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The negative results in the search for Kaluza–Klein graviton modes at the LHC, when confronted with 
the discovery of the Higgs, have been construed to have severely limited the efficacy of the Randall–
Sundrum model as an explanation of the hierarchy problem. We show, though, that the presence 
of multiple warping offers a natural resolution of this conundrum through modifications in both the 
graviton spectrum and their couplings to the Standard Model fields.
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1. Introduction

Despite the spectacular success of the Standard Model (SM) of 
elementary particles, the search for new physics beyond the SM 
continues. One of the primary motivations for this is to resolve 
the well-known gauge hierarchy/naturalness problem in connec-
tion with the fine tuning of the higgs mass against large radia-
tive corrections. Among several proposals to address this problem, 
models with extra spatial dimensions draw special attention. In 
this context, the warped geometry model proposed by Randall 
and Sundrum (RS) [1] turned out to be particularly successful for 
(i) it resolves the gauge hierarchy problem without bringing in any 
other intermediate scale in the theory in contrast to the large ex-
tra dimensional models; (ii) the modulus of the extra dimensional 
model can be stabilized to a desired value by the Goldberger–Wise 
mechanism [2], and (iii) a similar warped solution can be ob-
tained from a more fundamental theory like string theory where 
extra dimensions appear naturally [3]. As a result, several search 
strategies at the LHC were designed specifically [4–7] to detect the 
indirect/direct signatures of these warped extra dimensions e.g. 
through the dileptonic decays of Kaluza–Klein (KK) excitations of 
the graviton which appear in these models at the TeV scale.

The original RS model was defined as a slice of AdS5 space with 
an S1/Z2 orbifolding and a pair of three-branes located at the 
orbifold fixed points, viz. y = 0, π (with the SM fields being lo-
calized on the last mentioned). The parameters characterizing the 
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theory are the 5-dimensional fundamental (gravitational) scale M5
and the bulk cosmological constant �5. The solution to Einstein’s 
equations, on demanding a (1 + 3)-dimensional Lorentz symmetry, 
then leads to a warp-factor in the metric of the form exp(−k5 rc y)

where rc is the compactification radius and k5 =
√

−�5/24 M3
5. 

Clearly, the applicability of the semiclassical treatment (as opposed 
to a full quantum gravity calculation) requires that the bulk cur-
vature k5 be substantially smaller than M5. An analogous string 
theoretic argument [8] relating the D3 brane tension to the string 
scale (related, in turn, to M5 through Yang–Mills gauge couplings) 
demands the same, leading to k5/M5 � 0.1. On the other hand, too 
small a value for this ratio would, typically, necessitate a consid-
erable hierarchy between r−1

c and M5, thereby taking away from 
the merits of the scenario. Thus, it is normally accepted that one 
should consider only 0.01 ≤ k5/M5 ≤ 0.1. Indeed, this constraint 
plays a crucial role in most of the phenomenological studies of this 
scenario, and certainly for the aforementioned results reported by 
the ATLAS and the CMS groups. Throughout our analysis we shall 
impose an analogous condition on the bulk curvature as an im-
portant restriction to ensure the applicability of our semiclassical 
calculations.

In the context of the original RS model, the large exponential 
warping is held responsible for the apparent lightness of the Higgs 
vacuum expectation value v (and its mass), as perceived on our 
brane, related as it is to some naturally high scale ṽ ∼ O(M5), 
applicable at the other brane, through the relation

v = ṽ e−π k5 rc . (1)

Here ṽ is determined by the natural scale of higher dimensional 
model ∼ five dimensional Planck scale M5 and k5 rc ≈ 12 would 
explain the hierarchy with rc being stabilized to this value by 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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some mechanism [2]. The compactification leads to a non-trivial
KK tower of gravitons with the levels being given by

mn = xn k5 e−π k5 rc (2)

where xn ’s are the roots of the Bessel function of order one. With 
only the lowest (massless) graviton wavefunction being localized 
away from our brane, its coupling to the SM fields is small, viz. 
O(M−1

5 ). As the couplings of the others to the SM fields suffer 
no such suppression, they are, presumably, accessible to collider 
searches. The ATLAS Collaboration [5], though, has reported neg-
ative results ruling out a level-1 KK graviton in the mass range 
below 1.03 (2.23) TeV, with the exact lower bound depending on 
the value chosen for k5/M5.

This result immediately brings forth a potential problem for the 
model, for Eqs. (1) and (2) together demand that

m1

mH
∼ m1

v
= x1

k5

ṽ
= x1

k5

M5

M5

ṽ
(3)

Since k5/M5 � 0.1, it is immediately apparent that, unless ṽ is at 
least two orders of magnitude smaller than M5, a 126 GeV Higgs 
[9,10] would cry out for a KK graviton below a TeV. Indeed, this 
argument has been inverted in the literature [11] to argue for a 
much lower cutoff (in other words ̃v) in the theory. In other words, 
some new physics would need to appear at least two orders of 
magnitude below the fundamental scale M5, which, in the RS sce-
nario is very close to the four-dimensional Planck scale itself.

Let us remind ourselves of the nature of cutoffs in the effective 
four-dimensional theory, considered as a theory of the SM fields 
augmented by the RS gravitons. While the SM is operative below 
the scale of the first KK graviton, the new four-dimensional the-
ory is operative all the way up to the compactification scale ∼ r−1

c
when each of the KK graviton is expected to take part in the am-
plitude estimation as the beam energy is increased. Beyond the 
energy ∼ r−1

c , we indeed encounter new physics by probing into 
the extra dimension where the theory can no longer be defined as 
an effective theory in four dimensions defined by standard model 
and KK gravitons.

It is important to realize, at this stage, that part of the afore-
mentioned problem lies in the very restrictive nature of the RS 
model as it is impossible to lower r−1

c by two orders without dis-
turbing the value of the warped factor significantly. This, in turn, 
would introduce a little hierarchy necessitating a fine tuning of 
2–3 orders so that the Higgs mass may be kept ∼ 125 GeV. This 
feature would worsen further if a graviton KK mode continues to 
elude us in the forthcoming runs of the LHC, as well as in future 
collider experiments.

