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Recent results from several direct detection experiments have imposed severe constraints on the multi-
GeV mass window for various dark matter (DM) models. However, many of these experiments are not
sensitive to MeV scale DM as the corresponding recoil energies are, largely, lower than the detector
thresholds. We reexamine the light scalar DM in a model independent approach. In this first of a two-part
work, we develop an appropriate methodology to determine the effective coupling of such a DM to
hadrons, thereby allowing for the determination of the corresponding annihilation rates. We find that while
the parameter space can be constrained using cosmological and astrophysical observations, a significantly
large fraction is still viable. In the companion paper, we study the sensitivity of both direct detection
experiments as well as colliders to such a DM.
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I. INTRODUCTION

The last half a century has witnessed the accumulation of
overwhelming evidence for gravitational interactions
between visible (and stable) particles and nonluminous
matter on a multitude of scales, from the galactic to the
cosmological. Starting with rotation curves in spiral gal-
axies [1], gravitational lensing measurements [2,3], recent
observations of cluster collisions (Bullet Cluster) [4], and a
temperature anisotropy in the spectrum of cosmic micro-
wave background (CMB) radiation [5–7], there is a large
variety of observations for which the dark matter (DM)
hypothesis provides the most compelling explanation.
However, all these observations are indirect and, thus, it

is difficult to ascertain whether it is a particulate DM that
underlies these anomalies or whether the latter are but
manifestations of our lack of understanding of gravity at
different cosmological scales. These issues have, rightly,
been explored and several alternates to standard gravity
proposed [8,9]. On the other hand, it should be noted that
even if such modifications of gravity do exist, theories
incorporating these will not be necessarily unrelated from a
model involving particles as DM [10].
Despite the lack of direct evidence (i.e., one achieved

under controlled conditions), it is the notion of particle DM

that has seen the most development. The reasons are
twofold. For one, the experimental discovery of particle
DM is more viable in comparison to the verification of
modified gravity models. Moreover, DM candidates arise
naturally in a host of particle physics models that are
motivated primarily to address other issues that are unan-
swered by the standard model (SM). To substantiate such
models, a variety of experiments have been proposed, with
many being already under operation (or even having
outlived their use). In principle, this could be done in
the following three ways: (a) Satellite-based indirect
detection experiments like Fermi-LAT [11], PAMELA
[12], and AMS [13] depend on the annihilation of a pair
of DM particles into SM particles which can produce rare
antimatter cosmic rays (positrons, antiprotons, or antideu-
terons), neutrinos, monochromatic photons, or continuous
γ-ray spectrum. Although there, occasionally, have been
claims of anomalies in the data, unfortunately the experi-
ments have failed to validate each other’s putative positive
sightings, resulting in further constraints. (b) Direct detec-
tion experiments that, typically, identify the nuclear recoils
produced by the scattering between DM and the detector’s
(target) nuclei. (c) Collider searches based on the produc-
tion of DM look for the excesses (over the SM expect-
ations) in final states with large missing momentum. (Note,
though, that collider experiments are indicative at best, for
these can only verify the stability of the putative DM
candidate over detector dimensions, not over cosmological
timescales.)
Taking a cue from recent null results in the LUX [14],

PandaX-II [15], and XENON100 [16] experiments for
mDM > 6 GeV, we concentrate, here, on MeV scale
DMðmDM ≲ 3 GeVÞ. Light DM can easily evade many
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of these direct and indirect detection experiments because
of the low momentum transfer (lower than the threshold),1

and, consequently, the lack of signals in this range has
motivated discussions of a DMwith a particularly low mass
[17–19]. Similarly, to explain perceived anomalies in the
511 keV γ rays observed by INTEGRAL, the cosmic γ-ray
background at 1–20 MeV and the details of large scale
structure, quite a few models [20–23] with a light DM were
invoked. Again, weakly interacting massive particles
(WIMP)-less DM also accommodates DM masses in the
MeV scale [24]. These models emerge naturally from
gauge-mediated supersymmetry breaking where DM nat-
urally satisfies the current relic density without its mass and
interaction being restricted to the weak scale.
All of the above-mentioned models are well motivated

but lack experimental support. Moreover, in case the DM
particle is the only new particle (in the dark sector) within
the reach of a particular experiment while other new species
are much heavier, it will be very difficult to distinguish the
underlying theories. Therefore, model independent studies
of the DM are powerful as they proffer a way ahead without
being constrained to a very specific scenario.
The purpose of this article is to study the parameter space

for MeV scale DM in a model independent way. We first
construct effective operators describing interactions
between a scalar DM particle and the (visible) SM sector.
The constraints on these, as obtained from DM relic
abundance, CMB, and the counting of relativistic degrees
of freedom (d.o.f.), are then analyzed.

