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1 Introduction

It has long been recognized that theories defined in dimensions larger than four may provide

geometric resolutions to some of the quandaries faced by the Standard Model. Amidst

diverse theoretical constructs addressing such issues, have been efforts [1–9] to intertwine

gravity with low energy phenomenology. The Randall-Sundrum (RS) model [6] and its

extensions comprise one such set of endeavours. Unlike in the ADD scenario [8], wherein the

hierarchy is sought to be explained by introducing a large volume in the extra dimensions,

in the RS model it is done by postulating a nonfactorizable geometry with an exponential

warping between two flat 3-branes. While we are located on the TeV brane (wherein the

natural scale of the theory, viz. MPl, is warped down to and perceived as the TeV scale),

the other (Planck) brane remains hidden.

A more interesting (from the particle physics point of view) model is constructed by a

minimal extension of this RS model with gauge bosons in the bulk and fermions stuck to the

brane [10, 11]. Such forays into the bulk come at a cost, though. For example, the gauge

boson KK-excitations couple to fermion bilinears almost universally and with a strength

approximately eight times as large as that of the zero mode. This result, in conjunction

with the global fits on the four Fermi operator [12], demand that the first excited mode

mass must be > 23 TeV. To appreciate this constraint, it is useful to reexpress it in terms

of the model parameters, viz. the fundamental five-dimensional mass M5D, the radius of
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compactification Ry and the exponential (e−c|y|) warping parameter c, whereby it translates

to c/(RyM5D) > 4.5. On the other hand, the very applicability of semi-classical arguments,

on which the entire RS construction hinges, calls for this combination to be . 0.1, thus

calling into question the trustworthiness of this approach.

On allowing the fermions too to enter the bulk, it was shown [13] that the coupling

of the fermion zero-mode to the first KK gauge boson could be suppressed significantly,

thereby relaxing the constraints from the four-Fermi operator. On the other hand, since

the mass hierarchy problem can be solved only by using a TeV-brane localized Higgs

field, the latter’s gauge coupling deforms the boundary conditions on the gauge bosons.

The consequent distortion in the profile of the lowest gauge boson, results in tree level

corrections to the electroweak oblique parameters [14]. Consistency with the precision

data now demands that the first KK-mode for the gauge boson be heavier than 27 TeV (or,

equivalently, cR−1
y e−cπ > 11 TeV), thereby resurrecting the problem in a different guise.

This, though, could be cured, albeit at the expense of introducing a custodial symmetry

in the bulk [15]. The enhanced gauge structure preserves the isospin symmetry and thus

softens the constraint on the T -parameter. Similarly, localizing the light fermions near the

Planck-brane controls the S-parameter, such that the precision test data fits are satisfied

by a KK gauge boson with mass of a few TeVs.

On a track parallel to this, emerged several attempts in creating models in (5 + 1)-

dimensions. While the flat space variants [16–24] did consider bulk matter fields so as

to address some of the lacunae of the SM, those with non-factorizable geometries [25,

28–30, 34, 38, 41, 45–48] typically restricted themselves to discussion of the hierarchy

and/or cosmological issues. Although seemingly modest in their aspiration, the latter set

of constructions have recently gained relevance in the context of negative results achieved

by both the ATLAS [49] for RS graviton resonances. While reasonable values for the ratio

of the five-dimensional curvature and the fundamental mass scale would predict that the

mass of the first KK-graviton be a few times larger than that of the Higgs, the current

lower limit of ∼ 2.66 TeV (at 95% C.L.) is already causing some tension for the scenario. In

ref. [51], though, it was demonstrated that, in the event of nested warping in a 6D scenario,

the graviton modes comfortably evade the current bounds from the LHC. Furthermore, as

ref. [52] points out, not only is the allowed parameter space of the model quite extensive

and can be probed well in the current run of LHC, it also admits an explanation of the

recently reported anomaly [53, 54] at mγγ ∼ 750 GeV.

It is, thus, interesting to consider the possibility of allowing the SM fields into the

bulk of such a nested warping scenario, and we had developed this formalism in ref. [55],

hereafter referred to as Paper I. The construction has several striking features. The most

notable is that, apart from offering an “explanation” of the number of fermion generations,

it essentially “localizes” part of the fermions onto a 4-brane. This has the immediate

consequence that whereas the gauge bosons (and, of course, the graviton) have a “tower

of KK-towers”, for the fermions one of the towers is missing. This would have striking

ramifications in collider searches, both in terms of the observed low-energy spectrum as

well as in the decay patterns (and, hence, in the signature topologies). Furthermore,

the “missing” fermionic states would leave imprint in both corrections to observables as
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well as in engendering rare processes. In the present work, we examine some of such

phenomenological consequences.

The rest of this paper is structured as follows. We start out with a brief recapitulation

of the scenario augmented by a discussion of fermion mixing (an aspect that was glossed over

earlier). Subsequently, in section 3, we consider the Higgs sector in detail and present the

Higgs spectrum for the particular localization that we employ. This is followed, in section 4,

by the derivation of an effective Lagrangian that allows us to reliably calculate four-Fermi

operators as well as the electroweak precision observables. Utilizing this, in section 5,

to constrain the parameter space, we next investigate (in section 6) the renormalization

group flow of the gauge couplings, which allows us examine the nature of gauge unification.

Finally, we summarise in section 7.

2 Gauge and fermion fields

We consider a six-dimensional space-time compactified down to four dimensions with a Z2

orbifolding in each of the two extra dimensions, viz. M1,5 → [M1,3 × S1/Z2] × S1/Z2. A

successive (nested) warping is assumed leaving the four-dimensional space to be flat. In

other words, the line element is of the form [48]

ds2 = b2(x5) [a2(x4)ηµνdx
µdxν +R2

ydx
2
4] + r2

zdx
2
5 , (2.1)

where the compact directions are represented by the dimensionless coordinates x4,5 ∈ [0, π]

with Ry and rz being the corresponding moduli. The background geometry is given by

the six-dimensional Einstein-Hilbert action (with a natural scale M6) and a negative (six-

dimensional) cosmological constant Λ6 yielding [48]

a(x4) = e−c|x4| c =
Ryk

rz cosh kπ
≡ ℵ k

cosh(kπ)

b(x5) =
cosh (kx5)

cosh (kπ)
k = rz

√
−Λ6

10M4
6

≡ ε rzM6 .

(2.2)

The difference in scale between the Planck brane and the TeV brane, where the Higgs is

localized, sets a measure for w, the extent of the hierarchy. Typically, w ranges from e−cπ

to e−cπ sech kπ, with the exact value depending on the details of the Higgs localization.

Clearly, we can consistently neglect quantum corrections to the bulk gravity action

(necessary for the validity of the semi classical treatment) only if the bulk curvature is

significantly smaller than the fundamental scale M6, or in other words if ε . 0.1. On the

other hand, the requirement of not reintroducing a large hierarchy requires that ℵ (the

ratio of the two moduli) should not be too large. This, along with the phenomenological

requirement of w ∼ 10−16 (or even an order of magnitude or two larger) forces the theory

into one of two branches, namely (i) c ∼ O(10), k . 1 or (ii) k ∼ O(10) and a negligibly

small c [48]. While each branch has its merits, the second one results in considerably

enhanced couplings for the KK-gravitons [51]. Furthermore, once gauge fields are allowed

to go into the bulk, their KK-excitations, for this branch of the theory, are bestowed with
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too large a coupling to admit perturbation theory [55]. Consequently, we shall concentrate

on the first branch alone.

