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Abstract. The introduction of a delay in the Friedmann equation of cosmological evolution is
shown to result in the very early universe undergoing the necessary accelerated expansion in
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phase, namely the standard Hubble expansion. This may obviate the need for a scalar field
driven inflationary epoch.
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1 Introduction

The Standard Model of Cosmology, based on assumptions of large scale statistical homo-
geneity and isotropy, is an elegantly simple and powerful theory. Supplemented with the
Standard Model of Particle Physics — both of which are continuum field theories based on
local interactions — it explains the evolution of our expanding universe almost up to the
point of the initial big bang singularity. However, despite this success, there are issues that
remain unresolved — indeed, for various reasons it seems unlikely that these can be the
fundamental theories.

As our understanding of local quantum field theories has deepened, it has become in-
creasingly clear that any such theory is only an effective description valid at an appropriate
scale. The existence of Planck units as scales of length and time (deduced purely on dimen-
sional grounds) seems to point to a limit to which one may hope to push this formalism.
String theory (from which local field theories emerge in the low energy limit) is an alterna-
tive formalism that incorporates non-local interactions at Planck scale [1]. Similarly, loop
quantum gravity or spin foam too have an inherent non-locality associated with them [2, 3].
In a relativistically invariant theory, nonlocality also implies interactions smeared in time
and delayed reaction, in particular.

Delayed reaction in dynamical systems occupy a place of central importance in many
areas of science. In particular, many biological systems are governed by delay differential
equations (DDE) [4]. Examples are models of population growth [5], where they first made
their appearance. A characteristic feature of DDE is the way the derivative at any instant of
time depends on the function at earlier times. This translates to solutions radically different
from those obtained in the zero-delay case. To wit, a first order linear DDE with real
coefficients may admit oscillatory solutions. Delayed dynamics in the decay of unstable
branes of string theory have been studied [6] and compared to biological systems [7].

In this article, we regard cosmological evolution as a dynamical system [8, 9]. We
show that the introduction of a delay in the Friedmann equation ameliorates some of the
shortcomings of the standard cosmological model. For a rather general class of initial data
in, say, the radiation dominated epoch, the early universe is found to undergo a brief phase
of accelerated expansion. Further, this slows down naturally to a decelerated expansion and
asymptotes to standard FRW evolution. Thus, a delayed reaction within standard cosmology
seems to obviate the need for an inflationary epoch driven by a scalar field as demanded in the
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standard paradigm and, simultaneously, solves the associated graceful exit problem. What
is more, the initial accelerated expansion is obtained without a violation the strong energy
condition.

Admittedly, our model is phenomenological in its spirit. We shall not attempt to obtain
the delayed dynamical equation from first principles. We recognize that this important
issue needs to be addressed — for an approach see [10]. And while a phenomenological
model of non-local gravity was shown to give accelerated expansion [11], models of this
type are demonstrated to be equivalent to multi-scalar-tensor theories [12]. Non-local effects
motivated by string theory have previously been studied in the cosmological context, see
e.g., [13, 14].

2 The Friedmann equation

Let us briefly recall a few essential facts of the standard FRW cosmology, described by the
scale factor a(t) that determines physical distances at time t. The dynamics of the universe
at large scales is governed by the Friedmann equation

(

ȧ(t)

a(t)

)2

=
1

3
ρ(t) , (2.1)

where ρ(t) denotes the total energy density and following standard practice, we have used
natural units, namely 8πG = c = 1. Homogeneity and isotropy at large scales dictate that a
and ρ depend only on time. Assuming that the universe expands adiabatically, the first law
of thermodynamics gives

a3∆ρ+ (ρ+ p)∆(a3) = 0 . (2.2)

Combined with eq. (2.1), this results in an equation for the Hubble expansion parameter
H(t) ≡ ȧ/a:

2Ḣ(t) + 3H2(t) = −p , (2.3)

a relation that can be derived as well from the Einstein-Hilbert action of GTR. One may
rewrite it as

ä(t)

a(t)
= −

1

6
[ρ(t) + 3p(t)] , (2.4)

to see that, for an accelerated expansion to occur, ρ(t)+3p(t) must be negative, i.e., the strong
energy condition (SEC) needs to be violated. Clearly, this is not the case with usual matter
or radiation. One way to achieve this is the inflationary paradigm [15–17], in which one
considers a scalar field that rolls on a sufficiently flat potential. Such models are considered
to be the most simple, and variants of this theme are widely used to model an accelerating
universe.