II. HIGHER DIMENSION OPERATORS

The interaction of the dark matter with the SM sector is
completely unknown barring, of course, the gravitational
one. All that we know is that the DM does not interact
either strongly or electromagnetically.2 On the other hand,
if the DM does not interact at all with the SM particles
(except gravitationally), then there would, essentially, be no
way to directly confirm their existence. More importantly,
with the DM particles having been produced profusely
during the postinflation reheating phase and shortly there-
after, without such interactions, the relic density today
would tend to be too large, thereby more than overclosing
the Universe, an eventuality that can be avoided only by
tuning the initial conditions.

The interaction that, thus, must be posited could be in the
form of a detailed and ultraviolet-complete model (such as
that in the minimum supersymmetric standard model) or in
the shape of an effective field theory. It is the latter
approach that we adopt here, choosing to profess an
ignorance of the underlying theory (the UV completion).
In other words, we would augment the SM with the DM
particle and posit that the latter interacts with the known
particles through certain higher-dimensional operators
(without any explicit mediator being considered). With
the typical energy scale of the processes under consider-
ation being much smaller than the dominant mass scale of
the theory, such an approach is irreproachable.
Our assumption, thus, is that the only new relevant field

is the scalar,3 with all other new species being too heavy to
be relevant in the contexts of both terrestrial experiments/
observations as well as the cosmological evolution of the
relic density. Since we are interested in a DMwith a mass of
at most a few GeVs, the only relevant SM states are the
photon and the gluon, the leptons (including neutrinos), and
the quarks of the first two generations. The bottom quark is,
at best, only marginally relevant. Consequently, we con-
sider operators including this limited set of particles alone.
Furthermore, to be consistent with low-energy constraints,
we do not admit flavor changing operators.
Assuming SUð3Þ ⊗ Uð1Þem symmetry,4 the operators

for a complex scalar field5 are

Of
s ¼ Cfs

Λ
φ†φf̄f;

Of
p ¼ Cfp

Λ
φ†φf̄γ5f;

Of
v ¼ Cfv

Λ2
iðφ†∂μφ − ∂μφ

†φÞf̄γμf;

Of
a ¼ Cfa

Λ2
iðφ†∂μφ − ∂μφ

†φÞf̄γμγ5f;

Oγ ¼
Cγ
Λ2

ðφ†φÞFμνFμν;

Oγ̃ ¼
Cγ̃
Λ2

ðφ†φÞFμνF̃μν; ð1Þ

where f is an arbitrary SM fermion and Λ is the scale of
new physics. Note that we could also write operators akin
to Oγ andOγ̃ , but for the gluons instead. As for the C’s (the
dimensionless Wilson coefficients corresponding to the1However, if the DM family has light as well as heavy DM,

then it can be detected in (direct) detections as in the case of
boosted DM. In this case, DM can be energetic if heavy DM
decays into the lighter one. Such DM candidates are not included
in our analysis, as the details of the particular model are
paramount in such scenarios, whereas we attempt only a model
independent analysis.

2While models have been proposed wherein the DM does have
a very tiny charge, these tend to be baroque, and do not fit within
well-motivated scenarios going beyond the SM [25].

3The results are identical for a pseudoscalar DM.
4All but Of

s;p respect the full SM gauge symmetry. These two
too can be altered trivially to respect the full symmetry, albeit at
the cost of introducing an extra factor of hHi=Λ, where H is the
SM Higgs doublet. For the present analysis, this distinction is
essentially irrelevant.

5It should be noted here that analogous results can be achieved
for a real scalar as well.
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various operators), we would be normalizing these to either
0 or unity (denoting the absence or presence of the
said operator). The results will, thus, depend on the mass
of DM and the scale Λ. Indeed, with each operator
presumably arising from a specific DM-SM interaction
in a UV-complete theory, the conclusions reached from an
analysis such as ours can be easily rescaled to obtain
constraints on the parameters of the underlying theory.

