid 
satellite retrievals (pixel) using a bilinear interpolation of 
the four nearest model grid points. The co-located model 
and observed daily data are averaged to obtain a monthly 
mean value for each 36 × 36 km2 grid box. 
 
RESULTS AND DISCUSSIONS 
 

The spatial distributions of annually averaged MODIS 
retrieved and WRF-Chem simulated AOD for the year 2011 
over India at the temporally collocated satellite overpass 
time are shown in Figs. 2(a) and 2(b), respectively. Both 
observed and modeled data set exhibits similar spatial 
distribution over India at larger scales but there are visible 
differences at local scales. A large AOD enhancement over 
the industrial and densely populated regions, including the 
entire northern region of India (Indo-Gangetic Plain) and 
along the western and eastern coastline is clearly evident 
(Mhawish et al., 2017). Both data sets also show lower AOD 
values over the state of Rajasthan (or western India) and 
central India. A large enhancement in the MODIS retrievals 
appears to be consistent with troposphere NO2 (Ghude et 
al., 2013a) and CO (Ghude et al., 2011; Surenderan et al., 
2015) data sets, which reflects the influence of anthropogenic 
sources. The spatial discrepancy between MODIS retrieved 

and WRF-Chem simulated AOD over India is further 
illustrated by the satellite-model differences (Fig. 2(c)). In 
general, the model underestimates the MODIS AOD values 
particularly over the northern part of India by about 20–
40%. The model also tends to underestimate AOD retrievals 
over southernmost part of India by about 10%. The observed 
discrepancies between simulated and observed tropospheric 
AOD are consistent with results from previous studies over 
India (Kumar et al., 2014). These differences point to 
general underestimation of anthropogenic emissions in the 
IGP (Nair et al., 2012; Kumar et al., 2014). Another possible 
source of difference can arise from errors in simulating dust 
emission and transport over this region. Kumar et al. (2014) 
found that WRF-Chem model significantly underestimates 
dust emissions over this region. On the other hand, model 
overestimates the MODIS AOD over the far eastern part of 
India and Burma by about 20–25%, where strong biomass 
burning occurs during pre-monsoon season. This suggests 
that FINNv1 aerosol emission from biomass burning may 
be too high in this region. Jena et al. (2014) have 
investigated the behavior of modeled concentration of NOx 
using the FINNv1 inventory for pre-monsoon season. Their 
study resulted in an overestimation of modeled NOx 
concentration by a factor of 2.2 over Burma region. 
However, over remaining part of India, the model shows 
very good agreement with the MODIS retrieved AOD. 

The spatial variation of annual PM2.5 concentration 
derived from MODIS AOD retrievals is consistent with the 
spatial distribution of MODIS AOD (Fig. 3). It shows high 
PM2.5 concentration over the industrial or densely populated 
regions, including entire IGP and along the western and 

 

 
Fig. 2. Annual mean Aerosol Optical Depth (AOD) (a) MODIS Satellite, (b) WRF-Chem Model, and (c) annual model-
satellite (difference). 

 

 
Fig. 3. (a) Annual and seasonal (b) Premonsoon, (c) Monsoon, (d) Post Monson, and (e) Winter mean PM2.5 concentration 
(in µg m–3) for the year 2011. 
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eastern coastline. Emission sources, meteorology and special 
topography in the IGP region favors the development of 
high PM2.5 values in this region. Fig. 3(a) reveals that over 
large parts of IGP region annual derived mean surface 
PM2.5 concentrations can be as high as 150–180 µg m−3, 
which suggest high PM2.5 pollution in this region and 
vulnerability of population living in this part of the world 
to poor air quality. Spatial variation of seasonal mean 
estimated PM2.5 concentration for pre-monsoon, monsoon, 
post-monsoon and winter seasons is shown in Figs. 3(b), 
3(c), 3(d) and 3(e), respectively. It can be seen in Fig. 3 
that MODIS algorithm is insufficient to capture the Aerosol 
Optical Depth over Himalayan mountain ranges (Chu et al., 
2002) and therefore PM2.5 estimate over this region could 
not be possible. In the pre-monsoon season (March–April–
May), PM2.5 concentration is high compared to monsoon 
season because of accumulation of aerosols in the atmosphere 
which is strongly influenced by regional loading due to the 
transport of dust outbreaks originated in the Thar Desert 
and the Arabian Peninsula (Gautam et al., 2009; Gautam et 
al., 2011). Due to valley like topography, pollutants get 
trapped largely over IGP region. In the monsoon season 
(June–July–August–September) we can clearly see that the 
PM2.5 concentration is significantly less compared to other 
season. This can be attributed to wet removal of suspended 
particles due to rain (Seinfeld and Pandis, 2006; Gautam et 
al., 2011). In the winter months (December–January–
February) PM2.5 concentration is found to be highest 
because of stable atmospheric conditions, low boundary 
height and winter biomass burning (Ghude et al., 2013b; 
Jena et al., 2015) in this region that leads to accumulation 
of aerosols for longer time.  
 