On the other hand, within the context of a generalization of 
the RS model with additional warped extra dimensions, a lower 
cutoff appears naturally, in the form of a larger compactification 
radius. In other words, the problem is circumvented without the 
need for any additional (small) fine tuning. Indeed, once we admit 
more than four dimensions, there is no particular reason to restrict 
the number to five, especially with constructs such as string theo-
retic models arguing in favour of many more. Such variants of the 
RS model have been proposed earlier [12–15,28] with these, typ-
ically, considering several independent S1/Z2 orbifolded dimen-
sions along with M(1,3) . For example, codimension-2 brane models 
[16] have been invoked to address aspects like Hubble expansion 
and inflation [17–19], Casimir densities [20,21], little RS hierarchy 
[22], gravity and matter field localizations [23,24], fermion mass 
generations [25,26], moduli stabilization [27], etc.

We begin our study, with a brief discussion of the basic features 
of warped geometry model in 6-dimension with two successive
S1/Z2 orbifoldings.
2. Multiply warped brane world model in 6D

Consider a doubly warped compactified six-dimensional space–
time with successive Z2 orbifolding in each of the extra di-
mensions, viz. M1,5 → [M1,3 × S1/Z2] × S1/Z2. Demanding four-
dimensional (xμ) Lorentz symmetry within the set up, requires the 
line element to be given by [28]

ds2
6 = b2(z)[a2(y)ημνdxμdxν + R2

ydy2] + r2
z dz2 , (4)

where the compact directions are represented by the angular co-
ordinates y, z ∈ [0, π ] with R y and rz being the corresponding 
moduli. Just as in the RS case, non-trivial warp factors a(y) and 
b(z), when accompanied by the orbifolding necessitates the pres-
ence of localized energy densities at the orbifold fixed points, and 
in the present case, these appear in the form of tensions associated 
with the four end-of-the-world 4-branes.

The total bulk-brane action for the six dimensional space time 
is, thus,

S = S6 + S5

S6 =
∫

d4x dy dz
√−g6 (M4

6 R6 − �)

S5 =
∫

d4x dy dz
√−g5 [V 1(z) δ(y) + V 2(z) δ(y − π)]

+
∫

d4x dy,dz
√

−g̃5 [V 3(y) δ(z) + V 4(y) δ(z − π)] , (5)

where � is the (six dimensional) bulk cosmological constant and 
M6 is the natural scale (quantum gravity scale) in six dimensions. 
The five-dimensional metrics in S5 are those induced on the ap-
propriate 4-branes, which accord a rectangular box shape to the 
space. Furthermore, the SM (and other) fields may be localized on 
additional 3-branes located at the four corners of the box, viz.

S4 =
∑

yi ,zi=0,π

∫
d4x dy dz

√−g4 Li δ(y − yi) δ(z − zi) .

These terms, however, are not germane to the discussions of this 
paper, and we shall not discuss S4 any further.

For a negative bulk cosmological constant �, the solutions for 
the 6-dimensional Einstein field equations are given by [28]

a(y) = e−c|y| c = R yk

rz cosh kπ

b(z) = cosh (kz)

cosh (kπ)
k = rz

√
−�

10M4
6

≡ rz k′ . (6)

The Israel junction conditions specify the brane tensions. The 
smoothness of the warp factor at z = 0 implies V 3(y) be vanish-
ing, while the fixed point at z = π necessitates a negative tension, 
viz.

V 3(y) = 0, V 4(y) = −8M4k

rz
tanh (kπ) . (7)

With the warping in the y-direction being similar to that in the 
5D RS model, the two 4-branes sitting at y = 0 and y = π have 
equal and opposite energy densities. However, the z-warping dic-
tates that, rather than being constants, these energy densities must 
be z-dependent, viz.

V 1(z) = −V 2(z) = 8M2

√−�

10
sech(kz) . (8)

Such a z-dependence can arise from a scalar field distribution con-
fined on the brane. For a detailed discussion on this we refer our 
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reader to Section III of [28]. The (derived) 4-dimensional Planck 
scale can be related to the fundamental scale M through

M2
P ∼ M4

6 rz R y

2 c k

(
1 − e−2 c π

) [
tanh k π

cosh2 k π
+ tanh3 k π

3

]
. (9)

If there exists no other brane with an energy scale lower than 
ours, we must identify the SM brane with the one at y = π , z = 0. 
This immediately gives the required hierarchy factor (i.e. the mass 
rescaling due to warping) to be

w = e−cπ

cosh kπ
. (10)

For the large hierarchy that we need to explain, this equation, 
along with the relation between c and k (Eq. (6)) demands that, 
unless there is a very large hierarchy between the moduli, the 
warping is substantial in only one of the two directions, and rather 
subdominant in the other. In other words, we can have either 
(i) a large (∼ 10) value for k accompanied by an infinitesimally 
small c or (ii) a large (∼ 10) value for c with a moderately small 
(� 0.3) k. The issue of moduli stabilization in such multiple moduli 
scenario is yet to be addressed. However, in view of the essential 
similarity of the warp factors to the RS case, we believe that an 
analogue of the Goldberger–Wise stabilization mechanism [2], us-
ing either a bulk six-dimensional scalar field, or a combination of 
4-brane localized scalars would fit the bill. This is currently under 
investigation.

In summary, we are dealing with a brane world which is dou-
bly warped, with the warping being large along one direction and 
small in the other. The very structure of the theory typically re-
quires a small hierarchy between the two moduli, both of which 
remain comparable to the fundamental length scale in the theory. 
The stability issues in such models have been studied along with 
the effects of bulk gauge field or higher form anti-symmetric ten-
sor field [29–32].