We start our review of the SM fields with the gauge sector, which, along with the

fermions, percolates fully into the bulk. The kinetic term, for a theory with unbroken

symmetry, is thus given by

L =
−1

4

√
−gFMNF

MN + Lgf

Lgf =
−
√
−g

2ζ

[
gµν

{
∂µAν −

ζ

2

(
Γ4
µνA4 + Γ5

µνA5

)}
+ ζ (g44D4A4 + g55D5A5)

]2

=
−Ryrzb

2ζ

[
ηµν∂µAν +

ζ

b

(
∂4
a2bA4

R2
y

+ ∂5
a2b3A5

r2
z

)]2

,

(2.3)

where the choice of the gauge-fixing term (a curved-space analog of the generalized Rζ
gauge) eliminates the cumbersome kinetic mixing terms between Aµ and A4,5. Writing Aµ
in terms of the KK modes, viz.

Aκ =
1√
Ryrz

∑
n,p

A(n,p)
κ (xµ) ηn,p(x4)χp(x5)

with ηn,p and χp normalized as∫
b(x5)χp1χp2dx5 = δp1,p2 ,

∫
ηn1,pηn2,pdx4 = δn1,n2 ,

the solutions for the modes are

χp(x5) =
1

B
sech3/2(kx5)

(
c1 P

3/2
νp (tanh kx5) + c2Q

3/2
νp (tanh kx5)

)
ηn,p(x4) =

ec|x4|

N

(
Jνn(yn) + cnpYνn(yn)

)
yn ≡ mnp

rz
k
ec|x4| cosh(kπ) = mnp

Ry
c
ec|x4|

νn =

√
1 +

r2
z

k
m2
p cosh2(kπ)

νp =
−1

2
+ νn .

(2.4)

Before we impose the boundary conditions on the χ’s and the η’s (and, thereby, compute

the spectrum), let us remind ourselves that the electroweak symmetry has, of course, to

be broken spontaneously. While this could, in principle, be done with a bulk Higgs field,

such a course of action would imply that the Higgs mass (or the vacuum expectation value)

would assume the natural scale, namely M6, and the hierarchy problem would resurface.

This is exactly analogous to the case of the corresponding five-dimensional scenario. A way

out would be to confine the Higgs to a brane wherein the perceived scale is naturally low.

In the present case, it could be 3-brane located at (x4 = π, x5 = 0), or, more generally, the
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4-brane at x4 = π. As has been pointed out in ref. [55], the first course of action leads to

a equation of motion for the gauge bosons that does not let itself to a closed-form solution

commensurate with the boundary conditions. To this end, we consider a theory with an

explicit cutoff . R−1
y and described by a Higgs Lagrangian of the form1

Lh = δ(x4 − π)
√
−g5

(
gµνDµφ(xM̄ )†Dνφ(xM̄ ) + ℵ−2g55|D5φ(xM̄ )|2 + V (φ)

)
,

Dµ = ∂µ − i gYMAµ(xν , x4, x5)
(2.5)

where the barred indices (M̄ etc.) run over the coordinates (0, 1, 2, 3, 5) relevant to this

brane. Note that the form of the Lagrangian is slightly different from that proposed in

ref. [55]. In particular, the factor ℵ−2 ensures that the natural scale of the theory is R−1
y and

not r−1
z (which is larger than the cutoff). While the form above is seemingly inconsistent

with the full five-dimensional Lorentz invariance, this is not of concern here. In fact, the

very presence of the x5-dependent brane tension V2(x5) [48, 55] has already destroyed part

of the symmetry leaving behind a manifest four-dimensional Lorentz invariance. V (φ) is

a potential admitting a nontrivial vacuum and, thus, a brane-localized mass term for the

gauge boson. The solution to the corresponding gauge equation of motion is still rather

complicated, but can be simplified substantially if V (φ) is such that the scalar equation

of motion admits a x5-dependent profile of the form 〈φ(x5)〉 ∝ v/
√
b(x5) with v being

the (constant) vacuum expectation value as mentioned in ref. [55]. Postponing discussions

about the form of the V (φ) needed, we assume that the profile is indeed so. This would,

then, introduce a brane-localized gauge field mass term of the form

Lm =

√
−g5

2
M̃2(x5) gµν5 AµAνδ(x4 − π)

with M̃ = m/
√
b(x5) where m ∝ gYM v. The consequent boundary conditions are

χ′p|x5=0 = 0 = χ′p|x5=π

and

η′n,p|x4=0 = 0 , and η′n,p|x4=π = m2R2
y ηn,p(π) . (2.6)

For mp=0 = 0, we have, for the modes ηn0,

J0(e−cπαn0)
(

2cαn0Y0(αn0)+R2
ym

2Y1(αn0)
)

=Y0(e−cπαn0)
(

2cαn0J0(αn0)+R2
ym

2J1(αn0)
)
,

where, as before, αn0 ≡ mn0Rye
cπ/c. Since the lightest mass mode is to be identified with

the W/Z bosons, we have α00 ∼ m00Ry e
cπ/c � 1 (as c ∼ 10). Expanding the Bessel

functions, we obtain

m2
00 ≈

1

2π
m2 e−2cπ . (2.7)

Clearly, for the W boson, m2 = 2π g2v2, whereas for the Z boson, m2 = 2π (g2 + g′2)v2,

with g and g′ being the weak and hyper-charge coupling constants respectively.

1It is at this scale that the compactified direction x4 would reveal itself and a four-dimensional description

would no longer be tenable.
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As for the fermions, six dimensions (unlike five) admit Weyl fermions, and we just

promote the SM fermions to their higher-dimensional selves. Concentrating on the posi-

tive chirality spinor Ψ+, the Dirac Lagrangian, in terms of the sechsbeins EMa and spin

connection wbcM , is given by

LDirac = i Ψ̄+ ΓaEMa

(
∂M + wbcM [Γb,Γc]

)
Ψ+ . (2.8)

Using a representation for the gamma matrices Γb as in ref. [55], the wavefunction Ψ+ can

be expressed as

Ψ+ =
1√
Ryrz

∑
n,p

[
Fn,p+l (x4, x5)ψn,pl (xµ)⊗ Sup + Fn,p+r (x4, x5)ψn,pr (xµ)⊗ Sdn

]
, (2.9)

with

Sup ≡ (1 0)T , Sdn ≡ (0 1)T . (2.10)

A similar expression arises for Ψ− as well. The subscripts (l, r) refer to the (four-dimen-

sional) chirality of the four-dimensional fields ψn,pl,r . Effecting a separation of variables, the

wavefunctions Fn,p+l/r(x4, x5) can be written as

Fn,pl/r (x4, x5) = [a(x4)]−2 [b(x5)]−5/2 f̃n,pl/r (x4)fpl/r(x5) (2.11)

where

f̃n,pl (x4) = ec|x4|/2
[
c1Jνp(xnpe

c(|x4|−π)) + c2Yνp(xnpe
c(|x4|−π))

]
f̃n,pr (x4) = ec|x4|/2

[
c3Jνp(xnpe

c(|x4|−π)) + c4Yνp(xnpe
c(|x4|−π))

]
νp ≡

√
1

4
+
m2
pR

2
y

c2
=

p π

2 Θk(π)

xnp ≡Mnp
Ry
c
ecπ ,

(2.12)

and

fl(x5) = exp
[
iκ+
l Θk(x5)

]
−
d+
l

d−l
exp

[
iκ−l Θk(x5)

]
fr(x5) = exp

[
iκ+
r Θk(x5)

]
− exp

[
iκ−r Θk(x5)

]
Θk(x5) ≡ tan−1

(
tanh

kx5

2

)
.