PM2.5 Validation 
Comparison with Ground-Based Monitoring Station 

Satellite-derived ground-based PM2.5 and WRF-Chem 
simulated surface PM2.5 is evaluated against the monthly 
mean observations available at 15 stations across India 
(Fig. 1). It should be noted that derived PM2.5 are for the 
year 2011 while data for the ground stations are for 
different years (Table 2). This is because of limited publicly 
available data for stations other than our own observational 
sites. Our objective is to investigate how well modeled and 
estimated PM2.5 is able to capture the inter-annual variability. 
These observations are compiled by Ghude et al. (2016) 
and are a mixture of data from the MAPAN, observational 

network of the Ministry of Earth Sciences (MoES) and 
from the Indian Institute of Tropical Meteorology (IITM) 
and published by individual groups (Table 2). Local value 
of derived PM2.5 in Eq. (1) is for MODIS (Terra) overpass 
times is around 10:30 LT. In order to compare monthly 
mean PM2.5 with an estimate from satellite, we calculated 
monthly ratio ‘ŋ’ from simulated monthly mean and values 
corresponding to satellite overpass times for each station 
location. We further apply ŋ to estimate PM2.5 to get 
corrected monthly means estimate for each station shown 
in Fig. 1. 

Comparison of monthly averaged satellite-derived surface 
PM2.5 (red) and WRF-Chem simulated (blue) concentration 
with ground-based observations in India show that derived 
PM2.5 show strong seasonal variation with a reasonable 
agreement with the observations (Fig. 4). For comparison 
we have selected pixels close to the observation site (around 
10 km radius). Over most of the observation sites, derived 
PM2.5 are found to vary between 20 and 150 µg m−3, except 
at some sites in central and northern Indian like Delhi, 
Noida, Agra, Patiala, Raipur and Guwahati where it shows 
high variability up to 200–400 µg m−3. It can be seen that 
predicted average values are maximum in winter and lowest 
in summer. This is consistent with the seasonal pattern of 
observed PM2.5 over India. However, the evaluation may 
be interpreted with caution, since satellite derived PM2.5 are 
for the year 2011 while data for the few ground stations are 
for different years as mentioned in Table 2. Compared to 
observations, predicted PM2.5 shows higher concentrations 
during summer seasons, particularly over the sites located 
in the northern parts of India. Overall, the derived PM2.5 
overestimates the observed PM2.5 concentrations over 
India, at all sites. It could be due to the fact that most of 
these observation sites are situated near the dense traffic 
areas and therefore influenced by local emissions that are 
not completely resolved by the model while deriving 
AOD-PM2.5 relationship in Eq. (1). Overall, these results 
suggest that the derived PM2.5 concentrations are a fair 
representation of the surface concentrations observed at the 
Indian monitoring sites. 

It can seen from Figs. 4 and 5 derived PM2.5 
overestimates the mean values, particularly during summer 
(MJJA) and winter season (DJF) and it is pronounced over 
the sites situated in the northern region of India (e.g., 
Delhi, Noida, Patiala, Agra). Several factors can contribute 
to an overestimation of monthly averaged values. Active

 

Table 2. Data used from other Stuides. 

S. no Lat and Lon Data Station Data extract from various Publication
1 20.91°N, 82.00°E Jul 2009–Jun 2010 Raipur  Deshmukhet al., 2013 
2 8.48°N, 76.95°E Jan 1999–Dec 1999 Trivandrum Pillai  et al., 2002 
3 21.21°N, 86.75°E May 2006–Apr 2007 Anantapur Balakrishnaiahet al., 2011 
4 27.18°N, 78.02°E Jan 2007–Dec 2007 Agra Kulshresthaet al., 2009 
5 24.58°N, 73.68°E Jan 2011–Dec 2011 Udaipur Yadav et al., 2014 
6 17.28°N, 78.26°E Jan 2003–Dec 2003 Hyderabad Latha, et al., 2005 
7 17.28°N, 78.26°E June 2004–May 2005 Hyderabad Gummeneni et al., 2011 
8 28.61°N, 77.20°E Jan 2011–Dec 2011 Delhi Tiwari et al., 2013 
9 28.61°N, 77.20°E Jan 2007–Dec 2009 Delhi Tiwariet al., 2012 
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Fig. 4. Variability of monthly mean satellite-derived (red), model (blue) and observed (black) surface PM2.5 (in µg m–3) 
over 15 monitoring locations. 

