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Abstract

The absence, so far, of any graviton signatures at the LHC imposes severe constraints on the Randall–
Sundrum scenario. Although a generalization to higher dimensions with nested warpings has been shown 
to avoid these constraints, apart from incorporating several other phenomenologically interesting features, 
moduli stabilization in such models has been an open question. We demonstrate here how both the moduli 
involved can be stabilized, employing slightly different mechanisms for the two branches of the theory. This 
also offers a dynamical mechanism to generate and stabilise the scale for the Universal Extra Dimensions, 
another long-standing issue.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The discovery of the Higgs boson [1,2], while seemingly completing the jigsaw that the Stan-
dard Model (SM) is, has also brought into sharp focus a long-standing puzzle that has plagued 
the SM. The very lightness of its being militates against the conventional wisdom that the mass 
of a fundamental scalar should flow, at the very least, to the next-higher scale in the theory. Sev-
eral “resolutions” of this hierarchy problem have been proposed, some technically natural and 
others not so, most of these relying on some new dynamics and/or new states appearing at the 
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few-TeV scale that would serve to nullify the largest of the quantum corrections accruing from 
within the SM. The continuing absence of any direct evidence of such states, though, bring into 
question many such explanations.

A particularly elegant resolution is proffered by higher-dimensional theories. While models 
with large extra dimensions [3,4] have been quite popular, these fail to truly solve this problem in 
that these proffer no mechanism to stabilize the corresponding moduli. Similar is the case with 
Universal Extra Dimensions (UED) [5] which, while proffering interesting phenomenological 
consequences, such as an origin of Dark Matter, flavour physics as well as collider signatures, 
again do not really solve the problem of large hierarchies. Quite the opposite is the case of 
theories with a warped geometry [6–8], wherein one assumes space-time to be a slice of AdS5, 
bounded by two 3-branes, on one of which (the TeV brane) the SM fields are confined. There is 
but one fundamental scale (the scale of gravity M5, very close to the derived scale MPlanck) in 
the theory, and the smallness of the electroweak scale (with respect to M5) is only an apparent 
one, caused by the non-trivial dependence of the background metric on our brane’s location in 
the fifth (x4) dimension, or rather its distance, rc, from the other, and equally “end-of-the-world”, 
3-brane (also termed the UV-brane). To be specific, one has, for the Higgs vacuum expectation 
value (and, similarly, for the mass), v = ṽ exp(−π k5 rc), where ṽ =O(M5) and k5 is a measure 
of the bulk curvature.

With the extent of the hierarchy now being determined by the modulus (rc) of the compactified 
fifth dimension, the latter must be stabilized, an issue not addressed by the originators of the 
model. In other words, if the modulus is construed to be a dynamical field M, then a mechanism 
that forces the field to settle (at 〈M〉 = rc) should exist and be operative. As Ref. [9] showed, 
this could be achieved by introducing a new scalar field φ, with a non-vanishing potential, in 
the five-dimensional bulk. As φ interacts with M through the metric, integrating out the former 
would result in an effective potential Veff(M). An apt and simple choice of the scalar-potential 
along with boundary conditions (without any discernible hierarchy) can, then, lead to a suitable 
form for Veff(M) and, thereby, an appropriate rc .

With gravity percolating into the bulk, it is obvious that compactification would lead to a 
Kaluza–Klein (KK) tower of gravitons, with masses given by mn = xn k5 exp(−π k5 rc) where 
xn denote the roots of the Bessel function of order one. Both the applicability of semi-classical 
arguments (upon which the model hinges) as well as string theoretic arguments relating the D3 
brane tension to the string scale (and, hence, to M5 through Yang-Mills gauge couplings) restrict 
k5/M5 � 0.15 [10]. Thus, one expects the first KK-mode of the graviton, to be, at best, a few 
times heavier than the Higgs boson. Furthermore, the very warping that explains the hierarchy 
also concentrates the KK-modes (though, not the lowest and massless mode) near the TeV brane, 
thereby enhancing their couplings to the SM fields. Consequently, several search strategies at 
the LHC were designed [11–14] to detect their signatures in a multitude of channels. Negative 
results from the same viz. m1 � 2.66 TeV (at 95% C.L.) [15,16], thus, impose severe constraints 
on the model. It can be argued that, unless we allow a little hierarchy in the ratio ṽ/M5, the RS 
scenario can be ruled out as a solution to the SM hierarchy problem.

The situation improves significantly if one were to consider an extension of the scenario to two 
extra dimensions with nested warpings [17]. The graviton spectrum, while now being enlarged 
to a tower of towers, is different from that in the five-dimensional case in two crucial aspects. For 
one, the change wrought in the graviton wave function results in the mass of the first KK-mode 
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being significantly higher than that of the corresponding mode in the (five-dimensional) RS case.1

As this happens for natural values of the parameters, and does not need any fine-tuning, this 
feature, on its own, would imply a weakening of the aforementioned “little hierarchy” that the 
original RS scenario needed so as to explain the nonobservation of gravitons at the LHC [18]. 
More importantly, the large coupling (to the SM fields) enhancement that allowed for the graviton 
KK-modes to be extensively produced at the LHC, is now tempered to a great degree [18], a 
consequence, once again, of the double warping. Consequently, the graviton production rates are 
further suppressed and the scenario easily survives the current bounds from the LHC [18,19]. On 
the other hand, while the allowed parameter space of the model is still quite extensive, it can be 
probed well in the current run of LHC.

This, along with the fact that formulating the theory in a six-dimensional world has many 
other benefits, especially when the SM fields are also allowed into the bulk [20,21], renders this 
construction rather interesting. In particular, with the four-dimensional theory getting supplanted 
by a five-dimensional one at the lower of the two compactification scales, the infrared is effec-
tively screened from modes traversing the far ultraviolet. This is also reflected by the explicit 
computations of the electroweak precision variables [21], which demonstrated that the little hi-
erarchy is no longer a major issue. However, the very issue of stabilizing the moduli (two in the 
current case, as opposed to a single one in the 5-dimensional one) has not been addressed so far. 
This assumes particular significance in that the structure formulated in Ref. [17] does not boast 
of a conformally flat geometry. Furthermore, the branes are not necessarily flat and this intro-
duces its own set of complications. In this paper, we aim to rectify this situation and develop two 
related, but distinct, stabilisation mechanisms, somewhat analogous to those in Refs. [9,22–24]. 
This would also be seen to offer a stabilization mechanism for the modulus in a UED theory, 
thereby addressing a long-standing general lacuna in this otherwise attractive scenario.