We note that of the three equations (2.1), (2.2) and (2.3) (or equivalently, (2.4)), only
two are independent. For example, the third follows when we take a time derivative of the
first and use eq. (2.2); and this is the approach we shall take in the following.

3 Delayed Friedmann equation

We propose a modification of the central dynamical equation (2.1) by introducing a constant
delay τ . Thus, we postulate that any change of the matter content in the universe has a
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delayed effect on the evolution of the metric and hence described by the delayed Friedmann

equation
(

ȧ(t)

a(t)

)2

=
1

3
ρ(t− τ) . (3.1)

This may modify the dynamics of the universe, and we shall argue that that has the potential
to provide a solution to some of the problems of the Standard Cosmology.

The standard lore may, however, prejudice one against such a nonlocal deformation.
Nevertheless, the fact is that any direct knowledge of dynamics goes down, at best, to time
scales of O(10−27 s). Thus, for τ much smaller than this, say, comparable to Planck time
tPl ∼ O(10−43 s), changes such as that in eq. (3.1) are entirely consistent with observations.
Moreover, the microscopic theories [1–3] presently in vogue incorporate nonlocality in an
essential way. Besides, gravity may well be an emergent phenomenon [18, 19] (see also [20,
21]), in which case the equations related to gravity are not bound to be local.

It should be noted, though, that while we have listed possible quantum (gravity) effects
as the source of this delay, the rest of our analysis is purely classical. This, indeed, is in the
spirit of effective theories.1 And, as we shall show later, the numerical value of τ could be
commensurate with energy scales far lower than MPl (i.e., τ larger than tPl), thereby allowing
us to neglect quantum gravity effects, at least in the first approximation. As the discerning
reader would recognize, this approximation is intrinsic to all current theories of inflation.

The dynamics of the universe, in this scheme, is thus governed by eqs. (2.2) and (3.1),
which, in turn, imply

2Ḣ(t) + 3H2(t) = ρ(t− τ)−
H(t− τ)

H(t)

(

ρ(t− τ) + p(t− τ)
)

, (3.2)

in place of eq. (2.3). Let us reiterate that the proposed delayed dynamics is ad hoc and not
derived from a ‘fundamental theory’. It might be argued that modifications may be made in
various other ways. While this is certainly true, it turns out that many of the theoretically
desirable changes lead to qualitatively similar behaviour. Hence, rather than discussing each
alternative separately, we restrict ourselves to the one proposed above. We shall comment
briefly on the other possibilities at the end.

Before we proceed to explore the consequences of the delay, let us emphasise that the
smallness of τ will ensure that there is virtually no change in the late time evolution of
the universe, or in the dynamics of heavenly bodies that evolve at macroscopic scales. In
other words, there would be no discernible consequences of this modification on astrophysical
scales.

4 Delayed dynamics & early accelerated expansion

In this section, we shall find a solution to the set of equations (2.2), (3.1) and (3.2) and
discuss its properties. For the sake of simplicity, let us assume an equation of state of the
form p = wρ (where w is a constant) for matter or radiation that permeates the universe at
the earliest epoch. The value of w is 1/3, 0 and 1, respectively, for radiation, non-relativistic
dust and stiff fluid. While it is true that the early universe had several different components
of matter, the one with the largest w would have dominated dynamics at early epochs. In
any case, the inclusion of multiple fluids do not materially affect our analysis.

1Analogous is the case of conventional inflatonary theories wherein the inflaton potential is related to

supergravity or even string theoretic constructions.
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Figure 1. (a) The scale factor and (b) the Hubble parameter in the first two intervals. The solid
and dashed line correspond to w = 1/3 and 0, respectively.