(2.13)

The constants κl/r are solutions of quadratic equations, and are given by

κ±r = −1±

√
1 + 4

m2
pR

2
y

c2

κ±l = 1±

√
1 + 4

m2
pR

2
y

c2
.

(2.14)
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For the massless mode, fpl (x5) = 1 and f̃n,pl (x4) = 1. The boundary conditions dictate

that F (n1,p1)
+l (x4, x5) = F (n1,p1)

−r (x4, x5) and F (n1,p1)
+r (x4, x5) = F (n1,p1)

−l (x4, x5).

The Yukawa Lagrangian now sees only the brane-localized Higgs field, and can be

written as

Ly =
∑
i,j

Yij

∫
d4x

∫
dx4

∫
dx5
√
−g5 φ

†Di
+(xM )Sj−(xM ) δ(x4 − π) + H.c., (2.15)

where Di
+(xM )

(
Sj−(xM )

)
are the six-dimensional fields with chirality ± and transforming

as doublets (singlets) under SU(2).

In terms of the KK components, this can be re-expressed as

Ly = v
∑
i,j

Y n1,p1,n2,p2
(+l,−r)ij

∫
d4xD

(n1,p1),i
+l (xµ)S

(n2,p2),j
−r (xµ)

+ v
∑
i,j

Y n1,p1,n2,p2
(+r,−l)ij

∫
d4xD

(n1,p1),i
+r (xµ)S

(n2,p2),j
−l (xµ) + H.c.

where the effective four-dimensional Yukawa couplings are given by

Y n1,p1,n2,p2
(+l,−r)ij = Yij a

4(π)

∫
dx5 [b(x5)]9/2 F (n1,p1)

+l (π, x5)F (n2,p2)
−r (π, x5)

Y n1,p1,n2,p2
(+r,−l)ij = Yi,j a

4(π)

∫
dx5 [b(x5)]9/2 F (n1,p1)

+r (π, x5)F (n2,p2)
−l (π, x5) .

Note that fermion mixing is, now, not restricted to just the usual flavour (Cabibbo)

mixing, but is generalized to incorporate mixing between different KK excitations as well,

both flavour-diagonal and non-diagonal. This is but a consequence of the brane-localization

of the Higgs field, which breaks KK number conservation. Concentrating on the inter-level

mixing, while keeping the CKM mixing in abeyance for now, clearly the former is important

primarily for the heaviest flavour, viz. the top-quark. The boundary conditions ensures that

the zero mode is chiral while leaving the higher modes to be vector like. The mass matrix,

in the weak/KK eigenbasis Ql =
(
D0,0

+l , D
1,1
+l , S

1,1
−l

)
and Qr =

(
S0,0
−r , D

1,1
+r , S

1,1
−r

)
, reads

Mtop =


Y 0,0,0,0v 0 Y 0,0,1,1

(+l,−r)v

Y 1,1,0,0
(+l,−r)v MD(1,1) Y 1,1,1,1

(+l,−r)v

0 Y 1,1,1,1
(−l,+r)v MS(1,1)


where MD(1,1) and MS(1,1) are the tree level KK masses (in the absence of level-mixing)

for the corresponding doublet and singlet fields. We have, obviously, truncated the mass

matrix to the lightest nontrivial sector, so as to illustrate the salient points without unduly

increasing the complexity. The physical masses are, of course, given by the eigenval-

ues of M†topMtop. Since the doublet and singlet masses are related by a chiral rotation,

MD(1,1) = −MS(1,1) = M(1,1), as calculated in Paper I. On the other hand, the very struc-

ture of the F ’s ensure that, for a given fermion, the inter-level Yukawa couplings are,
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generically, much smaller than the same-level ones.2 In other words, Y 0,0,0,0 ≈ Y 1,1,1,1
(+l,−r) ≈

Y 1,1,1,1
(−l,+r) � Y 0,0,1,1

(+l,−r) = Y 1,1,0,0
(+l,−r), with the last equality being an exact one. This makes

the diagonalization of the matrix easier and, to the first order, similar to the Universal

Extra Dimension scenarios, with the caveat that, in warped space, the Yukawa coupling

constants are not all the same. Though the coupling increases for higher p states, this is

overshadowed by the increase in the tree level KK mass. And hence we could truncate the

mass spectrum to n = 1, p = 1 level. On diagonalizing the above matrix numerically we

get Md
D(1,1) = −Md

S(1,1) ≈
√
M2

1,1 +
(
Y 1,1,1,1
(+l,−r)

+Y 1,1,1,1
(−l,+r)

2 v
)2

. For the rest of the fermions, we

could safely assume Md
D(n,p) = −Md

S(n,p) ≈Mn,p.

3 Higgs

A generic 3-brane localized Higgs profile leads to equations of motion for the gauge bosons

that do not admit simple closed form solutions, and this is what prompted the particular

choice3 of φcl = v/
√
rzb(x5), in the previous section. This seemingly ad hoc ansatz is

actually a x5-dependent solution [55] of the equation of motion for a potential of the form

V (φ) =
k2

R2
y

[
5 sech2 kπ

24 (v/
√
rz)4

φ6 − 7

8
φ2

]
. (3.1)

Note that this potential (proportional to that in ref. [55]) is truly of the aforementioned

cutoff scale.

Perturbing the scalar field about its classical value, viz. φ(xµ, x5) = φcl(x5)+ φ̂(xµ, x5),

we have, for the equation of motion

1

R2
y

∂5(b4∂5φ̂) +
b2

a2
π

∂µ∂
µφ̂ =

k2

R2
y

(
25 sech2 kπ

4
b2 − 7

4
b4
)
φ̂ .

Re-parameterizing

φ̂ =
1
√
rz
hp(xµ)χ(h)

p (x5) , (3.2)

we have
∂µ∂

µhp = m2
php

∂5

[
b4∂5χ

(p)
p

]
= −k2

[
γpb

2 +
7

4
b4
]
χ(h)
p ,

(3.3)

where

m2
p =

(
25

4
sech2 kπ + γp

)
k2a2

π

R2
y

. (3.4)

Note that the nominal vacuum expectation value v does not enter the expression for the

masses, but the cutoff R−1
y squarely does so; and that the masses (as also v) are of the

2Note that the inter-level couplings would have vanished if the Higgs field could percolate freely into

the bulk and are but a consequence of the loss of KK-number conservation brought about by the brane

localization.
3Note that the factor of r

−1/2
z is only a overall normalization and is not reflective of the natural scale of

the five-dimensional theory, which would be seen to be R−1
y .
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order of the cutoff.4 A couple of subtleties need to be considered, though. For one, the

last term in eq. (3.3), namely 7
4k

2b4, could be considered a negative “bulk mass” term.

Furthermore, note that φcl lives entirely on one side of the nominal vev v. Thus, despite

the positive contributions to the energy engendered by the nontrivial x5-dependence, there

is a danger of the theory admitting tachyonic modes (at least for some range of k), thereby

invalidating the formulation. We shall shortly return to this.

In the regime where all m2
p are non-negative, it is natural to identify the lowest state

(corresponding to γ0) with the recently discovered Higgs boson, yielding

mh = m0 =

√
25

4
sech2 kπ + γ0

k

Ry
aπ . (3.5)

Parameterizing the vev v as

v =
λv√
2π

R−1
y =

λv√
2π
ℵ−1 r−1

z , (3.6)

where λv . 1, we have

λv =

√
2π

(
25

4
sech2 kπ + γ0

)
k

g

Mw

mh
, (3.7)

a relation that would prove to be useful in identifying the “right” part of the parameter

space. It should be remembered, though, that this result is only an indicative one and can

receive large corrections as we shall see later.