Before we venture into the actual stabilization mechanism or even a detailed discussion of 
the scenario, we wish to clarify certain issues. Naively, it might be argued that having the gravi-
tons to be heavier than in the RS would result in a worse fine tuning for the electroweak scale. 
As we have already mentioned, this moderate heaviness is but a consequence of there being 
two extra dimensions. To appreciate this, let us consider a sequence of unrelated scenarios. The 
first example would be an ADD [4]-like scenario with two extra-dimensions being compactified 
toroidally, with radii (possibly different) only somewhat larger than M−1

6 , namely Ri = θi M
−1
6

with θi � 1. This would have meant M2
Pl = M2

6 θ1 θ2. In the analogous five-dimensional theory, 
one would have, instead, M2

Pl = M2
5 θ1. Thus, for the theory with the larger number of extra di-

mensions, one would have a smaller hierarchy between the fundamental M5, M6 etc. as the case 
may be and the electroweak scale. Consider, as the next example, a simplistic generalization of 
the RS scenario to a slice of AdS6 bounded by two 4-branes, such that the apparent scale on 
the IR-brane is a few TeVs. This particular (multi-TeV) scale would, then, be protected with the 
graviton KK-modes now lying at the same scale. If the 5-dimensional world be further compact-
ified (or, even, orbifolded) over a circle of small radius, there would extend an additional factor 
in the relation between M6 and MPl, thereby further ameliorating the hierarchy problem. As we 
shall see, much the same happens in the present case.

1 This is easy to understand once one realizes that the resolution of the hierarchy between the electroweak scale and the 
fundamental scale is now shared between two warpings. Consequently, the extent of the individual warpings is smaller 
here than required in the RS case.
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On a related note, the cutoff of the effective four-dimensional theory needs to be identified too. 
For an effective theory, this is often described as the scale at which the loop contributions (often 
very large) are to be cut off, for the new physics beyond this scale would naturally regulate such 
contributions. Nonetheless, with the ultraviolet completion of the present theory being unknown 
(in the absence of any quantum theory of gravity), this cancellation cannot be demonstrated 
exactly. However, within the five-dimensional context, it has been argued that the addition of 
the Planck-brane and/or the TeV-brane allows for a holographic interpretation, with the former 
acting as a regulator leading to a UV cutoff, of the order of the inverse of the modulus, on the 
corresponding conformal field theory [25–27]. A similar conclusion also holds for theories with 
gauge fields extended in to the warped bulk [10,28,29]. While no such duality has been explicitly 
constructed for the six-dimensional case, one such would obviously exist, for, in a certain limit, 
the bulk is indeed AdS6-like. Thus, the branes would provide a regulator, albeit in a deformed 
CFT. In particular, the cutoff for the four-dimensional quantum field theory is set not by M6, 
but the inverse of the larger of the two moduli. At such a scale, the higher-dimensional nature 
of the theory becomes quite apparent, and the four-dimensional effective theory (including the 
graviton KK-modes) is no longer an apt language. And while the compactification mechanism is 
not specified here (or within the RS theory), the physics responsible for it must be incorporated 
in any description that reaches beyond this scale.

2. The 6D warped model

The space-time of interest is a six-dimensional one with successive (nested) warpings along 
the two compactified dimensions. The uncompactified directions support four-dimensional (xμ) 
Lorentz symmetry while the compactified directions are individually Z2-orbifolded. In other 
words, we have M1,5 → [M1,3 × S1/Z2] × S1/Z2. Representing the compact directions by the 
angular coordinates x4,5 ∈ [0, π] with Ry and rz being the corresponding moduli, the line ele-
ment is, thus, given by [17]

ds2
6 = b2(x5)[a2(x4)ημνdxμdxν + R2

ydx2
4 ] + r2

z dx2
5 , (1)

where ημν is the flat metric on the four-dimensional slice of spacetime. As in the RS case, orb-
ifolding, in the presence of nontrivial warp factors, necessitates the presence of localized energy 
densities at the orbifold fixed points, and in the present case, these appear in the form of tensions 
associated with the four end-of-the-world 4-branes.

Denoting the natural (quantum gravity) scale in six dimensions by M6 and the negative (six 
dimensional) bulk cosmological constant by �6, the total bulk-brane action is, thus,

S = S6 + S5

S6 =
∫

d4x dx4 dx5
√−g6 (M4

6 R6 − �6)

S5 =
∫

d4x dx4 dx5
√−g5 [V1(x5) δ(x4) + V2(x5) δ(x4 − π)]

+
∫

d4x dx4 dx5

√−g̃5 [V3(x4) δ(x5) + V4(x4) δ(x5 − π)] .

(2)

The five-dimensional metrics in S5 are those induced on the appropriate 4-branes which accord 
a rectangular box shape to the space. Furthermore, the SM (and other) fields may be localized on 
additional 3-branes located at the four corners of the box, viz.
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S4 =
∑

yi ,zi=0,π

∫
d4x dx4 dx5

√−g4 Li δ(x4 − yi) δ(x5 − zi) .