The equation of state, together with the first law of thermodynamics relates ρ =
ρ0a

−3(1+w), where ρ0 is an arbitrary constant of integration. Substituting this in eq. (3.1),
we have

d

dt
ln a(t) =

√

ρ0
3

[a(t− τ)]−3 (1+w)/2. (4.1)

We solve this using the method of steps [4] starting with the ‘initial condition’ a(0 ≤ t < τ) =
f(t) where f(t) is a given function. For definiteness, let us consider f(t) = tα with a constant
α. (Note that, as long as α ≤ 1, the universe is actually decelerating in this epoch, with
α < 0 implying a collapse. Such a situation may develop for a variety of reasons, including
quantum gravity effects or a prior (pre ‘Big Bang’) history of the universe — it is not derived
from within our model.) It now amounts to solving an ODE in subsequent intervals of size
τ . Of particular interest is the solution in the first interval:

a(t) = τα exp

(

√

ρ0
3

(t− τ)1−
3

2
(1+w)α

1− 3
2(1 + w)α

)

, for τ ≤ t < 2τ . (4.2)

It is evident from the above that an accelerated expansion or inflation is possible for a wide
choice of α even with normal radiation or matter. For later times, the solution has to be
obtained numerically. We display a few cases in figure 1.

The following features of ‘delayed FRW dynamics’ seem worth pointing out.

• A phase of fast growth exists for a wide range of α. In fact, for α ≤ 0 (an initially
static or even contracting phase), the universe expands exponentially or faster. A fast
growth can also occur for α > 0 as long as (1 + w)α < 2/3. (Many features actaully
depend on this combination of α and w.) Beyond this value, the growth of the scale
factor is decelerated, as in standard cosmology.

• Throughout the phase of accelerated expansion, the strong energy condition holds good,
in direct contrast to received wisdom, and, unlike all models of accelerated growth
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known so far. Indeed, the usual condition for acceleration, namely w < −1/3 is now
replaced by

H(t− τ)

H(t)
<

2

3(1 + w)
. (4.3)

The requirement of H(t− τ)/H(t) being less than 1/2 for radiation (or 2/3 for nonrel-
ativistic dust), is easy to satisfy for a large class of initial conditions. This, in essence,
is the most important and interesting result to emerge out of the proposed delayed
dynamics.

• The rate of growth is determined by the initial matter density ρ0 and grows with it.
Again, this would seem counterintuitive, for a larger energy density, instead of slowing
down the expansion, actually increases it.

• The end of inflation is denoted by the onset of deceleration. In the present case, there
is a subtlety. While, for (1+w)α ≤ 0, the universe has an accelerated expansion during
τ ≤ t < 2τ , for 0 < (1 + w)α < 2/3, on the other hand, the universe is decelerating
initially, but quickly passes onto an accelerating phase, with the onset of acceleration
being progressively delayed for larger values. The initial decelerating phase, however,
would leave virtually no signal in the sky.

• The duration of the ‘inflationary’ growth phase is of the same order as the delay τ ,
as the universe quickly settles down to a phase of decelerated growth after t∼>2τ (see
figure 1(b)). In most conventional models of inflation, ‘graceful exit’ is often a problem
and a mechanism needs to be introduced to ensure that the accelerated expansion stops.
Remarkably, the introduction of a delay in eq. (3.1) not only introduces an inflationary
phase, but also serves to bring the universe out of it. Naively, one would have expected
that the exit would occur only for t ≫ τ , as, at such late times, the delay would be
immaterial and the system would essentially revert to the normal power law expansion.
Rather the exit is precocious in the present system. Fortunately, however, this does
not cost us in terms of the number of e-foldings.

The exit from inflation is accompanied by an abrupt change in ä(t) (see figure 1(b)).
Such discontinuities (one such also occurs at t = τ) in higher derivatives are endemic to
DDEs with generic initial conditions. In the present context, this could potentially affect
primordial density perturbations and consequent signatures in the background microwave
spectrum as also the production of superheavy dark matter [22]. Further discussion of this,
however, is beyond the scope of this work.