3.1 The Higgs spectrum

The solution to the equation of motion (eq. (3.3)) is given by

χp(x5) = sech2(kz)

[
cot θpP

3/2

ν
(h)
p

(tanh kx5) +Q
3/2

ν
(h)
p

(tanh kx5)

]
ν(h)
p ≡ −1

2
+

1

2

√
9 + 4γp cosh2(kπ) .

(3.8)

Since the solutions have to be even functions of x5, we have χ′p(x5 = 0) = 0. Using the

identities (
dPMN (x)

dx

)
x=0

=
2M+1

√
π

sin

(
π (N +M)

2

)
Γ(1 + (N +M)/2)

Γ((N −M + 1)/2)(
dQMN (x)

dx

)
x=0

= 2M
√
π cos

(
π (N +M)

2

)
Γ(1 + (N +M)/2)

Γ((N −M + 1)/2)

we are led to

cot θp =
−π
2

cot
π (ν

(h)
p + 3/2)

2
. (3.9)

4This would not have been the case had we not effected the aforementioned scaling of the potential and

the x5 derivative term.
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Figure 1. The dependence of the lowest lying Higgs mass on k starting from φcl = v/
√
rz b(x5).

Since we are interested only in the small-k branch, the Legendre functions are well-behaved

in the entire domain and the use of the Neumann boundary conditions is straightforward,

giving rise to

0 = (1− 2ν(h)
p )

[
cot θp P

3/2

ν
(h)
p +1

(τπ) +Q
3/2

ν
(h)
p +1

(τπ)

]
+ 2 (ν(h)

p − 1) τπ

[
cot θp P

3/2

ν
(h)
p

(τπ) +Q
3/2

ν
(h)
p

(τπ)

]
,

(3.10)

where τπ ≡ tanh(k π). This equation has to be solved numerically to obtain the discrete

set of values allowed to ν
(h)
p and, hence, γp.

Before we attempt this, it is amusing to note that a negative value for γ0 would turn

ν
(h)
0 complex. Note though that Im

(
P

3/2

ν
(h)
0

(tanh(kx5))
)

= Re
(
Q

3/2

ν
(h)
0

(tanh(kx5))
)

= 0, if

Re
(
ν

(h)
0

)
= −1/2, as is the case here. In other words, the boundary conditions demand

that, in such cases, cot θp must be a pure imaginary number, as indeed is the case (see

eq. (3.9)). The phase of the corresponding wavefunction would, thus, be independent

of x5.

In figure 1, we display the result for γ0 as function of k. Also shown, for ready reference,

is the dependence of the lowest mass m0. As the figure clearly shows, the formulation

allows for only k . 0.5. On the other hand, a perusal of table 1 (where the ratio ℵ has

been chosen to ensure that m0 is consistent with the measured value) shows that requiring

λv . 1 (as argued for earlier) would constrain us to k & 0.4. This, then, seems to put

strong constraints on the parameter space. It should be appreciated that the fast growth

of the excited state masses with k is but a consequence of the fact that, for such cases,
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k = 0.3, α = 49.0, w = 2.69× 10−14

(p) γp mp( TeV)

(0) −1.16419 0.121 λv = 1.99, β = 0

(1) 4.932 0.260

(2) 24.742 0.489

k = 0.4, α = 46.5, w = 4.33× 10−14

(p) γp mp( TeV)

(0) −1.029 0.120 λv = 1.71, β = 0

(1) 1.59 0.262

(2) 9.536 0.484

k = 0.5, α = 46, w = 3.2× 10−13

(p) γp mp( TeV)

(0) −0.9914 0.118 λv = 0.323, β = −7× 10−6

(1) 0.556 1.19

(2) 3.997 2.13

Table 1. Sample spectra for the small k case for a particular bulk curvature (ε = 0.1).

the cancellation between the two pieces in the expression for m0 is quite extensive, while

this is not the case for the KK states. More interesting is the fact that k ≈ 0.45 leads to a

second scalar state mass of ∼ 700–800 GeV as is indicated in the recent LHC results. As

is obvious, the KK-excitation does not acquire a vev, and, hence, has drastically reduced

partial width in to a WW or ZZ pair. On the contrary, its coupling with the top-quark

(and its KK-cousins) remain unsuppressed, thereby leading to a much larger branching

fraction into a γγ state. Consequently, it is an obvious candidate to explain the observed

excess [53, 54]. However, it should be realized that there is no conclusive evidence yet for

such a resonance, and even less for its angular momentum.

3.2 Corrections to the Higgs potential and modifications to the spectrum

That aesthetic considerations (as also phenomenological imperatives as we shall see soon)

drive us towards a precipice in the parameter space (as exemplified by a possible tachyonic

mode) behoves us to pause and reconsider. Is this a generic feature of the scenario or is it

specific to the form of the potential that we have chosen? Even if eq. (3.1) indeed repre-

sented the tree-level potential, it would, at the least, be subject to quantum corrections.

In fact, given that we are dealing with a non-renormalizable theory (with a well-specified

cutoff R−1
y ), we could as well consider higher-dimensional terms even in the tree-order

Lagrangian. We will, for the sake of simplicity, limit ourselves to polynomial terms.

Even with a generic polynomial modification to the potential, an exact closed-form

solution to the equation of motion is not straightforward. Furthermore, the specific form

of φcl was chosen to facilitate the solution of the gauge boson wavefunctions with the

boundary-localized symmetry breaking term. To this end, we would like to preserve this

feature to the best of our abilities and, thus, contemplate only a monomial5 perturbation

5While a polynomial change is but a straightforward generalization of the analysis present here, it adds

little to the qualitative features.
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to φcl of the form

φnew
cl =

v√
rz b(z)

[1 + βnb
n(z)] (3.11)

where n is an as yet undetermined power and βn is a small parameter. It is easy to see

that the change above can be wrought about with a potential

Vnew(φ) = V (φ) + δV (3.12)

where

δV = − k
2

R2
y

v

2r2
z

βn

[
n2 + 3n

n− 1

(
rz φ

2

v2

)1−n
+
n2 + 2n+ 5

3− n
sech2(kπ)

(
rz φ

2

v2

)3−n]
+O(β2

n) .

(3.13)

Considerable simplification occurs for n = −3 (a choice that we embrace for the rest of the

paper), whence the potential simplifies to

δV =
−4 k2

3R2
y

v

2r2
z

β sech2(kπ)

(
rz φ

2

v2

)6

where β ≡ β−3 ≤ 0 so as to ensure a potential bounded from below.

Perturbing around φnew
cl , the new equation of motion is found to be

1

R2
y

∂5(b4∂5φ̂) +
b2

a2
π

∂µ∂
µφ̂ =

k2

R2
y

[
25 sech2 kπ

4
b2 − 7

4
b4 +

β

b(z)

(
25− 28ℵ

λv

)
sech2(kπ)

]
φ̂ .