Since S4 is not relevant to the discussions of this paper, we shall not discuss it any further.
Rather than limit ourselves to the solutions to the Einstein equations presented in Ref. [17], 

we consider, here, a more general class. To motivate it, let us recollect that, in such models, the 
presence of bent branes is due to a “lower-dimensional cosmological constant” induced on the 
brane. For example, the four dimensional components of the Einstein equations, in the presence 
of such a term 	 would read

a2

[
3

R2
y

(
a′′

a
+ a′ 2

a2

)
+ 2

r2
z

(
3ḃ2 + 2bb̈ + �6 r2

z

2M4
6

b2

)]
= 	

r2
z

,

where primes (dots) denote derivatives with respect to x4 (x5). Introducing a constant of separa-
tion 	̃, we have

3ḃ2 + 2bb̈ + �6r
2
z

2M4
6

b2 = 	̃ (3)

and

3

R2
y

(
a′′

a
+ a′ 2

a2

)
+ 2

r2
z

	̃ = 	

r2
z a2

. (4)

The first equation has the solution

b(x5) = b1 cosh(k|x5| + b2) , b1 =
√

−	̃

3 k2
= sech(kπ + b2),

k = rz

√
−�6

10M4
6

≡ rz M6 ε

(5)

assuming2 	̃ < 0. While Ref. [17] had considered only the special case of b2 = 0, we shall 
admit the more general solution. As we shall see below, a nonzero b2 would have very important 
consequences. Physically, 	̃ (or equivalently b2) is related to the induced cosmological constant 
on a five dimensional hypersurface3 along the constant x5 direction. Differing values of 	̃, thus, 
correspond to inequivalent extent of bending of the four-brane, and, hence, lead to different 
physical outcomes. We will demonstrate this shortly using widely different (in essence, limiting) 
values for 	̃. However, while the quantitative results do differ, qualitatively they turn out to be 
quite similar, with certain aspects essentially not changing at all. This was to be expected as many 
of the measurables (and certainly the most important ones) are only slowly varying functions 
of 	̃. Consequently, the physical consequences (and the exact stabilization potential) of any 

2 For ̃	 > 0, one would, instead, have b(x5) =
√

	̃/2k2 sinh(k|x5| + b2). Not much would change materially, except 
for the fact that b2 = 0 would no longer be allowed unless one is willing to admit a vanishing metric, albeit only at a 
given slice of space-time. It is intriguing to note that the notion of a degenerate spacetime has received recent attention 
from a different standpoint [30].

3 It should be realized that a five-dimensional cosmological constant is very different from a four-dimensional one. 
Indeed, even for a large value of the former, one could be left with a vanishing value for the latter, as would be the case 
here.
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arbitrary intermediate value of 	̃ can be trivially obtained by effecting a simple interpolation 
between the results for the extremal values.

For future convenience, we have also introduced the dimensionless combination ε. Clearly, for 
a semi-classical approach to be valid, the curvature must be significantly smaller than the mass 
scale of the theory. In other words, ε must be small,4 namely ε � 0.15. On the other hand, as we 
shall see below, too small an ε would either invalidate the resolution of the hierarchy problem, 
or, in the process, introduce a new (but smaller) hierarchy.

The solution to eqn. (4) for a nonzero 	 is given in terms of hyperbolic functions. While it 
is possible to work with the general solution, the consequent algebra is exceedingly complicated 
and the exercise does not proffer any extra insight that a simplifying choice does not. As a 
nonzero 	 results in a nonzero cosmological constant in the four-dimensional world, and as the 
observed cosmological constant in our world is infinitesimally small, we disregard it altogether 
and consider only5 	 = 0. We do not claim to offer any rationale for this choice but for the fact 
that it simplifies the algebra for the rest of the article without losing any of the essence. In this 
limit, the solution can be expressed as6

a(x4) = a1 e−c|x4| c ≡ b1 k
Ry

rz
. (6)

Normalizing the warp factors, at their maximum values, through a(0) = 1 and b(π) = 1, and 
imposing the orbifolding conditions, we have

b(x5) = cosh(k|x5| + b2)

cosh(kπ + b2)
, a(x4) = exp(−c |x4|) . (7)

The brane potentials are determined by the junction conditions. The ones at x5 = 0, π are simple 
and are given by

V3 = −8M4
6k

rz
tanh(b2) , V4 = 8M4

6k

rz
tanh(kπ + b2) , (8)

whereas the ones at x4 = 0, π have x5-dependent tensions

V1(x5) = −V2(x5) = 8M4
6c

Ry b(x5)
= 8M4

6k

rz
sech(k|x5| + b2) . (9)

It should be noted that the Israel junction condition V1 = −V2 is necessitated only by our 
focus on 	 = 0, or, in other words, a configuration wherein the four-dimensional cosmological 
constant vanishes exactly. Had we admitted 	 
= 0, this equality of magnitude would neither 
have been necessary nor would it have held. This, of course, is exactly as in the RS case. The 
dependence of V1,2 on x5 is easy to understand. Each slice of x5 could, potentially, host a 4-brane, 
with distinct (3 + 1)-dimensional worlds at the ends. Only if the potentials localized at the end 
of the branes are equal and opposite and related to the “overall size” of the 5-dimensional metric 

4 While a slightly larger ε can be admitted, say by arguments relating the brane tension to the scale of some underlying 
string theory (or even to M6) [10], the applicability of the semiclassical approximation grows progressively worse. On 
the other hand, ε � 0.15 automatically ensures that the curvature in the x4-direction is sufficiently small.

5 While this may be perceived as a fine-tuning, it is, at worst, exactly the same as that in the RS model. Indeed, 	 = 0
is not a special solution, and the same argument could be made against any finite value for 	. On the other hand, 	 = 0
could, in principle, be the result of some as yet unspecified symmetry [31].

6 Once again, we omit the second solution, viz. ecx4 for reasons analogous to those operative for b(x5).
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in that slice (just as in the RS case), would these hypothetical (3 + 1)-dimensional worlds be 
associated with a vanishing cosmological constant. As has been demonstrated in Refs. [17,21], 
such a x5-dependent potential could be occasioned by a brane-localized scalar field, such as a 
kink solution corresponding to a quartic potential, or in a theory with a non-trivial kinetic term.

It should be noted, though, that with these particular forms for V1,2 are not strict requirements
for the model. Such a choice only helps to reduce the algebra. Indeed, as long as eqn. (9) holds 
at x5 = 0 (with no restrictions for x5 
= 0), the vanishing of the four-dimensional cosmological 
constant is guaranteed. However, the relaxation of eqn. (9) does not add anything qualitatively 
different to either the phenomenology (whether in the graviton sector [18,19] or in the SM sec-
tor [20,21]) or to the main thrust of this paper, namely the stability of the scenario.