 

 
Fig. 5. Variability of monthly mean satellite derived surface PM2.5 (red), satellite derived surface PM2.5 (Blue) excluding 
the sites in northern region of India during summer months (MJJA), and observed (black) averaged from all 15 locations 
(representative of the mean seasonal cycle) over India. 
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spells of rainfall within the monsoon season reduce aerosol 
concentrations significantly via wet deposition while break 
spells lead to a buildup of aerosols and higher AOD (Manoj 
et al., 2012; Connolly et al., 2013; Latha et al., 2014). 
Therefore, mean observed concentration during monsoon 
season tend to be lower because of averaging over both 
active and break spells (Fig. 5). In contrast, PM2.5 
derivation from satellite AOD is attempted only for the 
clear sky conditions (cloud fraction > 50%) and thus 
satellite-derived PM2.5 estimates are more representative of 
break spell aerosol loadings. Correlation between observed 
and satellite derived monthly mean PM2.5 concentrations 
for all fifteen sites in India is shown in Fig. 6(a). Similarly, 
Fig. 6(b) shows correlation between observed and modeled 
monthly mean PM2.5 concentrations for the same sites. It 
can be seen that compared to molded PM2.5 concentrations 
(r = 0.59) the satellite derived PM2.5 shows high temporal 
and spatial correlations (r = 0.77) with the observations. 
However, derived annual mean PM2.5 is biased by 
~13 µg m−3. Correlation between estimated and observed 
PM2.5 in this study is found to be similar to the correlation 
observed in other studies over India (Kumar et al., 2007). 
Fig. 6(b) also suggests that model in general underestimate 
higher PM2.5 values particularly, PM2.5 concentration more 
than 120 µg m−3.  

During the winter season, the entire IGP region is 
covered with the haze. Due to topography like valleys, cold 
weather condition, biomass burning, dust lifting and high 
regional emissions, aerosols get trapped largely over the 
IGP region (Gautam et al., 2009). This can significantly 
affect the optical properties (Dey et al., 2004; Gautam et 
al., 2011). This combination forms a thick haze (Gautam et 
al., 2009) and persistent fog layer over the entire region 
(Ghude et al., 2017) and consequently, very high AOD 
values (Ramanathan and Ramana, 2005; Gautam et al., 2011; 
Ram et al., 2016) are seen over the entire IGP. Formation 
of haze and fog over the IGP is still difficult to reproduce 
in the regional models (Gao et al., 2015; Ghude et al., 
2017; Gao et al., 2017). This highlights the difficulty to 
calculate the reliable value of ‘ξ’ in Eq. (1) over this 
region. Therefore, derived PM2.5 during winter seasons 

reflects the overestimation over the sites located in the 
northern plain of India. 
 
Comparison and Temporal Variation of Daily 
Observations 

The ability of satellite-derived PM2.5 concentrations to 
capture the observed variability at daily scale is examined 
by comparing the time series of derived and ground-level 
PM2.5 for five stations (Delhi, Pune, Jabalpur, Hyderabad, 
and Udaipur) where daily surface measurements are 
available (Fig. 8). For this comparison, we have sampled 
hourly mean surface PM2.5 data (10:00–11:00 LT) which is 
close to the MODIS (Terra) overpass times for which 
PM2.5 mass concentrations are derived. In Fig. 8, surface 
observations of PM2.5 are represented with red while derived 
PM2.5 are superimposed with black. Satellite-derived PM2.5 
mass concentrations capture the observed temporal 
variability reasonably well at all the five sites with 
correlation coefficient ranging from 0.45 to 0.75 (Fig. 9). 
Among all the observational station Delhi is highly 
correlated with the ground-level PM2.5 whereas is Hyderabad 
and Udaipur are fewer correlation values (0.45). Correlation 
between observed and satellite derived daily mean PM2.5 
concentrations for all five sites in India is shown in Fig. 7. 
It can be seen that satellite derived PM2.5 shows significant 
temporal correlation (r = 0.68) with the observations. We 
found that normalized mean bias between estimated and 
observed PM2.5 was lowest in pre-monsoon season (+0.0028) 
showing highest accuracy for this season. Whereas, during 
monsoon, post-monsoon and winter season normalized 
mean bias was observed to be +0.178, +0.278 and −0.2053, 
respectively. These correlation coefficient values are 
comparable with the recent studies (Li et al., 2015; Chew 
et al., 2016; Berlusconi et al., 2016; Zhang et al., 2016; 
Zheng et al., 2016; Bilal et al., 2017) at other geographical 
locations. 