Apart from the gauge hierarchy problem, such a model can of-
fer a possible resolution of the observed fermion mass hierarchy 
[33]. Furthermore, we can achieve a consistent description of a 
bulk Higgs and gauge fields with spontaneous symmetry breaking 
in the bulk, along with proper W and Z boson masses on the visi-
ble brane [34]. Given these successes of the model, it is interesting 
to consider the graviton sector of the theory and, in particular, to 
investigate whether it is consistent with the LHC bounds.

3. The graviton KK modes

To obtain the KK modes, one needs to consider the fluctuations 
of the metric,

gMN = ḡMN + �MN (11)

where ḡMN denotes the background (classical) metric correspond-
ing to the line element of Eq. (4). We focus our attention on the 
relevant (four-dimensional) tensor fluctuations �μκ which, for the 
sake of convenience, are parametrized as

�μκ = b2(z)a2(y) �̃μκ(xμ, y, z) (12)

The corresponding equation of motion is,

Rμκ = −�

2
gμκ (13)

The gauge conditions

�
μ
μ = 0 , ∂μ�μκ = 0 ,

in turn, imply
�̃
μ
μ = 0 , ∂μ�̃μκ = 0 . (14)

The KK mode expansion, in terms of the four-dimensional fields 
h(n,p)
μν (x) can now be written in terms of the two winding numbers 

as

�̃μν(xμ, , z) = 1√
R y rz

∑
n,p

h(n,p)
μν (x)ψnp(y)χp(z) . (15)

This, then, yields the equations of motion, viz.

0 = (� + m2
np)h(n,p)

μν (x)

0 = R−2
y

d

dy

(
a4 dψnp

dy

)
− m2

p a4 ψnp + m2
np a2 ψnp

0 = r−2
z

d

dz

(
b5 dχp

dz

)
+ m2

p b3 χp (16)

To obtain the spectrum, we need to solve the equations for the 
modes χp(z) and ψnp(y), which we now proceed to do.

3.1. The z equation

For the zeroth mode, we have

∂z

(
b5 ∂z χ0

)
= 0

which has the particularly simple solution

χ0 = c(0)
0 + c(0)

1

8 k

[
6 tan−1

(
tanh

k z

2

)
+

(
3 + sech2(k z)

)
sech(k z) tanh(k z)

]
. (17)

The constants c(0)
0,1 are determined from the boundary conditions 

and/or normalization of the wavefunction χ0(z). The solution for 
the higher modes χp is obtained in terms of associated Legendre 
polynomials of the first and second kinds, viz.

χp(z) = �̃p sech5/2(k z)
[

cos θp P 5/2
νp (tanh(k z))

+ sin θp Q 5/2
νp (tanh(k z))

]
νp ≡

√
4 + m2

p r2
z cosh2(kπ)

k2
− 1

2
=

√
4 + m2

p R2
y

c2
− 1

2

≡
√

4 + x2
p cosh2(kπ) − 1

2
(18)

where θp determines the relative weight of the two independent 
solutions and �̃p is the normalization constant obtained from

δp p′ =
π∫

−π

dz b3(z)χp(z)χp′(z) . (19)

That the above solution reduces to the aforementioned χ0(p) for 
mp = 0 (i.e., νp = 3/2) is easy to see.

It should be noted that νp is not necessarily integral (or, even 
half-integral). The presence of the associated Legendre functions 
renders the analysis much more complicated than is the case for 
the 5D analogue. This, in turn, introduces interesting new features.

It has been argued in the literature [35] that the z-equation 
can be simplified to a great extent by approximating the warp 
factor 1/ cosh(k z) by an exponential, which ought to be valid for 
large k z. Indeed, thus simplified equation of motion has solutions 
in terms of Bessel and Neumann functions, and the corresponding 
analysis has exact parallels with the 5D case. The approximation 
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however would not work for the small k regime. Moreover even 
for large k, such approximation is invalid for z ∼ 0, precisely the 
region where we are supposed to be located. And since the val-
ues of the graviton wavefunctions would determine the strength 
of their couplings to the SM fields, we should expect that such an 
approximation would lead to some inaccuracies. Moreover, such 
an approximation changes the differentiability of the warp fac-
tors, thereby changing the boundary conditions on the graviton 
wavefunctions. As we shall see later, the consequences of such 
an approximation are really profound and, hence, we desist from 
adopting it.

3.2. The y equation

The equation for the y-mode function can be simplified by 
making the transformations

ψnp(y) = e2 c |y| ψ̄np(θ)

θ = mnp R y

c
ec |y| , (20)

leading to

θ
dψ̄np

dθ
+ θ2 d2ψ̄np

dθ2
−

(
4 + m2

p R2
y

c2

)
ψ̄np + θ2 ψ̄np = 0

This, again, leads to a solution in terms of Bessel functions of the 
first and second kinds, viz.

ψnp(y) = �np e2 c |y| [
Jνp+ 1

2
(θ) + ζnp Yνp+ 1

2
(θ)

]
, (21)

where νp has been defined earlier. Once again, the constants �np

and ζnp are to be determined by using the orthonormality condi-
tions, viz.

δn n′ =
π∫

−π

dy a2(y)ψnp(y)ψn′ p(y) (22)

The parallel with the 5D case is very apparent and, thus, all the 
analyses for the original RS case can be trivially transported to 
this sector. However, it should be appreciated that ψnp are cru-
cially dependent on the eigenspectrum of the z-equation operator. 
Indeed, the very order of the Bessel functions (νp + 1/2) is deter-
mined entirely by it. While this may, at first, seem to imply that 
the spectrum is determined by a single parameter νp , note that it 
is not so, for the others enter through θ . A further issue needs to 
be clarified here. It has been argued in the literature ([35] as well 
as in the context of a different system with close parallels to the 
current discussion) that, for p �= 0 modes such as ψ0p would not 
exist. We shall explicitly show below that this is not the case.

3.3. Mass spectrum for the KK graviton

Our aim, now, is to compute the allowed values of mnp (i.e., 
the KK graviton masses). We first obtain these in terms of mp , 
the eigenvalues of the z-direction differential operator, and, then, 
determine mp . Either exercise is crucially dependent on the differ-
entiability structure of the wavefunctions.