We now turn to the consequences of choosing a particular value for b2 (this choice, as we shall 
see later, also serves to determine c). Rather than discuss the generic case (which does not afford 
closed-form analytical solutions), we illustrate the situations for two extreme limits. Physically, 
one of the limits corresponds to a vanishing five-dimensional cosmological constant (equiva-
lently, straight, or unbent, four-branes at the ends of the world). The opposite limit corresponds 
to the case wherein the four-branes suffer the maximum possible bending commensurate with a 
semiclassical analysis (or, in other words, a five-dimensional cosmological constant comparable 
to the fundamental scale). The low energy phenomenology, naturally, would turn out to be quite 
different in the two cases. Clearly, any intermediate value of b2 would correspond to an inter-
mediate value of the five-dimensional cosmological constant and, similarly, for the low-energy 
phenomenology.

Case 1: The situation of b2 = 0 recovers the results of Ref. [17] and we have

c = Ry k

rz
sech(kπ)

V1(x5) = −V2(x5) = 8M4
6k

rz
sech(k|x5|) ,

V3 = 0

V4 = 8M4
6k

rz
tanh(kπ) .

(10)

This, obviously, corresponds to a bent brane scenario with nonvanishing induced five-dimensional 
cosmological constants on the hypersurfaces at x5 = 0, π . This could easily be seen by observing 
that the induced metric on the x5 = 0 surface, apart from an overall b(0) factor, is given by

ds2
5 = e−2c|x4|ημνdxμdxν + R2

ydx2
4 ,

or, in other words, the induced geometry is AdS5-like.

Case 2: In the opposite limit, viz. b2 → ∞, we have b(x5) ≈ (b1/2) exp(k|x5| + b2) and, hence, 
the normalization of the warp factor would imply b1 ≈ 2 exp(−kπ − b2) → 0. Consequently, 
one is forced to c  k, unless one were to admit a large, and unpleasant, hierarchy between Ry

and rz. This situation should be contrasted to the previous case, where the limit was realizable 
for both branches of the theory, viz. c  k as well as a moderate c > k.
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With c → 0 the brane potentials now read

V1 = −V2 ≈ 0

V3 ≈ −8M4
6k

rz
≈ −V4

(11)

The fact of V3 ≈ −V4 reveals the near vanishing of brane-induced cosmological constant. As for 
the line element, in this limit,

ds2 = e2k(|x5|−π)
(
e−2c|x4|ημνdxμdxν + R2

ydx2
4

)
+ r2

z dx2
5

≈ e2k(|x5|−π)
(
ημνdxμdxν + R2

ydx2
4

)
+ r2

z dx2
5

or that the metric is nearly conformally flat. It should be realized, though, that the approximate 
conformal flatness would have followed as long as c  k (i.e., for k � 10) and did not need 
b2 → ∞. However, a finite value of b2 would have translated to unequal brane tensions and, 
consequently, nonvanishing induced cosmological constants.

The two opposing limits of b2 are not special, but only serve to simplify the algebra. Any 
intermediate value of b2 would only lead to phenomenological situations that interpolate between 
those listed above. In the following, we shall detail not only the stabilization of the radii, but also 
that of b2.

3. Radii stabilization

While it may seem, at first sight, that moduli stabilization in this (6D) framework can proceed 
in a fashion identical to that in the RS paradigm, there are certain crucial differences. In particular 
(and, as we shall see below), if we attempt a naive GW [9]-like mechanism, only one combination 
of the two moduli can be stabilized. This is but a reflection of the well-known fact that, for a 
multidimensional hidden compact space, it is easier to stabilize the shape rather than the volume. 
It should be realized, though, that had we been interested in a different compactification (such 
as, for example, M(1,3) ×S2 with an appropriate orbifolding), a single-field GW-like mechanism 
would indeed be enough. This is as expected, for in such a case there would, but, be only one 
modulus to stabilize. However, such a compactification is not favoured phenomenologically as, 
on the one hand, it requires extra fields to counterbalance the curvature of S2, while, on the 
other, if the SM fields are extended in to the bulk (so as to fully exploit the advantages of the 
6D construction), the resultant spectrum cannot, easily, be made consonant with low energy 
observations.

While the same mechanism would work irrespective of the choice for induced cosmological 
constant, the algebraic simplification is significant in the two limits discussed in the preceding 
section. Similarly, treating the two distinct regimes (viz small k and large k) separately brings 
forth an appreciation of both the overall mechanism, as well as the subtle differences in the 
implementation thereof.

Before we do this, though, let us reexamine some potentially confusing features of this sce-
nario, in particular the roles of the brane localized potentials Vi , the separation constant 	̃ and 
the constant b2. At first glance, the “choices” might seem to associated with fine-tunings. We 
begin by showing that not all of them are independent and, then, explore the stabilization of the 
truly independent.

To begin with, it should be realized that the special case of 	̃ = 0 would have led to a generic 
solution of the form
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b(x5) = β1 cosh2/5
[

5kx5

2
+ β2

]
where β1,2 are the constants of integration, with β1 to be fixed by our normalization of 
b(x5 = π) = 1. This special solution is unique to 	̃ = 0 and untenable for 	̃ 
= 0, when only the 
solution of eqn. (5) applies. More importantly, the two solutions differ by at most 50% (almost 
independent of the value of 	̃). For large k (∼ 8, as would be the case for preferred solution for 
the hierarchy problem), the warp factors are very nearly indistinguishable, throughout the bulk, 
with the difference being noticeable only very close to the IR brane. In other words, the conclu-
sions that we would draw are not very sensitive to the exact value of 	̃. Put differently, there is 
no severe fine-tuning associated with 	̃.

Note further that eqn. (5) also implies

	̃ = −3b2
1 k2 = −3 k2 sech2(k π + b2)

whereas eqn. (8)

V3 = −8

√
−�6 M4

6

10
tanhb2 ,

−V4

V3
= tanh(kπ + b2)

tanhb2
.