III. RELIC ABUNDANCE

The model independent framework developed in the
preceding section allows us to constrain the parameter
space for any MeV scale spin-0 dark matter candidate.
Particular attention needs to be paid to the constraints from
the relic abundance, the cosmic microwave background,
and, on account of the lightness, that from the counting of
relativistic d.o.f. In this section, we consider only the first,
relegating the others to a later section.

A. The formalism

We restrict our discussions to the context of DM that had,
primarily, been produced thermally and was in equilibrium
with the SM sector. The relic abundance of nonthermal
DM, on the other hand, depends crucially on the conditions
when it was produced. This, being intricately tied to the
specifics of the dynamics, can only be addressed within the
context of a particular model, and, hence, does not fall
under the ambit of a model independent analysis such as
ours. Since the WIMPs are presumed to be produced
thermally, the relic abundance calculation [26,27] can
proceed as usual while taking care of some subtleties
owing to the small mass. For the WIMP to stay in thermal
equilibrium, it needs to interact with the SM sector, with the
strength(s) being sufficiently large to beat the expansion
rate of the Universe.
During its evolution, the (stable) spin-0 particle φ (of

mass mφ) was in thermal equilibrium until a certain epoch.
Similarly, the SM particles (barring, possibly, the neutrinos)
were also in thermal equilibrium with the photon gas. The
latter determines the temperature of the thermal soup, and
this we denote by Tγ. The evolution of φ is given by the
Boltzmann equation, namely,

dn
dt

þ 3HðtÞn ¼ −hσviðn2 − n2eqÞ; ð2Þ

where n is the number density of φ (neq being its
equilibrium value), H is the Hubble expansion rate, and
hσvi is the thermally averaged cross section for DM
annihilation.
Before attempting a general solution of Eq. (2), let us

consider some general properties. For any massive particle,
the number density at equilibrium depends on the ratio
of its mass and the temperature of the plasma, x≡mφ=T.

For a stable particle that is relativistic yet at equilibrium
(x ≪ 1), the annihilation processes as well as pair pro-
duction are proceeding at comparable rates. The conse-
quent equilibrium density is given by n¼3ζð3ÞgφT3=ð4π2Þ,
where gφ denotes its d.o.f. On the other hand, if it is
nonrelativistic, i.e., its mass is much larger than the ambient
energy (x ≫ 1), the plasma does not have sufficient energy
to drive pair production; yet, the pair annihilation proceeds.
Consequently, its equilibrium abundance falls exponen-
tially as the temperature drops below the mass of the
particle, yielding n ¼ gφðmφT=ð2πÞÞ3=2eð−mφ=TÞ.
Applying the above to the WIMP, in the immediate

aftermath of its production, it would have been in equi-
librium due to the balance between its interactions with
the SM particles as its interactions with this sector were
strong enough to beat the expansion rate. If it continues to
be in equilibrium, then as the Universe cools to T ≪ mφ,
the WIMP would become nonrelativistic and its abundance
today would have been negligible. However the very struc-
ture of its interactions (essentially the higher-dimensional
nature of the couplings) stipulates that it must fall out of
equilibrium for T ≪ Λ. Naively, it might seem that this
would have occurred when the WIMP was still ultra-
relativistic, since mφ ≪ Λ. On the other hand, N-body
simulations [6] for structure formation require the DM to be
nonrelativistic.6 In other words, φ should decouple from
the thermal soup only when it becomes nonrelativistic in
the radiation-dominated era. This could happen if, thanks
to the exponential suppression of neq, the WIMPs became
so rare that the interaction rate fell below the expansion
rate. No longer affected by interactions, these fall out of
equilibrium with the abundance freezing out (i.e., their
number in a comoving volume becomes constant).
The freeze-out temperature Tf, namely, that at the epoch

when the DM number density freezes out, can be deter-
mined in terms of the mass and the interaction strengths, as
we discuss now. In the radiation-dominated regime, it is
useful to express the total energy density in terms of the
photon energy density thereby defining gρ, the effective
number of d.o.f. associated with total energy density,
namely,

gρ ¼
X
bosons

gbosons

�
Tbosons

Tγ

�
4

þ 7

8

X
fermions

gfermions

�
Tfermions

Tγ

�
4

:

In addition to this, the entropy (S) in a comoving volume
(S ¼ sa3) is a conserved quantity which enables us to
define the number density in terms of the “yield” Y ¼ n=s

6In this scenario, DM perturbations grew in the matter-
dominated era forming a gravitational well. (This could not have
been initiated by ordinary matter as it could not have clustered
due to the radiation pressure.) Ordinary matter could now fall
into this well, thereby allowing an early start of the structure
formation and formation of the fine structure in the Universe.
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and also, analogously, introduce gs, the number of effective
d.o.f. associated with the entropy,

gs ¼
X
bosons

gbosons

�
Tbosons

Tγ

�
3

þ 7

8

X
fermions

gfermions

�
Tfermions

Tγ

�
3

:

With the density of a nonrelativistic species falling faster,
gρ and gs differ noticeably only when there are relativistic
particles present that are not in equilibrium with photons.
Within the SM, this occurs for neutrinos. Similarly, for
mφ ≲ 6 MeV, the DM will contribute to relativistic d.o.f.
and, thence, entropy. For such light DM, the explanation of
the relic abundance by way of the DM having reached
thermal equilibrium with the SM sector is excluded by
current observations which we discuss in the next sub-
section. Although there are models which use a different
line of approach, namely, asymmetric or nonthermal
[28,29], we desist from doing so, and no longer consider
this range. Therefore, we can safely assume gρ ≃ gs in our
analysis.
Entropy conservation also implies aðtÞT ¼ constant

[here, aðtÞ is the scale factor of the Universe] and,
hence, dT=dt ¼ −HðtÞT. Effecting a change of variables,
T → x≡mφ=T, we, then, have the famous Boltzmann
equation, viz.,

dY
dx

¼ m3
φhσvi

HðmφÞx2
ðY2

eq − Y2Þ; ð3Þ

where HðmφÞ is the Hubble expansion rate (in the radia-
tion-dominated universe) calculated at the epoch when the
temperature equals mφ and is given by7

HðT ¼ mφÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3Ggρ

45

s
m2

φ:

A caveat needs to be entered here. A key ingredient in
reaching Eq. (3) is the assumption that entropy is conserved
throughout the era of interest. However, this statement may
not necessarily be true for MeV-range dark matter, espe-
cially if 500 MeV ≤ mφ ≤ 1 GeV (see Fig. 7). The freeze-
out temperature (equivalently, xf ≡mφ=Tf) for this range
may lie around the QCD phase transition.8 Consequently,
the entropy may not be conserved at this epoch.9 However,
as the entropy is overwhelmingly determined by the

contributions from relativistic particles such as e�, γ and
ν’s, this small possible nonconservation can be neglected
altogether.
To obtain the present density of DM particles, we need to

solve Eq. (3) in terms of the final freeze-out abundance Y∞
(at x ¼ ∞). While this, unfortunately, can be done only
numerically, it is instructive to consider an approximate
analytic solution. Before freeze-out, Yφ was close to its
equilibrium value, Yeq,

Yeq ¼
45

2π4

ffiffiffi
π

8

r
gφ
gρ

x3=2e−x;

which is exponentially suppressed.10 Integrating Eq. (3)
from the freeze-out temperature xf until very late times
(x ¼ ∞), we get

Y∞ ≃ xfHðmφÞ=m3
φhσvi:

With the energy density for the now nonrelativistic DM,
being given by ρφ ¼ mφnφ, post freeze-out, it simply falls
as a−3. Denoting the freeze-out epoch (i.e., when Y has
reached the asymptotic value Y∞) by the temperature Tf

and the scale factor af, with the corresponding quantities
today being given by T0 and a0 respectively, we have
nðaf; TfÞ ¼ Y∞T3

f, and, today,

ρφ ¼ mφY∞T3
0

�
afTf

a0T0

�
3

:

Simultaneously, the number of effective d.o.f. changes
from gρðxfÞ at the freeze-out epoch to g0 ¼ 3.36
operative today, and g0a0T3

0 ¼ gρðxfÞafT3
f. It is

customary to parametrize ρφ ≡Ωφh2ρc, where ρc ¼
1.05375 × 10−5h2ðGeV=c2Þ cm−3 is the critical density
of the Universe with the Hubble constant today being
expressed as H0 ¼ h × 100 km s−1Mpc−1. We have, then,