The self-adjoint nature of the y-direction operator implies that 
the derivatives ψ ′

np(y) must be continuous at either boundary. 
Note that the presence of the brane tension has, in essence, been 
factored out by the inclusion of the warp factors in the definition 
of �̃μκ (see Eq. (12)). This, then, leads to
ζnp

= −
xnp ec (|y| − π) J

νp− 1
2
(xnpec (|y| − π))+( 3

2 −νp) J
νp+ 1

2
(xnpec (|y| − π))

xnpec (|y| − π)Y
νp− 1

2
(xnpec (|y| − π))+( 3

2 −νp)Y
νp+ 1

2
(xnpec (|y| − π))

∣∣∣∣∣
y=0,π

(23)

where

xnp ≡ mnp
R y

c
ec π , (24)

and the two conditions summarised in Eq. (23) reflect the bound-
ary conditions at y = 0, π respectively. Once νp is known, these 
two, together, determine ψn(y) as well as serve to quantize xnp

(and, hence, mnp).
We now turn our attention to χp(z). As these have to be even 

functions of z, we have χ ′
p(z = 0) = 0. This is identically satisfied 

by χ0(z) as νp(mp = 0) = 3/2 and the corresponding functions sat-

isfy P 5/2
3/2(x) ∝ (1 − x2)−5/4 and Q 5/2

3/2 (x) = 0. For p �= 0, we may use 
the identities(

dP M
N (x)

dx

)
x=0

= 2M+1

√
π

sin

(
π (N + M)

2

)
�(1 + (N + M)/2)

�((N − M + 1)/2)(
dQ M

N (x)

dx

)
x=0

= 2M √
π cos

(
π (N + M)

2

)
�(1 + (N + M)/2)

�((N − M + 1)/2)

leading to

cot θp = −π

2
cot

π (νp + 5/2)

2
. (25)

To determine the mass spectra of the KK gravitons, we need 
to analyze the continuity condition at z = π which, for conve-
nience, we separately consider in two distinct cases namely large 
and small k.

Large k (small c)
Denoting τ = tanh(k z), we have

χp(z) = �̃p (1 − τ 2)5/4
[

cot θp P 5/2
νp (τ ) + Q 5/2

νp (τ )
]

.

As the orbifolding condition necessitates1 that χ ′
p(z = π) = 0, we 

need to examine the derivative close to τ = 1. For the zero mode 
(νp = 3/2 or mp = 0) this implies c(0)

1 = 0 in Eq. (17), or in other 
words, χ0(z) is flat (as would be expected). For the others, we have

f (τ ) ≡ dχp

dτ

= �̃p

2
(2νp − 3)

4
√

1 − τ 2
[

cot θp τ P 5/2
νp (τ )

− cot θp P 5/2
νp+1(τ ) + τ Q 5/2

νp (τ ) − Q 5/2
νp+1(τ )

]
.

In the infinitesimal neighbourhood of τ = 1,

f (τ = 1 − δ) = cot θp (2νp − 3)(2νp + 5)

2
√

2π

×
[
−1 + δ

(2νp − 1)(2νp + 3)

4

]
+O(δ2) .

For the higher modes (νp > 3/2), the disappearance of χ ′
p(z = π), 

thus, needs cot θp = 0 or

1 Since χp(z) is even, its derivative f (τ ) is odd. On the other hand, the orbifold-
ing and the continuity of the derivative imply χ ′

p(z = π−) = χ ′
p(z = π+) = χ ′

p(z =
−π−).
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νp = 2 n + 1

2
n ∈ Z+ (26)

This result can be appreciated by noting that P 5/2
νp>3/2(τ ) → ∞ as 

τ → ±1. Since, for large k, the wavefunctions must extend close to 
τ ≈ ±1, normalizability of the same requires cot θp → 0.

Using Eq. (26) in the second of Eqs. (18) would determine the 
allowed values of mp . Substituting the latter in Eq. (23) would, 
then, yield the allowed values of mn,p , or, in other words, the 
spectrum. However, since a large k implies a c that is almost in-
finitesimally small, there is virtually no warping in the y-direction 
and the latter is essentially flat. This would immediately imply that 
m2

np ≈ m2
p + n2 R−2

y . With R y being very small, h(n>0,p) are too 
heavy to be of any relevance, and we effectively have but a sin-
gle tower h(0,p) with masses m0p ≈ mp .

Small k (large c)
The boundary is now at τ = τπ = tanh(k π), and somewhat 

away from τ = 1. Being away from the singular points of the asso-
ciated Legendre functions means one can numerically calculate the 
functions, and the vanishing of f (τπ ) dictates that

cot θp τπ P 5/2
νp (τπ ) − cot θp P 5/2

νp+1(τπ )

+ τπ Q 5/2
νp (τπ ) − Q 5/2

νp+1(τπ ) = 0 . (27)

This equation has to be solved numerically to obtain the quantized 
values of νp . To now obtain xnp , concentrate on Eq. (23). Since 
ec π � 1, this relation is satisfied only if

2xnp Jνp− 1
2
(xnp) + (3 − 2νp) Jνp+ 1

2
(xnp) = 0 . (28)

Finally, for large c, the graviton spectrum will be given by the so-
lutions of the above equation. It is worth remembering that, in 
this case, there is a non-negligible warping in the z-direction, and 
thus, the h(n,p>0) are not necessarily superheavy. The two branches 
(large k and large c) are, thus, not quite symmetrical.

3.4. Couplings with brane fields

The interaction term of a graviton with any brane field is given 
by

Lint = 1

M2
6

T μνhμν(xμ, y = π, z = 0) , (29)

where T μν is the energy–momentum tensor of the field. The cou-
pling of brane-localized matter with the (n, p)th graviton mode is, 
thus, determined by the value of the latter’s wavefunction on the 
brane location. In other words,

Cnp = 1

M2
6

√
R yrz

�np(π)χp(0) . (30)

Once again, we examine the two cases separately.