In other words, there is a one-to-one relation between (V3, V4) and (k, b2) or, equivalently, (k, ̃	). 
Stabilizing one set automatically stabilizes the others. While we propose below a mechanism to 
stabilize the last (or, equivalently, the first) set, note that we have already seen that the dependence 
of physical observables on 	̃ is a suppressed one. Thus, stabilizing k would be enough.

3.1. Small k and large c

As we have discussed in Sec. 2, in this regime, the metric cannot be approximated by a con-
formally flat one, and, of the two limits discussed therein, only Case I can be applicable. Rather 
than work with the general solution, we shall work in this limit, for it simplifies the algebra 
considerably without altering the physical essence.

As we have also explained earlier, starting with a single canonically quantized scalar field, it 
is not possible to stabilize both the moduli. Consequently, we postulate two such scalar fields. In 
order to minimize the number of effective four-dimensional fields (on KK reduction), we incor-
porate one scalar field φ1(xμ, x4, x5), permeating the entire bulk, that would serve to stabilize rz
(or, equivalently, the dimensionless quantity k). A second field φ2(xμ, x4), introduced (localized) 
only on the x5 = 0 brane, would, similarly, stabilize the length (Ry) of the brane. Given the box 
structure and the orbifolding, together, they stabilize both the moduli.

The Lagrangians for these scalars are given by

L6 = √−g
(

− 1

2
gMN∂Mφ1∂Nφ1 − 1

2
m2φ2

1

)
+ √−g5

(
U1(φ1)δ(x5) + U2(φ1)δ(x5 − π)

)
(12)

and

L5 = √−g5

(
− 1

2
gM̄N̄ ∂M̄φ2∂N̄φ2 − 1

2
m2φ2

2

)
δ(x5)

+ √−g4

(
U3(φ2)δ(x4) + U4(φ2)δ(x4 − π)

)
δ(x5) (13)
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respectively. Here, g = det(gMN) = −a4b5Ryrz, whereas, for the induced metrics, we have g5 =
det(gM̄N̄ ) = −Rya

4b5 and g4 = det(gμν) = −a4b4.
In particular, the 5d metric, apart from the constant b2(0), induced on the x5 = 0 brane is

ds2
5 = e−2c|x4|ημνdxμdxν + R2

ydx2
4 .

Given this AdS5 geometry and the form of L5, it is clear that the stabilization of Ry can proceed 
exactly as in the GW mechanism [9] or its variants [22] using the classical configuration of φ2. 
Since this technique is well-known, we, for the sake of brevity, will eschew any details here, 
assuming that Ry can be stabilized. Indeed, with an appropriately modified five-dimensional 
potential for φ2, it is also possible to take into account the back reaction and achieve an exact 
solution [23]. We will come back to a generalized version of this.

Unlike the 4-brane at x5 = 0 (hereafter called the 40 brane) itself, the x5-direction possesses 
a non-zero induced cosmological constant, as shown in section 2. Stabilization of this direction, 
thus, requires a more careful analysis which we proceed to now.

The effective potential for rz (equivalently, k) can be obtained, starting from the Lagrangian 
of eq. (12). While the classical configuration of φ could, in principle, have nontrivial depen-
dences on both x4 and x5 (and, yet, maintain the requisite Lorentz symmetry), such a general 
consequence would have required complicating the boundary-localized terms and does not add 
anything qualitatively different to the system. Since we are primarily interested in the effective 
potential in the x5-direction, for brevity’s sake, we restrict our discussion to the case where φ has 
a nontrivial dependence only along x5 and denoting it

〈φ1(xμ, x4, x5)〉 = φ(x5)√
Ryrz

,

the effective one-dimensional Lagrangian for φ(x5) is given by

L̂6 = a4b5

2

[
−r−2

z (∂5φ)2 − m2φ2
]
+ a4b5Ry [U1(φ1)δ(x5) + U2(φ1)δ(x5 − π)] . (14)

Understandably, a(x4) appears only as an overall multiplicative factor and plays no dynamical 
role. The corresponding equation of motion is

∂5(b
5∂5φ) − b5m2r2

z φ + Ryr
2
z b5

(∂U1(φ1)

∂φ
δ(x5) + ∂U2(φ1)

∂φ
δ(x5 − π)

)
= 0 . (15)

The solution, in the bulk, is given in terms of associated Legendre functions, viz.

φ = sech5/2(kx5)
[
c1P

ν
3/2(tanh(kx5)) + c2Q

ν
3/2(tanh(kx5))

]
, (16)

where c1,2 are the constants of integration and

ν = 5

2

√
1 + 4μ2

25
, μ ≡ mrz

k
= m

M6 ε
. (17)

The constants c1,2 can be determined once boundary conditions are imposed. To do this, we turn 
to the brane-localized potentials U1,2(φ1) which, until now, were unspecified. We are not sensi-
tive to the exact form of U1,2(φ1) as long as they admit nonzero minima at φ = v1,2 respectively. 
Noting that the cutoff scale on this brane is given by R−1

y , such minima, for example, can be 
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Fig. 1. The effective potential Veff (k) for different values of the ratio v2/v1 of the classical values of the field φ on the 
two constant-x5 branes. The left (right) panels correspond to ε = 0.1 (0.01).

easily achieved if one were to consider U1,2(φ1) = V3,4 + R−1
y λ1,2

(
φ2 − v2

1,2

)2
with λ1,2 being 

dimensionless constants and V3,4 being defined as in eq. (2).7 This immediately leads to

c2 = v1P
ν
3/2(τπ ) − v2 cosh5/2(kπ)P ν

3/2(0)

Qν
3/2(0)P ν

3/2(τπ ) − Qν
3/2(τπ )P ν

3/2(0)

c1 = 1

P ν
3/2(0)

(
v1 − c2Q

ν
3/2(0)

)
τπ ≡ tanh(kπ) .

Putting the solution back in the effective Lagrangian 14, we have

L̂6 = k2a4

2 r2
z

sech5(kπ)

[
(5 − 2ν)2

4

(
c1P

ν
5/2(tanh(kx5)) + c2Q

ν
5/2(tanh(kx5))

)2

− μ2
(
c1P

ν
3/2(tanh(kx5)) + c2Q

ν
3/2(tanh(kx5))

)2
]
.