Ωφh2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3GgρðxfÞ

45

s
xfT3

0g0
ρchσvigρðxfÞ

: ð4Þ

Both the WMAP [31] and the Planck [7] satellite
observations determine the relic density very well, with
the latter suggesting ΩDMh2 ¼ 0.1199� 0.0022. Clearly,
we must have Ωφ ≤ ΩDM. This can be translated to
constraints on the parameter space available to the theory.
As the interaction between the DM and the SM sector

7In the radiation-dominated universe, the scale factor aðtÞ
goes as t1=2, while the temperature-time relation is given by
t2T4 ¼ 45=8π3G. Together, this gives HðTÞ.

8See Sec. VI A for a derivation of xf.
9It has been suggested [30], though, that the QCD transition in

the early Universe is not a real phase transition but an analytic
crossover. As we argue next, the distinction is of no consequence
in the current context.

10Although, after freeze-out, the abundance is larger than what
its equilibrium value would have been, this approximation of
Y ≈ Yfreeze−out

eq is an excellent one, especially for understanding
the structure of the solution.
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increases, so does hσvi, and, as a consequence, the relic
abundance of DM today decreases [see Eq. (4)].

B. Bounds from relic abundance

The dimension-5 operators in Eq. (1) would lead to
σ ∝ Λ−2. On the contrary, for the nonrelativistic particle,
the dimension-6 operators stipulate σ ∝ m2

φΛ−4. Conse-
quently, for the second set, a given value of Ωφh2 would
require mφ to increase nearly quadratically with Λ. On the
other hand, for the first set, the “right value” of mφ should
have only a weak dependence on Λ.
To delineate the exact parameter space (as opposed

to basing our conclusions on analytic results obtained
from approximations as we have been making so far),
we implement these additional operators in micrOMEGAs
4.1 [32] using FeynRules [33]. To best understand the con-
sequences, we only incorporate a single operator structure
[from Eq. (1)] at a time. For the operators involving a
fermionic current, we consider two different cases, namely
(a) one wherein all the SM fermions participate equally,11

i.e., all the Cfs of a given class are unity, and (b) the
leptophilic case, namely where only the leptons partici-
pate (and equally) while the quarks do not. In Fig. 1, we
depict the contours in the mφ–Λ plane corresponding to
Ωφh2 ¼ 0.1199. The width in the contour due to the
measurement error in Ωφh2 is virtually unobservable. In
each case, the area below the curves would correspond to a
larger annihilation cross section (thanks to a smallerΛ) and,
hence, a DM relic density smaller than what the Planck
collaboration measures. In other words, this is the param-
eter space that is observationally allowed (with the remain-
der ostensibly being contributed by some other source).
Note that, for the dimension-6 operators [Fig. 1(b)], the
relation between mφ and Λ is nearly quadratic, as
expected. On the other hand, for the dimension-5 operators
[Fig. 1(a)], Λ increases much slower with mφ. Under-
standably, the dimension-5 operators are sensitive to much
larger values of Λ.
Expectedly, for the leptophilic DM, the value of Λ for a

given mφ is much lower than the case of the democratic
coupling.12 This is but a reflection of the fact that, now,
fewer final states are available to the DM annihilation
process. And, finally, the dependence on the chirality
structure is rather minimal, a reflection of the fact that
the fermion masses in the problem are quite small.
The corresponding constraints for a real scalar can be

divined from those discussed above by realizing that a

complex scalar can be expressed as φc ¼ ðφ1 þ iφ2Þ=
ffiffiffi
2

p
.

In other words, the relic density of the complex field may
be expressed in terms of those for the real fields as
Ω ¼ Ω1 þ Ω2. For identically parametrized effective
Lagrangians, the vertices for the real scalar theory would
have an extra factor of 2 (as compared to those for the
complex field). On the other hand, one must account
for identical fields in the final state when a pair of DM
particles is being produced as a result of SM-pair annihi-
lation. The consequent change in Tf is, however, only
a minor one (at the level of 10% or lower) and has
little bearing on the relic abundance calculation. Now,
Ω ∝ hσvi−1 ∼ Λn, where n ¼ 2ð4Þ for dimension-5

 6
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FIG. 1. Contours in the mφ − Λ plane for (a) the dimension-5
operators in Eq. (1) and (b) the dimension-6 operators in Eq. (1),
satisfying ΩDMh2 ¼ 0.1199� 0.0022. The error bars are sub-
sumed in the thickness of the curves. Only one of the new physics
operator structures is deemed effective. For the fermionic
operators, all the SM fermions (leptons) participate equally, with
Cfα ¼ 1, in the general (leptophilic) case. Wherever applicable,
open quark production has been considered, postponing consid-
eration of bound-state effects until later (see text).