Large k (small c)
In this case, as argued earlier, the lowest mass modes corre-

spond to the ψ0p states. From the solutions of ψnp(y) and χp(z), 
we have

ψ0p(π) = �0p , χp=0(0) = �̃0 ,

χp �= 0(0) = �̃p

[
Q 5/2

νp (0)
]

,

where �0p and �̃p are to be determined from the orthonormality 
conditions of the mode functions. From Eq. (30) we then have
C00 = 1

M2
6

√
2π R yrz

B−1/2
0 cosh3/2(kπ)

C0p = 1

M2
6

√
2π R yrz

B−1/2
p cosh3/2(kπ)

[
Q 5/2

νp (0)
]

, (31)

where

B p = 0 ≡
π∫

−π

cosh3(k z)dz

B p �= 0 ≡
π∫

−π

sech2(k z)
[

Q 5/2
νp (tanh(k z))

]2
dz . (32)

In the above, terms subleading in c have been dropped as 
c � 1.

Small k (large c)
In this case, the wavefunctions on our brane are given by

ψnp(π) = �np e2 c π Jνp+ 1
2
(θπ ) , χp=0(0) = �̃0 ,

χp>0(0) = �̃p

[
cot θp P 5/2

νp (0) + Q 5/2
νp (0)

]
.

As before, �np and �̃p are to be determined from the normaliza-
tions. Once again, to determine the couplings we refer to Eq. (30)
which yields

Cn0 = 1

M2
6rz

cosh(k π) ec π

√
k

2 An0 B0
[ J2(θπ )]

Cn,p �=0 = 1

M2
6rz

cosh(k π) ec π

√
k

2 Anp B p

[
Jνp+ 1

2
(θπ )

]
×

[
cot θp P 5/2

νp (0) + Q 5/2
νp (0)

]
, (33)

where,

Anp =
1∫

0

r
[

Jνp+ 1
2
(xnp r)

]2
dr

B p = 0 =
π∫

−π

cosh3(k z)dz

B p �= 0 =
π∫

−π

sech(k z)2
[

cot θp P 5/2
νp (tanh(k z))

+ Q 5/2
νp (tanh(k z))

]2
dz . (34)

Several points need to be noted at this point.

• Unlike in the previous case, the KK-modes in the y-direction 
are now relatively light and visible. This is but a consequence 
of the fact that the y-direction warping is dominant.

• Although the z-warping is subdominant, it is not entirely neg-
ligible. (This is quite contrary to the other case, where the 
y-warping was virtually nonexistent.) Thus, there is hope that 
some of the z-direction modes might be visible.

• In addition, the wave function in y-direction is dependent on 
p (the momentum in the z-direction).
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• For p = 0, the levels h(n,0) have almost the same coupling 
with the SM fields for n > 0. While this may seem counter-
intuitive given that the normalizations An0 depend on n, the 
same is essentially cancelled by the n-dependence in J2(θπ ). 
Indeed, this result is exactly analogous to that for the (five-
dimensional) RS model, and was to be expected given that the 
h(n,0) wavefunctions are flat in the z-direction. On the other 
hand, for a given p > 0, increasing n results in the suppression 
of the corresponding couplings. Understandably, the extent of 
this suppression increases with k (which is a measure of the 
subdominant warping).

• For the very same reason, increasing p, while keeping n con-
stant leads to an enhancement of the couplings.

4. Numerical values for masses and couplings

In exploring the parameter space of the model, it is useful to 
consider two dimensionless quantities

ε ≡ k

rz M6
, α ≡ R y

rz
. (35)

Quite analogous to the 5D case, here too the applicability of the 
classical solutions can be related to the issue of the bulk curva-
ture being small sufficiently small compared to M6. To this end, 
we shall demand that ε < 0.1. On the other hand, we would not 
like to introduce a new hierarchy (between moduli) in our efforts 
to ameliorate the SM hierarchy problem. Thus, the ratio α should 
neither be too large nor too small.

We can, then, explore the parameter space of the theory in 
terms of ε, α and any one other, say M6 (or, equivalently k), relat-
ing all the rest through Eqs. (6) and (9). A very important distinc-
tion from the original RS scenario is that M6 need not be nearly 
the same as the four-dimensional Planck mass M P . This freedom 
accrues from the larger parameter space of the model. In fact, M6
can be significantly smaller than M P without any fine tuning. In-
deed, the large c branch needs α � 50 and with

M2
P ∼ M4

6 rz R y

2 c k
= M4

6 r2
z α

2 c k

even the largest allowed value of k (� 0.3) would lead to 
M6 � M P /2. Smaller (larger) values of k (α) would lead to even 
smaller M6.

Furthermore, in this scenario, the cutoff for a four-dimensional 
quantum field theory is set not by M6, but by min(R−1

y , r−1
z ). At 

such a scale, the higher-dimensional nature of the theory becomes 
apparent, and the four-dimensional effective theory (including the 
graviton modes) is no longer an apt language to describe physics.2

Indeed, while the mechanism of compactification cannot be ad-
dressed in our theory (or within the RS mechanism), the physics 
responsible for it must be taken into account in any description 
that reaches beyond this scale. In other words, the quantity w−1

as defined in Eq. (10) refers to the ratio of the Higgs mass and 
this cutoff scale and is no longer constrained to be � 1016. Indeed, 
it can be significantly smaller. Once again, this freedom (absent 
in the 5D analogue) is but a consequence of the larger parameter 
space of the present theory.