(3.14)

Treating the last term above as a perturbation, the lowest eigenvalue is shifted to

m2
0,new =

k2a2
π

R2
y

[(
25

4
sech2 kπ + γp

)
+ β

(
25− 28

vrz

)
Xk

]
where Xk is the matrix element of the perturbation Hamiltonian. The consequent shift

in the wavefunction χ0(x5) can be calculated analogously. For k = 0.5 (0.6) we have

Xk = 0.51 (0.3). Clearly for λv < 1 (as it should be), a negative β raises the Higgs mass

considerably, thereby allowing for a wider range of k without risking tachyonic modes. In

the new description eq. (3.7) will get modified and, as figure 2 shows, a rather wide range

of λv becomes allowed once even small perturbations are switched on.

3.3 An alternative scheme

Appealing to corrections to the Higgs potential is not the only way out of the tachyonic

imbroglio. We briefly consider, here, an alternative. Recall that the very establishment of

the nested warping structure required a x5-dependent tension on the 4-brane at x4 = π

given by

V2(x5) = −8M2
6

√
−Λ6

10
sech(k x5) = −8 εM5

6 sech(k x5) .

The particular form for V2(x5) could have originated from a variety of mechanisms including

a x5-dependent vacuum structure in a scalar field theory [48]. As can be appreciated, this
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Figure 2. The relation between the parameters λv and the coefficient β−3 in the monomial scalar

field perturbation (φ12) that would lead to a light Higgs mass of 125 GeV for k=0.6 and 50<ℵ<53.

is intimately connected to the very process of compactification in this theory. It is, thus,

conceivable that such a dynamical system (whatever be the exact mechanism) could couple

to the scalar φ as well. Thus we may posit a scalar field Lagrangian of the form

L̂φ = δ(x4 − π)
√
−g5

[
−γ V2(x5)

M5
6

{
gµνDµφ

†(xM̄ )Dνφ(xM̄ ) +R−2
y

∣∣∣D5φ(xM̄ )
∣∣∣2}+ V̂ (φ)

]
(3.15)

where γ is a dimensionless positive constant. Choosing a standard form for V̂ (φ), namely

V̂ (φ) = −µ2 φ†φ+
λ̂

2
(φ†φ)2 ,

would lead to a flat (i.e., x5-independent) classical configuration viz. φ̂cl = v̂ =

√
−µ2/λ̂.

The corresponding localized mass term for the gauge field is exactly what we get for the

unperturbed potential V (φ) discussed earlier. On the other hand, with the scalar field

φ now settling to its global minimum, and with the x5-dependence of the fluctuation φ̂

(around φ̂cl = v̂) only adding to the energy, no tachyonic modes exist any longer. This

allows us to use a much wider range of k.

It should be realized that these results are not tied to the exact form of L̂φ, but

would be replicated, to a great extent, for many other choices (for both the kinetic and

the potential terms). This fact, as well as the results drawn, in the preceding section,

from perturbing the potential leads us to the inescapable conclusion that eq. (3.7) is not an

exact relation but only an indicative one. This does not come as surprise, for once radiative
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corrections (whether in the full theory, or in the effective four-dimensional version) to the

Higgs potential are taken into account, tree-level relationships would indeed change (as

happens, for example in the well-known case of the minimal supersymmetric standard

model).

4 Effective Lagrangian

To examine the low-energy consequences of this model, and especially those of the elec-

troweak symmetry breaking mechanism, it is useful to construct an effective Lagrangian,

which we do now. As we have already seen, the resolution of the hierarchy problem with

a localized (whether on a 3-brane or a 4-brane, as done here) Higgs boson introduces non-

trivial alterations to the boundary conditions of the gauge bosons. In particular, such a

localized energy density deforms not only the mass spectrum, but also the wavefunctions

of the KK-modes. However, since the symmetry-breaking mass is much smaller than the

KK-masses, it is safe to consider the changes in the lowest (zero-) mode alone, while ne-

glecting those to the others. Moreover, as we shall soon see, the effect of such changes in

the KK-mode wavefunctions on low-energy observables are further suppressed.

As we have already learnt, in the absence of the Higgs vev, the zero-mode wavefunctions

for the gauge boson, viz. χ0(x5) and η0,0(x4), are both flat. On inclusion of the 4-brane

localized vev φcl(x5) = v/
√
rz b(x5), the latter changes to (V ≡W±/Z)

ηV0,0 → ηV r0,0 ≈
1√
π

[
1 +

M2
V ρ

2

4

(
e2c(x4−π) − 1− 2cx4e

2c(x4−π) + 2cπ
)]

. (4.1)

where

ρ =
Ry
c
ecπ (4.2)

and we are working under the approximation that m0,0Ry/c� 1.

Before we use eq. (4.1) to calculate any observables, we should also consider changes

wrought by the inclusion of the perturbation of eq. (3.13) that would have led to a change

in the classical configuration encapsulated in eq. (3.11). The effect of this change in the

boundary-localized energy density for the massive gauge bosons can be calculated easily in

perturbation theory, and, to the first order in β, the zero-mode wavefunction changes to

ηV r0,0(x4)→ ηV r0,0(x4) +

[
2βn v

2 a2
π

π (m2
z −M2

(1,0))

∫ π

−π
dx5 b

n+1(x5) [χ0(x5)]2
]
ηV r1,0(x4) + · · ·

where the ellipsis denote the sub-dominant terms. With the integral being . O(1), the

additional suppression of v2/M2
(1,0) renders this correction too small to be of any interest,

and we shall neglect it altogether henceforth.

Reverting to eq. (4.1), such distortions manifest themselves, on integrating out the

extra dimensions, as wavefunction renormalizations. On canonically normalizing the kinetic

term in the Lagrangian, this brings forth tree level modification in the gauge mass term

as also any gauge interaction terms. The relevant part of the renormalized Lagrangian,
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for the renormalized zero mode V r, can be written in terms of the self energy corrections

ΠV V (q2) as

LV = −1

4
ZF rµνF rµν −

1

2

[
M2
V + ΠV V (0)

]
V r2,

where MV arises from the Higgs vev and

ΠV V =

{∫ π

0
dx4 a

2(x4)
[
∂4η

V r
0,0(x4)

]2}{∫ π

0
dx4

[
ηV0,0(x4)

]2}−1

Z = 1−Π′V V (0) =

{∫ π

0
dx4

[
ηV r0,0(x4)

]2}{∫ π

0
dx4

[
ηV0,0(x4)

]2}−1

.

Here, Π′V V ≡ ∂q2ΠV V . Note that, since the wave function in the x5-direction remains

constant and unchanged, there is no corresponding contribution to ΠV V or Π′V V .

Post electroweak symmetry breaking, we are primarily interested in the lowest modes,

and the relevant part of the mass matrix can be diagonalized by a transformation analogous

to that in the SM, viz.

Zµ = cθW
3
µ − sθBµ , Aµ = sθW

3
µ + cθBµ , cθ ≡

g√
g2 + g′2

.

Here, we neglect the small mixing with the higher KK-levels, which constitutes an excellent

approximation. In the basis where the mass matrix is diagonal, the relevant part of the

Lagrangian could be written as

−Leff =
Zγ
4
FµνF

µν +
ZW

2
W+
µνW

−µν +
ZZ
4
ZµνZ

µν

+
[
M2
w + Πww(0)

]
WµW

µ +
1

2

[
M2
z + Πzz(0)

]
ZµZ

µ

≡ 1 +A

4
FµνF

µν +
1 +B

2
W+
µνW

−µν +
1 + C

4
ZµνZ

µν +
G

2
FµνZ

µν

+ (1 + w)M2
WWµW

µ +
1 + z

2
M2
zZµZ

µ ,

(4.3)

where we have deliberately introduced the parameters A,B,C,G,w, z for future ease.