11Clearly, given the mass range of the scalar, the third-
generation quarks play little or no role.

12Here, we assume the simplistic point of view that the light
quarks can be treated as (pseudo-)asymptotic states. This, of
course, is untenable, and has been assumed only for illustrative
purposes. We return to this point later.
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(dimension-6) operators. The aforementioned factor of 2 in
the vertex, along with a factor of half in the thermal average
(owing to identical particles in the initial state), thus implies
that the constraint on Λrealφ would be, approximately, a
factor of 23=2ð23=4Þ stronger than those derived above for
dimension-5 (dimension-6) operators. This is borne out by
explicit calculations.

C. Caveat to the calculation

Until now, we have been considering the case where a
pair of DM particles annihilate into a pair of SM particles,
treating the latter as asymptotic states. In other words, it
was assumed, naively, that a DM pair annihilating to
hadrons could be well approximated by φφ� → qiq̄i with
the quarks hadronizing subsequently. However, when the
mass of the DM particle is of the order of a quark mass, the
relative momentum between the quark-antiquark pair is
small and a bound state ensues. This, obviously, would
need a different calculational scheme. For the mass range
that we are considering, this is of relevance only in regards
to the three light quarks. In particular, note that such a DM
species with interaction strengths that we are investigating
would freeze out only around the QCD phase transition
temperature (see Fig. 7). This brings with the added com-
plication that, even if the DM is considerably heavier than a
light quark, the annihilation products would hadronize
immediately (on the scale of the annihilation time), perhaps
into a pair of bound states, thereby utterly disallowing the
approximation of quarks as quasiasymptotic states. Thus, if
we want to admit unsuppressed DM-quark interactions, it is
imperative that we consider annihilation to bound states,
and we set up the formulation next.

IV. DM ANNIHILATION TO VARIOUS
BOUND STATES

For mφ > 2mπ, the DM can annihilate to pions, kaons,
and other light mesons, with more and more channels
being available to heavier DM particles. Nonetheless, if the
coupling to u=d quarks is unsuppressed, the dominant
effect arises from DM annihilation to pions. The calcula-
tion of the relevant rates involves the determination of the
matrix elements of the operators for hadronic states, and we
begin by discussing these.

A. Matrix element and form factors

For arbitrary bound states B1;2, the matrix element for the
process φþ φ† → B1 þ B2, driven by an operatorOI listed
in Eq. (1), is given by

M ¼ hB1B2jOIjφφi ¼
CfI
Λ
hB1B2jJf̄fI j0ih0jJIφjφφi; ð5Þ

where the operator has been factorized into a product of
two currents. Since the DM, by definition, does not suffer

strong interactions, the vacuum saturation approximation
is almost exact, a result that we use in the second step
above. Clearly, the valence quark content of the hadrons
B1;2 must be conjugate of each other for the corresponding
matrix element to be nonzero. In other words, together,
they should be a flavor-singlet pair. For simplicity, now
onwards, we assume that the DM interacts universally with
quarks and leptons, and set Cf

I ¼ 1, ∀ f (though only for a
given current structure). Wherever it is pertinent, we
indicate the difference that the relaxation of this assumption
entails.
The matrix elements can be parametrized in terms of

form factors multiplying momentum-dependent structures
dictated by Lorentz covariance, parity transformation, and
other symmetries, like isospin, wherever applicable. Some
of these are listed in Table I. Others can be parametrized
analogously. Note that many final states are missing in
Table I. For example, the πK final state is precluded (at
least to the lowest order in electroweak theory) by the
assumption that the DM interactions do not admit flavor
violation. Similarly, our assumption of identical couplings
of the DM to the up and down quarks implies isospin
symmetry and, consequently, final states such as πη are
strongly suppressed.13 Indeed, as we see shortly, for scalar
currents, the amplitude for this final state is proportional to
the quark mass difference mu −md. For vector currents, on
the other hand, the process suffers an additional v4

suppression, as is expected for a pair of scalars annihilating
to another through a vector current.