At this stage, we wish to clarify an issue regarding effective 
theories that, often, leads to miscommunication. The cutoff scale 
of an effective theory is often described as the scale at which the 
loop contributions (often very large) are to be cutoff, for the new 

2 A parallel is provided by an ADD-like [36] model with unequal radii of com-
pactification. In fact, in the bulk, the large-k branch is conformal to RS5 ⊗ ADD, with 
the correspondence broken only by the brane tensions.
Table 1
Four sample spectra for the small k case for a particular bulk curvature (ε =
0.0775).

k = 0.05, α = 211, w = 6.14 × 10−15

(n, p) mnp

(TeV)
Cnp ×103

(TeV−1)

(1,0) 5.07 8.04
(2,0) 9.29 8.04
(3,0) 13.5 8.04
(0,1) 30.2 −24.1
(1,1) 37.1 16.4
(2,1) 42.7 −14.7

k = 0.1, α = 108, w = 8.75 × 10−15

(n, p) mnp

(TeV)
Cnp ×103

(TeV−1)

(1,0) 5.20 5.44
(2,0) 9.53 −5.44
(3,0) 13.8 5.44
(0,1) 17.1 13.4
(1,1) 23.0 −9.99
(2,1) 28.1 9.20

k = 0.2, α = 60.9, w = 1.31 × 10−14

(n, p) mnp

(TeV)
Cnp ×103

(TeV−1)

(1,0) 5.87 3.16
(2,0) 10.7 −3.16
(3,0) 15.6 3.16
(0,1) 11.6 7.19
(1,1) 17.4 −5.93
(2,1) 22.7 5.64

k = 0.3, α = 49.3, w = 1.81 × 10−14

(n, p) mnp

(TeV)
Cnp ×103

(TeV−1)

(1,0) 7.07 1.87
(2,0) 12.9 −1.87
(3,0) 18.8 1.87
(0,1) 11.3 −4.74
(1,1) 17.8 4.13
(2,1) 24.0 −3.99

physics beyond this scale would naturally regulate them (i.e. can-
cel unwanted divergences). However, for this cancellation to be 
demonstrated, the said ultraviolet completion has to be known 
exactly. This is certainly not the case here (quite unlike, say the 
MSSM or gauge-Higgs unification scenarios, wherein the ameliora-
tion of the large corrections can be shown explicitly). On the con-
trary, sans a reliable theory of quantum gravity, no such calculation 
is possible. It has been argued that, within the five-dimensional 
context, the addition of the Planck-brane and/or the TeV-brane al-
lows a holographic interpretation [37], with the former acting as 
a regulator leading to a UV cutoff (� r−1

c ) on the correspond-
ing CFT [38–40]. Similar analyses have also been made for the-
ories with gauge fields extended in to the warped bulk [24,41,
42]. Although no such duality has been constructed for the six-
dimensional case, it is quite conceivable that one such would exist 
(for the large k case, the bulk is indeed AdS6-like). Consequently, 
even on this count, the branes are expected to provide a regulator 
with a cutoff � min(R−1

y , r−1
z ). In particular, let us concentrate on 

the situation R y > rz , which is mostly the case (with exceptions to 
this generically being bad phenomenologically). Remembering that 
the space is orbifolded on S1/Z2 ⊗ S1/Z2, let us concentrate on 
the 4-brane at z = 0 (with us being localized at the z = 0, y = π
intersection). This 4-brane, thus, reflects an AdS5 geometry in the 
bulk. Indeed, viewed in isolation, it is but a perturbation of the 
R S 1 scenario with a corresponding CFT cutoff of R−1

y . Thus, this 
part of the parameter space is manifestly consistent with our as-
sertion about the cutoff.

We now examine the allowed parameter space in the light of 
the discussion above, considering, in turn, the large c and large k
cases.

4.1. Small k (large c)

In Table 1, we present part of the spectra for four representative 
points in the parameter space, each corresponding to a particular 
value of the ratio of the bulk curvature and the quantum grav-
ity scale, namely ε = 0.0775. Once ε is fixed, for this branch of 
the solution, c has only a very subdominant dependence on k (see 
Eq. (10)). The relation c = αk/ cosh(kπ) would, then, imply that a 
larger k needs a smaller α, as is demonstrated by Table 1. On the 
other hand, since the modes h(n,0) are flat in the z-direction, the 
masses mn0 are essentially free of k, xs with the small difference 
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Fig. 1. (Left panel.) Contour plots in the (ε, α) plane for fixed values of k. The curves are constrained to satisfy w R−1
y = mh . (Right panel.) The dependence of the contours 

on the value of the ratio w/R y . In each case, the upper and lower curves correspond to mh and 1 TeV respectively.

Fig. 2. The mass m10 (left panel) and matter coupling C10 (right panel) for the first graviton mode as a function of ε for a fixed k. The parameter α has been constrained to 
satisfy w R−1

y = mh .
in Table 1 accruing from the difference in the values of the other 
parameters.

The masses mn1, on the other hand, do exhibit considerable de-
pendence on k. Moreover, these modes are considerably heavier 
than several of the h(n,0) . As can be expected, these masses grow 
very fast as k becomes smaller, a consequence of the decreasing 
severity of the z-warping.

What is of particular significance in each case is that the 
masses are much larger than what has been probed at the LHC. 
Indeed, masses such as these were practically out of reach of the 
runs at 

√
s = 7, 8 TeV, and would be accessible only in the next 

run. However, with the couplings to the SM fields being much 
smaller than those for the original RS gravitons, the production 
rates would continue to be highly suppressed even at the future 
runs at 

√
s = 13, 14 TeV. Indeed, as Table 1 suggests, for the large c

branch of the solution, discovering even the first graviton mode at 
the LHC will remain a dream unless k is very small indeed, when 
the system becomes RS-like with the graviton couplings increasing 
appropriately. On the other hand, such values of k typically neces-
sitate a somewhat large value of α.

Such conclusions are brought into focus by Fig. 1 where we 
have depicted the relation between the parameters (α, ε) that, for 
a given choice of k, leads to the correct hierarchy (with the ul-
traviolet cutoff being given by R−1

y ). The modulus ratio α is a 
monotonically increasing (decreasing) function of ε (k), with the 
dependence on k being much more pronounced. In the left panel 
of the figure (as also in the subsequent numerical analysis), we 
hold mh = w Mcutoff with the cutoff scale being defined by the 
larger of the two compactification radii. While this choice of the 
hierarchy factor w is certainly as good as any other, the numerical 
results are not greatly sensitive to the exact value. This is borne 
out by the right panel of the same figure, which demonstrates (for 
the two extreme choices of k in the left panel) that the values re-
main qualitatively the same even if we change w by a factor of 8.