Since the photon does not couple to the Higgs, Πγγ = 0 and the corresponding renor-

malization factor Zγ = 1. For the W and Z, we get instead

Πww(0) =
1

2
M2
w

(
Mwρ

)2
(

1

2cπ
− 1 + cπ

)
≡ 1

2
M2
wm̃w

Πzz(0) =
1

2
M2
z

(
Mzρ

)2
(

1

2cπ
− 1 + cπ

)
≡ 1

2
M2
z m̃z

which also implies that

Zw = 1−Π′ww = 1− g2Π′11 ≈ 1 + m̃w

Zz = 1−Π′zz = 1− (g2 + g′2)Π′33 ≈ 1 + m̃z .
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With the rest of the gauge sector unchanged, the gauge-fermion interaction can now be

expressed in the standard form, viz.

Lint =

g∑
i,j

Vijψ̄iγ
µPLψjW

+
µ + H.c.

+
g

cθ

∑
i

ψ̄iγ
µ
(
T3iPL−Qis2

θ

)
ψiZµ+e

∑
i

ψ̄iγ
µQiψiAµ,

(4.4)

with all modifications encoded in the aforementioned six parameters A,B,C,G,w and z.

Note, though, that, on redefining W a
µ , Bµ and Higgs fields, only three of the six would

remain independent and have been famously parametrized as S, T, U [56] (or, equivalently,

ε1,2,3 [57]) through the relations

αemS ≡ 4s2
θc

2
θ

[
A− C −

c2
θ − s2

θ

sθcθ
G

]
αemT ≡ w − z

αemU ≡ 4s2
θ

[
A− B

s2
θ

+
c2
θ

s2
θ

C − 2
cθ
sθ
G

]
.

(4.5)

4.1 The oblique parameters

Having considered the general form, we now concentrate on the particular case at hand,

namely the extra corrections wrought by the new physics over and above the SM contribu-

tions, with the latter accruing only at the loop level. On the contrary, the additional con-

tributions here are two-fold. One set is occasioned by the exchange of the KK-excitations

and these we shall come back to later. The other is occasioned by a change in the wave-

functions of the SM particles and appear even at the tree-level. Given this, we may as

well neglect any loop-level effects associated with the new physics. This approximation

immediately leads to certain simplifications. For example, consider Π3Q, which, in the SM,

is generated only at the loop-level. Since ours is a tree-level calculation of the new physics

effect, no additional Z–γ mixing can be induced (δΠ3Q = 0). This, of course, was evident

from eq. (4.3) as it implied G = 0.

Renormalizing the fields through

Aµ → Arµ = Aµ , Zµ → Zrµ =
√
Zz Zµ , Wµ →W r

µ =
√
ZwWµ ,

the gauge kinetic term can be expressed as

Leff = −1

4
F rµνF

rµν − 1

2
W r+
µν W

r−µν − 1

4
ZrµνZ

rµν +M r2
w W

r2 +
1

2
M r2
w Z

r2 , (4.6)

where the renormalized masses are given by

M r2
w = M2

w(1 + w −B) = M2
w

[
1− 1

2
m̃w

]
M r2
z = M2

z (1 + z − C) = M2
z

[
1− 1

2
m̃z

]
.
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Similarly, the gauge fermion interaction is given by

Lint =

 g√
Zw

∑
ij

Vijψ̄iγ
µPLψjW

r+
µ + H.c.


+

g

cθ
√
Zz

∑
i

ψ̄iγ
µ
(
T3iPL −Qis2

θ

)
ψiZ

r
µ + e

∑
i

ψ̄iγ
µQiψiA

r
µ .

(4.7)

This immediately leads to expressions for the oblique parameters

δS ≈ −4π
M2
wρ

2cπ

g2
= −4πζ

δT ≈ −π
2 cos2 θw

M2
wρ

2cπ

g2
=

−π
2 cos2 θw

ζ

δU = 0

ζ ≡ M2
wρ

2cπ

g2
.

(4.8)

A detailed fit to the data has been performed in [58], and we use their central values

(derived by fixing U = 0, as is the case here and as is normal for most beyond-SM fits) of

S = 0.00± 0.08 and T = 0.05± 0.07.

4.2 Gf

In the most popular renditions of the SM fields leaking into a flat bulk (the so-called

Universal Extra Dimension scenarios), the existence of a Z2 symmetry prevents the odd

KK-modes of the gauge bosons from coupling with the SM bilinear. Furthermore, the

couplings of the even-modes are progressively suppressed for the higher modes. No such

symmetry exists here, and all modes of the gauge-bosons would couple with non vanishing

strengths to the zero-mode fermion bilinear. In particular, the coupling of the (1, 0)-mode is

often enhanced with respect to the SM coupling. This immediately leads to a change in the

four-fermion operators. For charged current processes at low energies, this is parametrized

by the very well measured quantity Gf which now reads

Gf = GSM
f

1 +
∑

(n,p) 6=(0,0)

(
g(n,p)MW

gMW (n,p)

)2
 ≈ GSM

f

1 +

(
g(1,0)MW

gMW (1,0)

)2
 . (4.9)

To appreciate the approximation above, it should be remembered that, for a given p, it is

the coupling of the n = 1 mode, viz. g(1,p), that is the largest, while those for the higher

n-modes are, typically, somewhat suppressed with respect to the SM coupling (see table 1

of ref. [55]). Compounded by the fact that the higher modes are much heavier, it is clear

that, within the p = 0 tower, the contribution of the n = 1 mode dominates. For p 6= 1

modes, all the couplings are significantly suppressed (even for n = 0) and the masses larger.
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k = 0.5, α = 48.367, w = 7.081× 10−14

(n, p) mnp( TeV) Cnp V

(1, 0) 9.5 3.81 1.0× 10−3

(2, 0) 21.9 0.49 3.34× 10−6

(0, 1) 17.0 0.20 9.21× 10−7

(1, 1) 30.9 0.06 2.84× 10−8

Table 2. Sample spectrum for the small k case for a particular bulk curvature (ε = 0.1) and with

λv = 1.5. Cnp is defined as the ratio of g(n,p) and g.

In other words, we have

Gf ≈ GSM
f [1 + V ] , V ≡ ζ

π c

(
g(1,0)

x1,0

)2

. (4.10)

Experiments demand [11] V < 0.0013 at 95% C.L.

To a reasonable degree of accuracy, the coupling of the W±(1,0) to the fermion bilinears

could be approximated as g(1,0) ∼ 3.8 × g. Using this, we have MW (1,0) & 8.6 TeV, a con-

straint that is a little weaker than that operative for the RS case. This was not unexpected,

because the suppression of the gauge-excitation coupling (in relation the five-dimensional

analogue), is only a small one, as evinced by the aforementioned approximation. What

is more interesting is that, as table 2 shows, there exists a large parameter space where

this constraint is automatically satisfied. We will delineate this quantitatively in the next

section.

5 Confronting electroweak precision measurements

Rather than drawing conclusions piecemeal from individual data (as we have done in the

preceding section), we now attempt to examine how well the model agrees globally with

all the precision measurements. Ref. [14] drew up expressions for 22 such observables in

terms of the their SM values, the oblique parameters [56] S, T, U and V (the shift in GF ).

While the extra-dimensional contributions to the U -parameter are vanishingly small, for

S, T and V , we use the expressions derived in the preceding section. Re-evaluating the

SM expectations for a 125 GeV Higgs,6 we may now construct a χ2-test for this model

comparing the expressions with the experimental results [58].