B. Scalar form factors

We begin by attempting to relate the simplest of the
quark currents, viz., the scalar q̄q to mesonic currents.
Naively, for the DM masses of interest here, couplings to
heavy quarks should not play a role. However, they actually
do, courtesy of quantum corrections. For example, inte-
grating out the heavy quarks would result in an effective
operator of the form φ†φGμνGμν. At the one-loop order, this
can be estimated by calculating a triangle diagram with
heavy quarks as propagators yielding

Oeff: ¼
X
i¼c;b

αs
12πΛmi

φ†φGaμνGa
μν; ð6Þ

where, for brevity’s sake, higher powers in m−1
i have been

neglected. We have also explicitly omitted the top-quark
contribution as it is highly suppressed at this scale.
The operator in Eq. (6), though, suffers higher order

corrections, and an accurate perturbative calculation thereof
is rather cumbersome. It is useful, however, to recast it in

13If the couplings Cus and Cds are unequal, this suppression is
inoperative and the πη channel opens up, with an amplitude
proportional to ðCus − Cds Þ. We, however, do not consider such an
explicit SUð2Þ violation any further.
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terms of the trace anomaly and appeal to the known
renormalization group flow of the energy momentum
tensor θμν [34,35]. In the present context, the trace of
the QCD θμν is given by

θμμ ¼ −
9αs
8π

GaμνGa
μν þ

X
light

mqq̄q; ð7Þ

and the operator in Eq. (6) becomes

Oeff: ¼
X
i¼c;b

2

27Λmi
φ†φ

�
−θμμ þ

X
light¼u;d;s

mqq̄q
�
:

Finally, for the scalar operator, we have

Os ¼
φ†φ

Λ

�X
i¼c;b

2

27mi

�
−θμμ þ

X
q¼u;d;s

mqq̄q

�
þ
X

q¼u;d;s

q̄ q

�
:

ð8Þ

Note that, if the coefficients Cqs were different from unity,
the terms in the equation above would be trivially modified.
Using the result above, we can define the scalar form

factor as

Fs ¼ −
X
k¼c;b

2

27mk
θμμ þ

�
2

27mc
þ 2

27mb

�
Γm

þ Γþ
�

2

27mc
þ 2

27mb

�
Δm þ Δ; ð9Þ

where

Γm ¼ hBBjmuūuþmdd̄dj0i;
Γ ¼ hBBjūuþ d̄dj0i;

Δm ¼ hBBjmss̄sj0i;
Δ ¼ hBBjs̄sj0i;
θ ¼ hBBjθμμj0i: ð10Þ

C. Vector form factors

For a real (i.e., one that carries no charge or any other
additive quantum number) (pseudo-) scalar meson B, a
matrix element of the form h0jq̄γμqjBBi would, neces-
sarily, vanish identically. This would be the case for the π0,
η, but not necessarily for the K0. For the latter and for other
charged mesons, the scalar and pseudoscalar form factor
can be related to the vector and axial-vector form factor
respectively through

qμh0jq̄γμqjBBi ¼ Fvq2;

h0jmqq̄qjBBi ¼ Fvq2;

h0jq̄γμqjBBi ¼
ðFlight

s þ Fheavy
s Þqμ

q2
; ð11Þ

where qμ ¼ ðpq̄ − pqÞμ. Using expressions analogous to
those in the preceding subsection to express contributions
due to the heavy quarks, the total vector form factor and,
hence, matrix element for vector interaction is given by

Fv ¼
1

q2

�
2

9
θ þ 7

9
Γm þ 7

9
Δ
�
: ð12Þ

In other words, the vector form factor can be written in
terms of the scalar form factors, and the extraction of the
latter suffices. Therefore, in the rest of the paper, we focus
on ways to extract the scalar form factors.
An accurate determination of the form factors requires

the expression of the quark current in terms of hadronic
currents and several approaches are possible. A particularly
simple and elegant formalism is afforded by chiral pertur-
bation theory ( χPT) and the use of dispersion relations.
Analogous techniques have been used in studying the
decay of a light scalar into hadrons [35–37], and, in the
next section, we adapt these to our case.