In Fig. 2, we depict the corresponding mass and SM-coupling 
strength of the lowest non-trivial graviton, viz. h(1,0) . As has 
been argued above, decreasing k not only makes this graviton 
lighter, but also strengthens its couplings, thereby making it more 
amenable to discovery at the LHC. This trend holds for the other 
modes too. The existence of the double tower is another interesting 
point to note, especially for not too small values of k. As Table 1
shows, one can have a clustering of the KK modes, each of which 
has an enhanced coupling to the SM fields, and are likely to be 
seen in future experiments as a series of relatively closely lying 
resonances, with almost identical decay patterns. This proliferation 
of KK modes will be further enhanced if the number of extra di-
mensions increases.

4.2. Large k (small c)

The situation changes considerably now when compared to the 
preceding case. With c being very small, the low-lying spectrum 
is essentially independent of it. And, as already stated, with the 
y-direction suffering virtually no warping, all h(n,p) are superheavy 
(mnp > R−1

y ) for n > 0, and, henceforth, we shall concentrate only 
on h(0,p) .

As Table 2 shows, α can be much smaller now (even smaller 
than one), and a large hierarchy between the moduli is no longer 
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Table 2
Four sample spectra for the large k case.

k = 8.2, α = 9.87, ε = 0.027

w = 1.3 × 10−11

(n, p) mnp

(TeV)
Cnp

(TeV−1)

(0,1) 22.98 −0.881
(0,2) 47.09 0.745
(0,3) 68.94 −0.720
(0,4) 90.17 0.710

k = 8.5, α = 9.87, ε = 0.044

w = 5.06 × 10−12

(n, p) mnp

(TeV)
Cnp

(TeV−1)

(0,1) 23.35 −3.62
(0,2) 47.86 3.06
(0,3) 70.07 −2.96
(0,4) 91.65 2.92

k = 8.2, α = 1.56, ε = 0.00675

w = 1.3 × 10−11

(n, p) mnp

(TeV)
Cnp

(TeV−1)

(0,1) 3.61 −0.881
(0,2) 7.40 0.745
(0,3) 10.8 −0.720
(0,4) 14.2 0.710

k = 8.5, α = 1.56, ε = 0.0111

w = 5.06 × 10−12

(n, p) mnp

(TeV)
Cnp

(TeV−1)

(0,1) 3.74 −3.62
(0,2) 7.66 3.06
(0,3) 11.2 −2.96
(0,4) 14.7 2.92

necessary. Indeed, the smaller α is, the lighter the graviton ex-
citations are. The dependence of the masses on k is subdominant, 
though. These two features can be understood by recalling that the 
masses, in this case, are essentially given by mp , the eigenvalues of 
the z-equation of motion. If we had a flat z-direction, the eigenval-
ues would have been evenly separated, namely mp = p/rz . In the 
current scenario, this is tempered by the warping. Since, for large 
k, the hierarchy is almost uniquely determined (w ≈ sech(k π)), so 
is the cutoff scale R−1

y . Consequently, a smaller α implies a smaller 
r−1

z and, hence, a lighter spectrum. If M6 were to be held constant, 
this would also translate to a smaller ε , as hinted at by Table 2. 
The dependence of the masses on k, thus, accrues, only through 
the warping and unless the latter changes by a great degree, the 
former remain relatively stable.

The arguments above also tell us why the couplings C0p are in-
sensitive to α. With the h(0,p) wavefunctions being independent 
of y, any dependence of the couplings on the parameters of the 
y-equation must disappear. Note, though, that the couplings of the 
gravitons to the SM fields are much larger now than was the case 
for the small k branch of the theory. In fact, C0p for the two k = 8.2
points listed in Table 2 are of the same order of magnitude as 
those for the RS model as investigated by the ATLAS Collabora-
tion [4]. Consequently, the gravitons for k = 8.2, α = 1.56 should 
definitely be visible as resonances in the next run of the LHC, while 
those corresponding to k = 8.2, α = 9.87 may leave behind some 
indications through virtual diagrams (at least in the high luminos-
ity run).

Things take a more interesting turn for larger k values, as the 
couplings increase substantially (the entries on the right column
of Table 2). While the k = 8.5, α = 1.56 gravitons would be seen 
as very prominent resonances, even the large contact interactions 
generated by the k = 8.5, α = 9.87 would alter the continuum 
spectrum for the associated processes to a significant degree. If 
we increase k even further (see Table 3), the couplings rise very 
fast and quickly cross over to the nonperturbative regime. This is 
but a consequence of the fact that the wavefunctions χp(z) are 
highly concentrated near z = 0 with the extent of peaking increas-
ing with k. This hitherto undiscovered strongly-coupled sector of 
the theory is potentially of great theoretical interest. The strong 
coupling, though, does not manifest itself for k � 9.0 and a per-
turbative treatment does make sense. In summary, the parameter 
region corresponding to k � 8.5 is still far from being ruled out 
and admits very interesting phenomenology.