While one could attempt a multidimensional analysis optimizing all the parameters in

the theory, it is much more instructive to examine the dependence of the ∆χ2 (the shift

in the χ2 from the SM value of ≈ 27.5) on individual parameters. To this end, we must

first identify the appropriate set of independent parameters, and the range that they may

6More up-to-date analyses, including two-loop results, are available [59–61], but make little qualitative

difference to our conclusions.
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Figure 3. The relation between the parameters ε and ℵ that reproduces the electroweak breaking

scale correctly. The left and right panels refer to k = 0.4 and k = 0.5 respectively.

be allowed. To start with, eq. (2.2) imposes two independent relations between c,ℵ, k, ε
and the product rzM6. Now, the applicability of a semi-classical treatment of the gravity

sector requires that the curvature be sufficiently smaller than the fundamental scale M6,

or in other words, ε . 0.1. Similarly, the avoidance of a large hierarchy implies that the

product M6rz be not too large. Since we are interested in the small k regime (k . 1), this

immediately puts a lower bound on ε. A complementary relation is provided by eq. (3.6),

and, once the electroweak scale is specified, the resultant relation between the parameters

is determined as displayed in figure 3. As is apparent, the dependence on k is minimal,

owing to the fact that the function k/ cosh(kπ) is slowly varying in the region of interest.

In figure 4, we present the corresponding shifts ∆χ2. Understandably, the dependence

on k, once again, is minimal. As eq. (3.6) shows, a smaller λv would imply a larger R−1
y .

This, in turn, has two consequences. First, it implies larger masses for the KK-excitations

of the gauge boson masses and, hence, a smaller change to Gf . Simultaneously, it results

in smaller values for ρ (see eq. (4.2)), and, hence, smaller values for both δS and δU . Thus,

it is easy to understand the dependence of ∆χ2 on λv. It is interesting to note that even

a very moderate hierarchy (λv . 0.3) renders the model quite consistent with low-energy

data, whereas λv ∼ 0.2 makes it almost indistinguishable from the SM.

6 Beta function

Grand unification remains a holy grail for scenarios of physics beyond the SM, for not only

does it provide a unification of forces, but also a platform to answer questions pertaining to

inflation and baryogenesis on the one hand, and a formalism to understand fermion masses

on the other. Within the standard four-dimensional paradigm, gauge coupling unification

occurs, though only at scales in the vicinity of 1015–1016 GeV, thereby putting a direct

verification of the paradigm beyond the reach of experiments in the foreseeable future.

– 19 –



J
H
E
P
0
4
(
2
0
1
6
)
1
3
3

 0.1

 1

 10

 100

 1000

0 0.02 0.04 0.06 0.08 0.1

∆χ
2

ε

k = 0.4

λ
v
 = 0.2

λ
v
 = 0.3

λ
v
 = 0.5

λ
v
 = 1.0

 0.1

 1

 10

 100

 1000

0 0.02 0.04 0.06 0.08 0.1

∆χ
2

ε

k = 0.5

λ
v
 = 0.2

λ
v
 = 0.3

λ
v
 = 0.5

λ
v
 = 1.0

Figure 4. The shift in the χ2 (as derived from the 22 observables listed in ref. [14]) as a function

of ε for various values of the parameter λv. The left and right panels refer to k = 0.4 and k = 0.5

respectively, while the parameter ℵ has been fixed as in figure 3.

A curious thing happens in the case of the universal extra-dimensional scenarios. The

renormalization group evolution of the gauge couplings (which is logarithmic in the case

of the SM) now turns power-law [63, 64]. This can be understood most easily in terms

of the KK-reduction, whereby the logarithmic contributions from each of the individual

KK-excitations sum up to give a power-law behaviour.7

For warped geometries, as is the case here, additional features arise. The absence of

a KK-parity implies the existence of additional loops. A further complication is caused by

the fact that, owing to the nontrivial differences in their wavefunctions, distinct KK-levels

of the same field have differing coupling strengths. This already renders the evolution to

be quite different from the UED case.

And, finally, there is the issue of the graviton loops. Unlike in the UED case, here the

couplings of the KK-gravitons are non-negligible and ought to be included. On the other

hand, such a inclusion cannot be made in a straightforward fashion for the entire treatment

of the gravitation sector has been semi-classical and loop calculations with gravitons are

ill-defined.

In view of this, we desist from considering any graviton-loops. This can also be justified

in the sense, that for a given KK-level, the graviton is not only heavier than the SM

excitations, but also has a effective coupling8 significantly smaller than them. Naively at

least, the graviton contributions to the gauge beta-functions would, thus, be expected to

be numerically small. Hence, while our results cannot be termed exact, they are expected

to be very good approximations of calculations in the full theory.

7Much the same would be seen if the entire calculation were to be done in the full five-dimensional

theory. Care must be taken, though, in view of the inherently non-renormalizable nature of the theory.
8The graviton coupling is, of course, dimensionful. What should be compared to the effective gYM is the

product of the graviton mass and its coupling. In the small k regime, this is indeed much smaller [51, 52].
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Figure 5. Gauge coupling constant evolution for k = 0.5, ε = 0.1. The three panels correspond to

different λv values.

Restricting ourselves to a discussion of the interactions between the SM fields, the

one-loop β-functions can be calculated in a straightforward manner, considering the KK-

excitations to be heavy particles with appropriate couplings (gauge, Yukawa) with the

corresponding contributions to be included as a threshold is crossed.9

As already mentioned, even this task is rendered difficult by the fact that KK-number,

or even KK-parity, is not conserved. However, as shown in [55], as far as the interactions of

the zero mode gauge fields are concerned, KK-number is indeed conserved. This is exactly

true as long as the modifications due to Higgs localization can be neglected, which it can

indeed be above the electroweak symmetry breaking scale. The change in evolution of the

hypercharge is straightforward as we only need to calculate the additional contributions

to the vacuum polarization. Similarly, for the non-abelian component of the theory, the

task, at one-loop order, is easier for the triple-“gluon” vertex10 (for all the vertices now

respect KK-number conservation) than for the gauge-fermion vertex. This can be exploited,

in conjunction with the appropriate Slavnov-Taylor identities (since our six-dimensional

Lagrangian is gauge invariant) to calculate the RG flow for the other vertices as well. Thus,

the exercise is very similar to that in the universal extra-dimension scenarios, but for the

added complication of unevenly placed KK-masses that need to be calculated numerically.11

It should be appreciated that the same results are obtained for vertices that admit KK

non-conservation, but only if all the modes are taken into account.

In figure 5, we display the evolution of the gauge coupling constants for a particular

parameter point, namely (k = 0.5, ε = 0.1) and some representative values of λv. As is

expected, the evolution is indeed much faster than in the SM, and the “unification” scale is

lowered to approximately ≈ 103–106 TeV. The lower λv is, the higher are the masses for the

KK-excitations, and, consequently, the higher is the unification scale. On the other hand,

if we introduce a mechanism (such as those including a custodial symmetry) that allows

us to significantly lower the KK-masses, the unification scale would be lowered instead.

9Since we are effecting only a one-loop calculations, neglecting the threshold effects is an excellent

approximation.
10The same holds for the four-“gluon” vertex as well, except that more diagrams need to be calculated.
11In actuality, after the first few levels, the rest can be rather well-fitted in terms of a bilinear function.
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Two additional features are worth commenting on. The first is that, not only the

U(1)Y theory, but also the SU(2)L theory lacks asymptotic freedom, a consequence of the

number of new states in the theory. This is quite analogous to the case of the UED [64]. A

related feature is the presence of some small kinks in the plots, visible most prominently

for the case of the SU(3). This, once agaian, is but reflective of momentary change of the

sign of the β-function and owes its origin to the relative placements of the KK-excitations.