It is well known that for inflation to solve the problems of standard cosmology, we need
at least about 65 e-folds (i.e., growth in a(t) by a factor of e65) by the end of inflation. In
figure 2, we display constant-inflation contours in the τ–α plane for different values of w.
Note that the dependence on w is small. In effect, the bulk of inflation occurs in the first
epoch (τ ≤ t ≤ 2 τ) where the dynamics is governed by the product (1 + w)α. It is only in
the next phase, where the expansion slows down considerably and the ‘inflation’ ends that
the separate dependence on w appears. This was to be expected in view of figure 1. What
is, perhaps, more interesting is that the delay required becomes smaller as α becomes more
negative. In other words, the faster the universe was collapsing, the faster it rebounds back;
since a nonzero τ implies that crunching of matter reacts on the space-time fabric only after a
delay, it stands to reason that a larger compression needs to be bottled up only for a shorter
duration before it reacts violently.
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Figure 2. The contours for the number of e-folds in the α–τ plane. The solid and dashed line
correspond to w = 1/3 and 0, respectively. In each case, the upper curve is for 70 e-folds while the
lower one is for 700 e-folds.

It is also quite apparent that, to achieve a phenomenologically acceptable amount of
inflation starting with a static or slowly evolving ‘initial condition’ (i.e., a small |α|), one
would require τ ∼ O(102–103)tPl. One might interpret this as being a restatement of the
requirement of the (usual) inflaton scale being ∼ MGUT. The analogy, however, is not exact.
Rather, the amount of inflation can be approximated to be given by a certain function
Fin(τ, (1+w)α) with only subsidiary dependence on other variables. The functional form of
Fin does depend on the exact initial condition a(0 ≤ t < τ), but, as we have demonstrated
above, inflation occurs for a very wide class of initial conditions. It is worthwhile to point out
at this stage that, contrary to popular wisdom, it is not necessary that inflation must occur
at MGUT or thereabouts. For example, as shown in ref. [23], the invocation of a Planck-
size proper-length cut-off automatically regulates the size of the density perturbations to
acceptable limits. While the cut-off in ref. [23] may have been introduced in an ad-hoc
manner, its existence would be natural in theories that would lead to delays, such as ours.

5 Endnote

In this paper, we have initiated the study of an alternative mechanism for an accelerated
expansion in the early universe. It is not driven by a scalar field, but rather achieved by
modifying the Friedmann equations by the introduction of a delay, in a phenomenological
fashion. We are aware that many questions have remained unanswered and our first effort
in this direction is far from complete. While the answers to these would evidently require
major effort, we shall touch upon some of these issues presently.

• On the completeness of the theory.

Let us reiterate that although non-locality abounds in quantum theories of gravity [1–
3, 6, 10, 13, 14] and we have been motivated by its ubiquity, ours is only a phenomeno-
logical approach. Ideally, one should have a complete theory of gravity to study all the
ramifications associated with the idea of inflation. It is needless to say that a naive
modification of the Einstein equations cannot be the answer. The ideas propounded in
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ref. [10] demonstrates that delayed dynamics in a covariant framework requires much
subtlety. Meanwhile, we may consider an analogous dynamical equation describing the
decay of an unstable brane [6, 24]. It is conceivable that once such branes are coupled
to gravity, similar effects, in the presence of an appropriate background, would lead to
delayed equations involving gravity. Admittedly, the complete dynamical system would
be a much more complicated one than that we have considered. Thus, we only report
on a preliminary study intended to stimulate the search for such field configurations.

• On the uniqueness of the delay mechanism.

It might rightly be claimed that the delayed dynamics we consider is not unique. Let
us comment briefly on other possible ways of introducing delay in the dynamics. For
example, if, in addition to (3.1), there is an identical delay in the r.h.s. of (2.4) (in which
ρ and p are taken to be related by the equation of state), the evolution of the scale
factor is exactly the same as in the standard FRW universe. However, the evolution
of matter would differ. On the other hand, suppose we work with eqs. (3.1) and (2.3)
(which is not delayed), the time derivative of ρ turns out to depend on a and ρ at a
time in the future, leading to an acausal behaviour.