Eliminating the irrelevant factor a4(x4) and integrating L̂6 over x5, we would obtain an effective 
potential for k, defined, in dimensionless form, as

Veff(k) ≡ 1

M2
6 v2

1

∫
dx5

L̂6

a4(x4)
. (18)

Since k = rz M6 ε, with the last two quantities being fixed parameters of the theory, Veff is, thus, 
equivalently, a potential for rz. As a closed form expression for Veff is not possible, and even a 
good approximate form complicated enough, we present it, instead, only in a graphical form.

7 On the boundary, once the scalar field φ settles down to the vacuum v1,2, the brane localized potential becomes 
U1,2 = V3,4 and one recovers the action given in eq. (2). While this unifies the explanation of the brane-tensions V3,4
with the stabilization mechanism, truthfully, it, of course, does not yet explain their values. On the other hand, as we have 
explained earlier, with Einstein’s equations and matter equation of motion being coupled, only certain values of V3,4 can 
be consistent with the metric and the orbifolding. The stabilization of k, though, would imply the stabilization of V3,4
too.
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Fig. 2. The effective potential Veff (k) for different values of the mass of the bulk scalar φ1.

In Fig. 1, we display Veff(k) for a fixed value of the mass parameter μ (equivalently, m). 
As is obvious, depending on the ratio v2/v1, minima exist for 0.1 � k � 0.6, the range that 
is of particular interest not only to explain the non-observation (so far) of the KK-graviton at 
the LHC [18,19], but also for scenarios wherein the SM fields are extended in to the bulk [20,
21]. What is particularly encouraging is that such minima arise for very natural values of the 
parameters and are not overly sensitive to their precise values. Indeed, the strongest dependence, 
of the stabilized value of the modulus rz, is on the ratio v1/v2 of the classical values.

It is also instructive to examine the dependence of Veff(k) on ε (as depicted in the two panels 
of Fig. 1) and μ (as shown in Fig. 2). As can be readily ascertained, while the size of the potential 
has a strong dependence on μ (understandable, since it is μ that allows for a nontrivial Veff), the 
position of the minimum has only a muted dependence.

Until now, we have neglected the back reaction on the metric due to the scalar field. While 
we could, in principle, attempt this, as we shall indeed do for the other regime (namely, large k) 
in the next section. However, in the current context, the presence of a non-negligible induced 
cosmological constant �ind queers the pitch. In the absence of �ind, the change in the warp 
factor due to back-reaction can be computed exactly by integrating three first order equations 
(namely, the one for the scalar field, the warp factor and the bulk potential). For a non-zero �ind, 
additional nonlinearities, that couple these three equations in a non-trivial manner, emerge [23], 
and a closed-form analytic solution is not possible. Of course, the equations can still be solved 
numerically. However, in view of the fact that such solutions can be easily obtained by deforming 
the solutions presented above, we eschew a detailed discussion for the sake of brevity. The neglect 
of the back-reaction is eminently justified, for the largest value of the scalar field mass that 
we have used is sufficiently smaller than �1/6

6 (and, certainly M6). Consequently, the energy 
content in the φ-field is rather subdominant to that due to the bulk cosmological constant and the 
back-reaction in the bulk is not much of a worry. Furthermore, with the hierarchy, for the most 
part, being dictated by the warp factor in the x4-direction, even moderate changes in b(x5), as 
would be introduced by the back-reaction, have relatively little bearing on the phenomenology.

3.2. Large k and small c

In this regime, the metric is nearly conformally flat. With c being infinitesimally small, ne-
glecting the c-dependence of the metric would not introduce a decipherable difference in the 
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analysis. To simplify the algebra, we will take recourse8 to Case 2 of section 2, whence the 
metric reduces to

ds2 = e2A(x5)
(
ημνdxμdxν + R2

ydx2
4

)
+ r2

z dx2
5 , (19)

where in the absence of backreaction A(x5) = k|x5|. With the 40-brane-localized induced cos-
mological constant being infinitesimally small, it is possible to obtain an almost exact solution 
incorporating the back reaction as well and we now attempt this. Introducing a scalar field φ in 
the bulk, the entire action is given by9

S =
∫

d6x
√−g

[
M4

6 R − 1

2
(∂φ)2 − V (φ)

]
. (20)

The corresponding equations of motion are

φ̈ + 5φ̇ Ȧ = r2
z

∂V

∂φ

5Ȧ + 2Ä = −r2
z

2M4
6

[
φ̇2

2 r2
z

+ V (φ)

]
Ȧ2 = r2

z

10M4
6

[
φ̇2

2 r2
z

− V (φ)

]
.

(21)

For a scalar with a localized potential on the x5-constant 4-branes V (φ) could be written as

V (φ) = Vbulk(φ) + r−1
z

[
f0(φ(0)) δ(x5) + fπ(φ(π)) δ(x5 − π)

]
where Vbulk(φ) is the bulk potential and f0,π (φ(x5)) are some as-yet undetermined functions of 
the scalar field. Integrating eqn. (21) across the 4-brane locations (α ≡ x5 = 0, π ), we have

Ȧ

∣∣∣α+ε

α−ε
= −1

4M4
6

fα(φ(α))

φ̇

∣∣∣α+ε

α−ε
= rz

∂fα

∂φ
(φ(α)) ,

which provide the junction conditions. An exact closed-form solution to eqns. (21) can be 
obtained only for particular bulk potentials. Borrowing from techniques of supersymmetric quan-
tum mechanics, we assume the bulk potential can be expressed as

Vbulk = 1

2

(∂W

∂φ

)2 − 5

2M4
6

W 2 , (22)

where W(φ) can be thought of as a superpotential. This, immediately leads to

Ȧ = rz

2M4
6

W

φ̇ = −2 rz
∂W

∂φ

(23)

as long as W(φ) satisfies the junction conditions

8 Once again, the choice of Case 2 does not represent a fine-tuning. Rather, it only serves to simplify the algebra 
permitting an analytics closed-form solution.