In Fig. 3, we present the interrelationship between the cou-
plings for various choices of k. As in small k sector, here too
Table 3
Two additional sample spectra for the large k case.

k = 8.9, α = 1.56, ε = 0.021

w = 1.44 × 10−12

(n, p) mnp

(TeV)
Cnp

(TeV−1)

(0,1) 3.87 −23.9
(0,2) 7.92 20.2
(0,3) 11.59 −19.5
(0,4) 15.16 19.2

k = 11, α = 0.002, ε = 0.1

w = 1.96 × 10−15

(n, p) mnp

(TeV)
Cnp

(TeV−1)

(0,1) 3.20 −4.29 × 105

(0,2) 6.56 3.62 × 105

(0,3) 9.59 −3.50 × 105

(0,4) 12.54 3.45 × 105

α increases (decreases) monotonically with ε (k) with the
k-dependence being much stronger. As was expected from the ta-
bles, the typical values of the modulus ratio α tends to be smaller 
for this sector. The bend in the curves (see the left panel) at α = 1
are a consequence of our assertion that the cutoff of the four-
dimensional theory is given by min(R−1

y , r−1
z ), thereby changing 

the parametric dependence of the hierarchy at this point.3 Natu-
rally, this change is also manifested in the relation between α and 
ε in the shape of very sharp bends (with the position of the bend 
being given by α(ε, k) = 1). Below this point, the mass of the first 
KK mode, h(0,1) in the case, is almost independent of ε , and is 
given essentially in terms of R−1

y , which, of course, is determined 
once the Higgs mass and the hierarchy determinator k are fixed. 
A further feature of this sector is that the coupling C01 is essen-
tially fixed by k alone with only a very subdominant dependence 
on ε .

5. Discussion and summary

Within the original (five-dimensional) RS scenario, the masses 
and couplings of the graviton KK modes are determined in terms 
of very few tunable parameters. Exploiting this, the ATLAS group 
searched for the existence of a graviton resonance in the dilepton 
mode, and has ruled out the existence of any such mode below 
∼ 2.2 TeV as long as it couples to the SM fields with a strength 
of the order of an inverse TeV. This negative result is in direct 
conflict with the RS mechanism’s resolution of the mass hierarchy 
problem. Thus, one is forced to accept at least a partial hierarchy, 
whether it be applicable to the low energy theory or whether it 
appears in the guise of an ad hoc introduction of a scale (for the 
four-dimensional theory) at least two orders lower than the natural 
scale of the problem.

Since neither of these solutions are particularly attractive given 
the great promise of the RS paradigm, we have striven here to 
offer an alternative and natural solution. The key is the general-
ization to dimensions larger than five and admit multiple warping. 
Such a situation, of course, is not unexpected within, say, a string 
theoretic framework.

While the number of extra dimensions (and independent warp-
ings) can be arbitrary [28], we have restricted ourselves, for rea-
sons of simplicity, to the six-dimensional theory with two sub-
sequent warpings and orbifoldings. This immediately introduces 
some extra tunable parameters in the shape of moduli and/or ex-
tent of warping. Further generalization is straightforward and only 
serves to increase the parameters. It should be noted at this stage 
that the reconciliation of the ATLAS bounds with the resolution of 
the hierarchy problem does not need any extreme tuning of these 
parameters. Rather, the natural values of the parameters serve to 
resolve the conflict.

In a multiple moduli warped model, such as the one under dis-
cussion, it would be advisable to restrict the hierarchy between 

3 Note that α < 1 was impossible to obtain in the small k sector.



274 M.T. Arun et al. / Physics Letters B 746 (2015) 266–275
Fig. 3. Left panel: Contour plots in the (ε, α) plane for fixed values of k. Right panel: The mass m01 for the first graviton mode as a function of ε for a fixed k. The curves 
are constrained to satisfy min(R−1

y , r−1
z ) = mh/w .
them to as small a value as possible. This is over and above main-
taining the smallest of them to be close to the fundamental length 
scale of the problem. This serves to maximize the stability of the 
ratios against radiative corrections, or, in other words, prevents the 
reappearance of the hierarchy problem in a different guise. Such a 
requirement forces us to have large warping in only one direction. 
In other words, we can have either a large c (∼ 10) and a small k
(� 0.3) or large k (� 8) and an almost infinitesimally small c.

The first scenario (large c) requires a moderately large (� 40) 
hierarchy between the moduli. This small hierarchy is minimized 
by assuming the largest possible ratio between the bulk curvature 
and the fundamental mass scale (i.e., the largest k). While, at first 
sight, this scenario might seem to be a small perturbation of the 
5-dimensional RS model, it is not really so. For one, the graviton 
masses are typically larger than those in the RS model, and, simul-
taneously have much smaller couplings. Thus, it is almost straight-
forward to evade the ATLAS bounds. However, the next run of the 
LHC should be able to find them. Even more interestingly, we now 
have a double tower of gravitons. In other words, there is a clus-
ter of relatively closely placed resonances, each with enhanced (to 
at least the same level as the first KK mode) couplings waiting to 
be discovered at the forthcoming runs of the LHC. And, increas-
ing the number of warped directions would only serve to increase 
the density of these excitations, thereby making the situation quite 
lively. Indeed, if we admit as many as 6 extra dimensions, it is con-
ceivable that these modes can, in the collider environment, start to 
mimic a pseudo-continuum of resonances.

The second branch (large k) is potentially even more interesting. 
For one, it can admit essentially no hierarchy between the moduli. 
Essentially only one tower is germane to low energy physics, and 
the spacing between the levels is minimized by minimizing the 
moduli hierarchy. Even though the modes tend to be somewhat 
heavier than those in the RS (thereby largely escaping the ATLAS 
bounds), the couplings are no longer suppressed. Thus, a reanalysis 
of even the present data can serve to rule out part of the parame-
ter space.

This branch, thus, seems to be an even smaller perturbation of 
the RS, or more correctly, a marriage of the RS with a very small 
ADD-like direction. However, the extremely tiny warping has a pro-
found role to play. For one, it is this that allows the 4-brane at 
z = 0 (on which our 3-brane is located) to be tensionless. (Com-
pare this to the negative tension that the visible brane must have 
in the RS model.) At a phenomenological level, this also serves to 
bring down the fundamental (six-dimensional) mass scale to the 
GUT scale or even below. This is likely to have profound impli-
cations for model building. Indeed, if we aim to push the funda-
mental scale close to the Planck scale, we enter a strongly coupled 
phase of the theory! This feature is a stark departure from the 
usual RS scenario.

In summary, we have shown that augmenting the RS scenario 
by incorporating even a single slightly warped extra dimension 
can lead to profound implications. Not only are the current col-
lider bounds avoided (though, with the promise of very interesting 
physics in the next run of the LHC), but a host of new and exciting 
features emerge.
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