 
CONCLUSIONS 
 

The main goal of this study was to assess and establish a 
relationship between satellite retrieved AOD values and

 

 
Fig. 6. Scatter plot between monthly (a) observed and derived PM2.5 (in µg m–3) concentrations and (b) observed and 
modeled PM2.5 (in µg m–3) concentrations for all 15 ground based observations. 



 
 
 

Krishna et al., Aerosol and Air Quality Research, 19: 25–37, 2019 

 

32

 
Fig. 7. Scatter plot between observed Daily mean of 5 stations 
and satellite derived PM2.5 (in µg m–3) concentrations. 
 
the PM2.5 over the Indian region in light of the limited 
spatial coverage of in-situ PM2.5 measurements. We applied 
a satellite-model based inversion method to predict ground-
level PM2.5 concentrations. MODIS Terra retrieved AOD 
measurements and regional chemical transport model 
(WRF-Chem) simulations were employed to derive the 
surface PM2.5 concentration for the period of January to 
December 2011 for a 36 km grid resolution. The derived 
PM2.5 concentrations show high seasonal variation and 
reasonably agree with the mean monthly surface observations 
from different geographical locations in India. The derived 
concentration was found to vary between 20 and 150 µg m−3, 
except at some sites in central and northern India, such as 

Delhi, Noida, Agra, Patiala, Raipur and Guwahati, where it 
exhibited high variability and maximums up to 200–
400 µg m−3. The discrepancies between the derived and the 
observed concentrations could be due to the fact that most 
of the observation sites are situated near dense traffic areas 
and therefore influenced by local emissions that are not 
completely resolved by the model in deriving the AOD-
PM2.5 relationship. Daily variation in the predicted surface 
PM2.5 levels generally displayed better agreement with in 
situ measurements from the individual urban clusters of the 
Delhi area, Pune, Jabalpur, Hyderabad and Udaipur, with 
correlation coefficients of 0.75, 0.68, 0.55, 0.45 and 0.45, 
respectively. This work suggests the feasibility of using 
satellite measurements of AOD over India to derive useful 
information on surface PM2.5 concentrations when combined 
with a priori information from a regional chemical transport 
model. However, these results are limited by uncertainties due 
to emission inventories, chemical and dynamical processes of 
aerosols in the atmosphere (Kumar et al., 2018), and errors 
in satellite retrieval. With the MODIS C5 algorithm, the 
use of static surface databases limits the algorithm’s ability 
to retrieve aerosol values over regions with seasonal 
vegetation changes. Also, the retrievals were only performed 
over bright-reflective surfaces, leading to insufficient 
information for retrievals over regions with mixed vegetative 
and non-vegetative surfaces (Hsu et al., 2013). Additional 
constraints on the recently available high-resolution satellite 
data (Collection 6 and Collection 6.1) products might 
allow for more accurate derived concentrations of PM2.5, 
particularly over urban regions (Mhawish et al., 2017; 
Bilal et al., 2018; Gupta et al., 2018). Future studies should 
explore the sensitivity of derived PM2.5 concentrations to

 

 
Fig. 8. Comparison between observed (red) and estimated (black) daily surface PM2.5 concentration variation over Delhi, 
Pune, Jabalpur, Hyderabad, and Udaipur monitoring sites. 
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Fig. 9. Scatter plot values between observed and satellite derived PM2.5 (in µg m–3) concentrations over Delhi, Pune, 
Jabalpur, Hyderabad, and Udaipur. 

 

the choice of aerosol model and to improved satellite 
retrieval. However, the current research can be a useful 
first-hand tool for policymakers for targeting potential 
polluted areas in India with control measures. 
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