Note that the latter feature is particularly sensitive to the order to which the RG-equations

are calculated, and stand to be significantly altered once we go beyond treating thresholds

as discrete steps. Furthermore, such effects could also play a role in resolving the lack of

exact unification.

7 Summary and outlook

While a five-dimensional world with a warped metric and the SM fields confined on a

end-of-the-world brane (the RS scenario) offered a tantalizing solution to the hierarchy

problem, it suffers from the obvious problem that no KK-excitation of the graviton has

been observed so far. Similarly, if one were to calculate amplitudes for flavour-changing

neutral currents, the low cut-off (∼ 1 TeV) of the theory implies that the dimension-six

operators do not suffer a large suppression and the resultant rates are too high. The

first problem can be solved [51, 52] courtesy reduced couplings of the gravitons in a six-

dimensional generalization [48] of the original RS model with nested warping. Indeed,

the coupling can be suppressed well enough for the recently reported diphoton excess at

750 GeV [53, 54] to be explained in terms of such a resonance [52], a feat impossible within

the five-dimensional paradigm.

Allowing the fermions and gauge fields to propagate in the bulk is an obvious antidote

to the second problem, since four-Fermi operators are now suppressed by higher powers of

the ultraviolet cutoff. On the other hand, doing so will bring into play KK-towers of the

fermions and gauge bosons and these, in turn, will effect low-energy observables thereby

inviting tight constraints from the indirect measurement data obtained at LEP. Indeed,

within the five-dimensional paradigm, such constraints push the gauge boson KK-masses

well beyond the reach of the LHC [12–14]. This brings back at least a little hierarchy unless

additional physics such as new particles alongwith a custodial symmetry is invoked.

Clearly, both sets of problems could be addressed if one considers bulk gauge bosons

and fermions in a six-dimensional theory with nested warpings, and the required formal-

ism was introduced in Paper I [55]. Such a construction brings forth several interesting

consequences such as restrictions on the number of chiral generations. Furthermore, with

one particular tower disappearing identically for each fermion species, if such KK-fermions

(KK-bosons) can be produced at a collider, the signatures would be quite non-canonical. In

the current paper, we examine the issue of electroweak symmetry breaking in this scenario

as well as consider the phenomenological implications and constraints.

Contrary to the case of the fermions and gauge bosons, the Higgs cannot percolate into

the six-dimensional bulk, for it would bring back the hierarchy problem. While it might

seem that confining it to a 3-brane would be the simplest solution, this, unfortunately
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presents some technical complications (as discussed in Paper I). Instead, we consider a

novel mechanism confining it to a 4-brane, with the Higgs acquiring a x5-dependent classical

configuration thanks to an interplay between the potential term and the nontrivial kinetic

term endemic to a curved background. The maximum v of the classical configuration is

naturally of the order of the cutoff R−1
y (suffering only a mild suppression 0.1 . λv . 1), but

is warped down to the electroweak scale. Interestingly, the simplest such construction puts

a limit k . 0.5, beyond which tachyonic modes develop. The five-dimensional nature of the

Higgs field is manifested in the shape of KK-resonances, which often tend to be quite light

if tree level relations to equate the zero-mode mass to 125 GeV. However, once quantum

corrections are included, the KK-masses are lifted considerably (alongwith significantly

relaxing the constraint on the parameter k). For example, for k = 0.4 and λv = 0.5, a small

perturbation β−3 ≈ 3.4× 10−4 leads to a first excited mass Mh(1) ' 800 GeV. This would

be of particular interest if the recently reported excess [53, 54] in the diphoton channel

is actually confirmed. For while the graviton sector can also have such a resonance [52],

allowing the SM fields into the bulk not only forces us to a part of the parameter space

that increases the mass of the first graviton resonance, but also drastically suppresses

thereby reducing the signal strength. Furthermore, if the resonance is to be a graviton,

then we should soon see excesses in other channels as well (although the present data is

inconclusive). On the other hand, the aforementioned Higgs resonance would not decay

to W/Z-pairs through tree-level couplings, and with the couplings to the top-sector also

being modified considerably, it could present an interesting alternative.

Of more immediate concern are the effects on low-energy phenomenology. With flavour

changing neutral current operators now being suppressed by four powers of the UV-cutoff

(in contrast with only three powers for the analogous five-dimensional theory), the con-

straints from this sector are minimal. On the other hand, the very confinement of the Higgs

onto a 4-brane introduces changes in the gauge-boson wavefunctions that manifest them-

selves in the form of additional tree-level contributions to the oblique parameters S and

T . Similarly, the existence of the gauge-boson KK-resonances leads to a change in Gf , the

four-Fermi coupling. We perform a χ2 test using the data on 22 such precision-measured

observables, to find that the theory agrees very well with the low-energy data for λv . 0.5,

and is virtually indistinguishable from the SM for λv . 0.3, both of which represent only

a very small hierarchy between the Higgs vev and the UV cutoff.

It is instructive to consider the reason for and the circumstances of this agreement. For

one, just as in the case of the graviton-tower, the coupling of the gauge boson-tower with

the SM fermions are also somewhat suppressed. The consequent reduction in δGf obviously

helps. However, much of ∆χ2 accrues from the modification of the wave-function. It is here

that this scenario is not very different from the five-dimensional analogue. Consequently,

the limits on the KK-masses are very similar, the present scenario doing only marginally

better. What is of more importance is that raising the KK-masses in the five-dimensional

theory begins to call into doubt the semi-classical approximation that is the cornerstone of

the treatment of the gravity sector. Indeed, even with the introduction of additional physics

and a custodial symmetry, a fine tuning of O(10−2) would be needed. In contrast, the six-

dimensional theory studied here requires only a small fine tuning of O(λv). Furthermore,
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whereas the five-dimensional analogue would essentially push up all the resonances (except,

maybe, the radion) above the reach of the LHC, this is not the case here. For, the Higgs

resonances provide additional handles that can the model can be probed with. It would

also be interesting to examine this sector at the LHC, but we postpone this to a later effort.

And, finally, we come to the issue of RG evolution. With the proliferation of states,

naively, it would seem that the evolution would be much faster than is the case for the

five-dimensional theory. This is not quite true, for a small k means that the excitations

in the x5-directions are typically heavier. However, certain features (such as the loss

of asymptotic freedom for the SU(2) interactions) are, understandably, quite similar to

that in UED theories, but for the fact that the masses (and, hence, the thresholds) are

non-uniformly spaced here. This, for example, leads to rapid changes in the sign of the

beta-functions at certain intermediate points.

It might seem, overall, that by making the masses large, we have, essentially, decoupled

the KK-sector. While this is forced upon us by the extremely good agreement of the

low-energy observable with the SM expectations, it should be realized that the required

masses, apart from being somewhat lower than is the case for the five-dimensional theory,

are perfectly commensurate with the applicability of the semi-classical treatment of the

gravitational sector, and does not need the introduction of additional symmetries (as the

RS case does) to bring down the scale. However, if such a custodial symmetry is indeed

imposed, the mass scale can be brought down and interesting signals may be seen at the

LHC itself. We leave this for a future study. Also postponed is a thorough investigation of

the Higgs sector, especially the consequences of our novel localization scheme wherein the

scalar acquires a non-trivial classical configuration along a four-brane.
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