9 We do not write �6 explicitly, preferring to include it in V (φ).
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W

∣∣∣α+ε

α−ε
= 1

2

1

rz
fα(φ(α))

∂W

∂φ

∣∣∣α+ε

α−ε
= − 1

2

∂fα(φ(α)

∂φ
.

Each choice for W(φ) gives a different Vbulk, but an analytic closed-form solution can be found 
for only some. An explicit example is afforded by a quadratic superpotential [23,24], namely

W(φ) = 2M5
6 ε − 1

4
uM6 φ2 ,

where u � 0.1 is a constant, parameterizing not only the mass of φ, but its (quartic) self-
interaction as well. The corresponding brane localized potentials read

f0(φ) = 1

2 rz
W(φ) − 1

2

∂W

∂φ
(φ − v0) + γ 2

0 (φ − v0)
2

fπ(φ) = 1

2 rz
W(φ) − 1

2

∂W

∂φ
(φ − vπ) + γ 2

π (φ − vπ)2 ,

where γπ,0 are arbitrary positive constants that ensure that φ(x5) assumes values vπ,0 on the 
Planck (TeV) branes. The solutions to eqns. (23) are given by

φ(x5) = φ0 exp (uM6 rz |x5|)

A(x5) = k |x5| − v4
0

8M4
6

exp (2uM6 rz |x5|) .
(24)

Note that the warp factor has changed from the simple exponential form that it had in the absence 
of φ.

It is worthwhile to reflect on the difference between this analysis and that presented in the pre-
ceding subsection. While we could have adopted the same procedure, namely substitute eqn. (24)
in eqn. (20) and integrate over x5 to yield an effective potential Veff(rz), it is not necessary to 
do so. Rather, note that the very structure of the solution (eqn. 24), along with the boundary-
localized potential ensures that

rz = 1

uπ M6
ln

v2
π

v2
0

. (25)

No other value for rz would admit a solution, consistent with the boundary conditions, to the 
system of coupled nonlinear differential equations that we are endowed with. It is also worthwhile 
to note that a natural set of values for vπ/v0 and u can reproduce the required rz (and, hence, the 
correct warping) without any fine-tuning being needed.

We now turn to the stabilization of Ry . If the approximation of eqn. (19) were truly exact, 
Ry cannot be stabilized. On the other hand, it need not be, at least in the context of hierarchy 
stabilization, for it really does not play a role in defining the overall warp-factor. Apparently, 
thus, the primary constraints would be those on the ADD scenario [4], such as deviation from 
Newton’s law or the fast cooling of a supernova. And while it might be argued that such an 
extremely large value for Ry reintroduces a hierarchy, it is not obvious that this is a problem (far 
less a serious one), given that Ry plays only a subservient role in defining the gap between M6
and the electroweak scale. Indeed, well before Ry becomes so large (the sub-millimeter range), 
c becomes quite non-negligible. This not only invalidates the approximation of eqn. (19), but 
also carries the seed for the stabilization of Ry .
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The latter can proceed, for example, in a fashion exactly analogous to the GW mechanism 
as defined for the original RS scenario. Consider, for example, a second scalar φ2 (of mass 
m2 � M6) confined to the 4-brane at x5 = π . Assume that the only self-interactions are local-
ized at the boundaries, viz. at (x4, x5) = (0, π) and (π, π) which, in turn, force φ2(0, π) = v3
and φ2(π, π) = v4. Clearly, this would lead to a stabilized R−1

y ∼O (m2 ln(v3/v4)), and, conse-
quently, to a moderate Ry/rz and a small c (as desired).

A more interesting option would be to locate φ2 on the 40 brane instead, with the boundaries 
now corresponding to (x4, x5) = (0, 0) and (π, 0) respectively. With m2 now suffering a large 
warping (due to b(x5)), the stabilized value for R−1

y would, naturally, be in the TeV range. This, 
immediately, raises the intriguing possibility that new physics at a few-TeV scale could indeed be 
stabilized by the SM Higgs itself (or a cousin of its). Even more intriguingly, if one allows the SM 
fields to percolate into the x4 direction, the setup under discussion would provide a dynamical 
justification for the scale in a Universal Extra Dimension-like scenario [5].

4. Conclusion

The six dimensional warped scenario provides a cure for various ailments of Randall–
Sundrum model. Nevertheless, the problem of modulus stabilization, which was quite simple 
for Randall–Sundrum scenario, had, until now, not been executed for either of the two moduli 
in the nested warped model, largely on account of the fact that the model’s space-time is neither 
conformally flat, nor are the end-of-the world branes flat. Consequently, the stabilization mech-
anism presents a technical challenge, and this is the issue that we have addressed in this paper. 
To this end, we begin by exploring the metric for nested warping, showing that the solutions for 
each of the two regimes allowed to the theory can be generalized beyond what was considered 
earlier.

In the small k (equivalently, large c) regime of the theory, the induced geometries on the 
x5-constant 4-branes are AdS5-like, and hence a Goldberger–Wise mechanism (or even one 
incorporating back-reaction) involving a brane-localized scalar field trivially stabilizes the cor-
responding modulus Ry . The second modulus rz cannot be stabilized by the same scalar field. 
It is intriguing to consider leaving it unstabilized, especially since the corresponding warping 
is minor, and a slow temporal variation would have very interesting cosmological ramifications. 
However, rz can also be stabilized by a six-dimensional analogue of the GW mechanism, as 
we have demonstrated here. Although the form of the effective potential for rz is much more 
complicated than that in the minimal RS scenario, a numerical analysis shows that a minimum 
does exist and reproduces the desired hierarchy without the need for any fine tuning. Indeed, the 
phenomenologically acceptable domain in the parameter space of the theory is more extensive 
than that in the RS model. As for the back-reaction, while it can be incorporated, closed-form 
analytic solutions are not possible owing to the non-zero induced cosmological constants on the 
constant-x5 hypersurfaces. However, numerical solutions are indeed possible.