It is of course possible to introduce a delay in many other ways, however, in some cases,
the properties of the solution remain qualitatively same. For instance, eqs. (2.1) and
ρ̇(t)+3(1+w)H(t− τ)ρ(t) = 0, a variant of eq. (2.2), gives exactly the same evolution.
If instead, one considers the variant ρ̇(t) + 3(1 + w)H(t)ρ(t − τ) = 0, the qualitative
behaviour of the evolution of the scale factor remains the same.

In a sense, therefore, we have introduced a minimal modification in which the delay
occurs in only one equation, namely the Friedmann equation, which describes the ef-
fect of matter on the expansion of the universe. Eq. (2.2) is the statement of energy
conservation; and since that is applicable in a wider context, it has not been modified.

• On the stability of the system.

Higher derivative theories are usually known to suffer from an inherent instability,
known as the Ostrogradskian instability, which was extended to infinite number of
higher derivatives in, e.g., refs. [26, 27]. It might be argued, with a delay being equiv-
alent to the existence of an arbitrarily higher order derivatives, that the theory would
necessarily be unstable. One should, however, be cautious to come to this conclusion
without a detailed analysis. For one, the nonlocality due to the delay by τ , being equiv-
alent to e−τ∂t , is through an entire function of the derivative (with respect to time) [26].
Moreover, such systems have been studied in the literature, with particular emphasis
on the cosmological context in, e.g., refs. [7, 13, 25] (and references therein) and seem
to exhibit a reasonable dynamical behaviour. It is, therefore, not unreasonable to ex-
pect that once the delayed Friedmann equation (perhaps in a form modified from the
one we use) is obtained from a fundamental Lagrangian upon the inclusion of quantum
corrections, the corresponding dynamical system would, generically, represent a stable
system.

• On the dependence on the initial data.

Modifying finite order differential equations to delayed differential equations has neces-
sitated the imposition of initial conditions over a finite continuous segment. It might
be argued that this represents the introduction of an infinite number of new degrees
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of freedom. While this criticism is valid per se, we emphasise that the existence of an
accelerating phase is not tied to a particular form of the initial data f(t). We have
checked numerically that the accelerated expansion is quite generic and occurs for a
very wide choice of initial data. It is only that a monomial or a single exponential form
for f(t) permits a simple closed analytical form for the scale factor a(t), and we have
chosen to illustrate our arguments with the former. For more complicated forms for
f(t), the entire solution has to be obtained numerically.

We do not have a priori arguments in favour of any particular choice for f(t), preferring
to demonstrate the imprint of the delay on the early universe with a simple class of
initial conditions. These could be a result of either a series of quantum fluctuations
or the result of some cataclysmic pre-Big Bang2 events (the latter possibility appears
naturally in many theories of quantum gravity, including, but not limited to string
theory). Indeed, as long as the pre-Big Bang universe was not expanding as fast as
the corresponding un-delayed Friedmann equation would have wanted it to, a phase of
accelerated expansion phase would necessarily occur in the delayed version.

Finally, to summarise, we have demonstrated the possibility that a delay introduced in
the Friedmann equation could naturally lead to an exponential (or faster) growth phase in the
very early universe. The existence of such a phase requires neither the existence of a scalar
field (inflaton) with a flat potential nor even a violation of the strong energy condition. While
our formulation is obviously a phenomenological one, it should essentially be considered a
proof of principle motivated by the existing theories of quantum gravity. However, a more
detailed construction based on a microscopic theory should be sought.

Not only does the universe inflate, it also asymptotes to FRW cosmology, thereby elim-
inating the need for an exit mechanism. The required delay is small (a few hundred Planck
times, at most) and natural in the context of nonlocalities inherent in quantum gravity. It
is also consistent with all observations. Work on subsequent reheating and generation of
primordial fluctuations are in progress and will be reported elsewhere. Also of interest is the
potential that a significant fraction of the primordial energy density could have existed in
the form of magnetic fields (thereby offering a possible seed for the intergalactic magnetic
field observed today), a scenario that is difficult to accommodate in canonical inflationary
scenarios [28]. A rich tapestry of many such physical consequences may be expected.
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