In the other regime of the theory, characterized by a vanishingly small induced cosmological 
constant, the scenario changes dramatically, with the bulk tending to become conformally flat 
(and the warp factor nearly exponential). With the induced cosmological constant on the branes 
being infinitesimally small,10 a closed form solution can be found even on the inclusion of the 
backreaction. This allows us to stabilize rz without taking recourse to any unnatural values of the 

10 Note that a non-zero value for the five-dimensional cosmological constant does not preclude a vanishing four-
dimensional cosmological constant (witness the original RS model), and, indeed, we do obtain the latter even in the 
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parameters. And while the aforementioned exact solution is achievable for only certain specific 
potentials, deviations thereof still lead to stabilization (with backreaction taken into account) 
with the only difference being that the solutions can be expressed only in terms of complicated 
integrals.

The situation with the corresponding Ry is more intriguing. With c now being infinitesimally 
small, it is tempting to consider the possibility of a rolling Ry , especially since a slowly varying 
Ry would have very interesting and attractive cosmological consequences. On the other hand, 
Ry can indeed be stabilized, by introducing a second scalar on one of the two 4-branes, viz. at 
x5 = π or at x5 = 0. The first alternative naturally leads to Ry being stabilized to a value of 
the order of rz. The second alternative, on the other hand, leads to a situation whereby a scalar 
field of apparently TeV-range mass (on account of the warping) leads to Ry being stabilized 
at a scale somewhat higher than the electroweak one. If the SM fields were considered to be 
five-dimensional ones, defined on the entire brane at x5 = 0, this immediately leads to a UED-like 
scenario with the TeV-scale protected naturally. The orbifolding inherent to the system would not 
only eliminate unwanted modes, but also introduce for a KK-parity that, in turn, provides for a 
Dark Matter candidate on the one hand and eliminates many contributions to rare decays and 
precision variables on the other, thereby improving agreement with observed phenomenology. It 
might be argued, though, that with c being different from zero, the KK-parity is not exact. This 
is indeed so, but with the extent of Z2-breaking being determined by the (vanishingly small) 
induced cosmological constant 	̃, the lifetime of such DM-candidates would be exceedingly 
long.

Before ending, we revisit the question of fine tuning in such models. Both the original for-
mulation [17] as well as the extended version (Sec. 2) seemed to be dependent on the presence 
of particular values of brane tensions. Exactly analogous to the original RS model, this could be 
interpreted as a fine-tuning endemic to this class of models. Naively, the choice of values for b2

and the constant of separation 	̃ represent additional fine-tunings. We have shown here, though, 
this is not so. The exact value of 	̃ (equivalently, b2) has relatively little bearing on the phe-
nomenology. Indeed, for any two values of b2, in the range 0 ≤ b2 < ∞, the difference between 
the resultant warp factors differs by at most 50%, and that too, only for small k. For large k, on 
the other hand, the warp factors are virtually indistinguishable except for very close to the IR 
brane. With the physical observables being differentiable functions of b2 (and, hence, 	̃), the 
(small) differences due to finite values of b2 can be easily worked out by interpolating between 
the results for b2 = 0 and b2 → ∞ respectively. We have, consequently, chosen to demonstrate 
the results in these two limits as they admit simple analytical solutions whereas the general b2

would need numerical methods to be employed.
Having argued that a specific value of 	̃ (or, equivalently, b2) does not imply any fine-tuning 

over and above that endemic to RS models, we now turn to the latter, or more specifically, to 
the analogue thereof. As we have argued earlier, within the original RS model (sans modulus 
stabilization), the brane tension had to be just so, for the bulk solution and the orbifolding to 
be valid simultaneously. Furthermore, these were not related to the modulus. Here too, a similar 
situation seems to hold (see eq. (8)), with the recognition that the ratio k/rz is determined entirely 
by fundamental scale M6 and the bulk cosmological constant �6. Indeed, it has parallels with 
the RS model wherein the branes were allowed to have a nonvanishing cosmological constant. 

general case. Furthermore, a vanishing value of the former is not a requirement for our analysis, and serves only to 
simplify the algebra.
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On introducing the stabilization mechanism the brane tensions V3,4 were identified with the 
stabilized values of the brane-localized potentials U1,2(φ) of the bulk scalar φ.

A deeper understanding is afforded if one considers possible quantum corrections to the 
bulk Einstein–Hilbert action. While no such actual calculation is available, these, presumably, 
would appear as diffeomorphism-invariant higher derivative terms. Assuming that these could 
be parametrized as a polynomial in R, Ref. [32] considers, for example, a 5-dimensional bulk 
theory defined in the Jordan frame by

f (R) = R + a1
R2

M2
+ a2

R3

M4
,

with the constants ai ∼ O(10−1) and M the cut-off scale. In the Einstein frame (obtained from 
the Jordan frame through a conformal transformation), the extra degree of freedom associated 
with the higher-derivatives can be recast in terms of a scalar field with a very nontrivial poten-
tial. Most interestingly, this degree of freedom can play the role of the Goldberger–Wise scalar, 
thereby allowing for a “geometric stabilization” of the modulus. A similar stabilization can occur 
in six-dimensions too with the field φ1 parametrizing such higher derivative terms appearing in 
the bulk action. Additional possibilities arise in the shape of brane-localized f (R)-terms (since 
the branes are characterized by matter fields, the quantum corrections to the Einstein–Hilbert 
action would, in general, be different on them). These extra terms would play the role of the 
brane-localized fields (masquerading as our φ2) with their own potentials. Being very steep [32], 
these would enforce the system being in the vacuum state, thereby according a quantum ori-
gin to V3,4. Of course, once again, this entire paradigm depends upon the exact form of f (R), 
including the coefficients, for both the bulk and the branes. However, the conjecture that the 
entire stabilization process is but a consequence of an effective geometric action born of quan-
tum corrections, is, undoubtedly, a very interesting one, especially in the quest to understand the 
fine-tuning problem (such as that associated with choosing 	 = 0).

It is also worthwhile to consider extending the formalism developed herein to still higher 
dimensions. For example, it has been shown [33–35] that a six-dimensional UED model not 
only suppresses proton decay through a higher dimensional operator, but also gives a topological 
origin for the number of chiral fermion generations. The extension of the formalism presented 
here to seven dimensional nested warping [17] would accord a dynamical origin to the scale of 
the model. These and other issues are currently under investigation.
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