V. USING CHIRAL PERTURBATION
THEORY (χPT)

We begin by recapitulating the key results, derived
within chiral perturbation theory ( χPT), that are useful

TABLE I. List of various matrix elements and their relation to form factors.

JP ¼ 0−: B1;2 ¼ π; K; η;… B1 ¼ π, B2 ¼ ρ

h0jq̄qjBBi Fs h0jq̄γσqjπρi Fv εμνρσp
μ
3p

ν
4ϵ

ρ

h0jq̄γσqjBBi Fvqσ

B1;2 ¼ ρ: (qσ ¼ p3 − p4 and Pσ ¼ p3 þ p4)
h0jq̄qjρρi ðF1

smρgμν þ F2
spν

3p
μ
4Þϵμðp3Þϵνðp4Þ

h0jq̄γ5qjρρi Fpϵ
μνρσp3ρp4σϵμðp3Þϵνðp4Þ

h0jq̄γσqjρρi ½F1
vqσ þ F2

vðgμσPν − gνσPμÞ þ F3
vpν

3p
μ
4
qσ

m2
ρ
�ϵμðp3Þϵνðp4Þ

h0jq̄γσγ5qjρρi Faϵ
μνρσðqρ þ PρÞϵμðp3Þϵνðp4Þ
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to our work. For an in-depth discussion of the subject,
numerous resources [38–40] exist.
As is well known, χPT describes the low-energy

dynamics of QCD. In its simplest version, corresponding
to the existence of just two massless quarks (u, d), QCD
admits an exact SUð2Þ ⊗ SUð2Þ chiral symmetry, and the
corresponding χPT Lagrangian is described by

L ¼ f2π
4
Tr∂μU∂μU† þ Bf2π

2
TrðM†U þ U†MÞ: ð13Þ

Here, fπ is the pion decay constant, and the dynamical
d.o.f. are encoded in a 2 × 2 matrix U ∈ SUð2Þ, which can
be parametrized as U ¼ eiπðxÞ=fπ , where

πðxÞ≡ 1ffiffiffi
2

p
�

π0
ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

�
ð14Þ

transforming in the adjoint representation of SUð2Þ would
be identified with the physical pions. In Eq. (13), B is an
arbitrary coupling constant (whose physical significance is
yet to be ascertained) whileM is a constant 2 × 2 matrix to
be related to masses. The aforementioned Lagrangian
would exhibit SUð2ÞL ⊗ SUð2ÞR symmetry only if the
matrix M also transforms appropriately, viz., under the
action of the chiral symmetry group, U → VLUV†

R and
M → VLMV†

R, where VL;R denote the respective trans-
formations under the two SUð2Þs. Given that M, unlike U,
is not a dynamical variable, such a transformation may
seem strange. However, note that, for massive quarks, the
QCD Lagrangian does not admit axial symmetry. Indeed,
even in the absence of M, the ground state of the above
Lagrangian is not symmetric under axial symmetry. In
other words, the symmetry is spontaneously broken leading
to three Goldstone bosons with odd parity. Similarly, for
unequal quark masses, the SUð2ÞV symmetry is also lost.
Keeping this in mind, a nondynamicM can be perceived as
a perturbation that explicitly breaks SUð2ÞA, thereby
rendering the pions to be only pseudo-Goldstone bosons,
also breaking SUð2ÞV by a small amount proportional to
the differencemd −mu. Consequently, matrix elements can
be expanded in powers of the mass term, or, equivalently, as
Oðp2Þ corrections.
For three flavors, the symmetry is enlarged to SUð3ÞL ⊗

SUð3ÞR, or, equivalently, to SUð3ÞV ⊗ SUð3ÞA. Now U ∈
SUð3Þ and πðxÞ refers to the full pseudoscalar octet, viz.,

πðxÞ →

0
BBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− −π0ffiffi
2

p þ ηffiffi
6

p K0

K− K0 −2ηffiffi
6

p

1
CCCA: ð15Þ

Similarly, M, too, gets promoted to a 3 × 3 matrix. This is
the theory that we work with.

We now consider the quark operators of interest. As has
been demonstrated in the preceding section, the vector form
factors can be expressed in terms of the scalar ones. The
operators q̄iqi (where qi denote the light quarks) can be
expressed as

q̄q ¼ −
∂LQCD

∂mq
¼ ∂HQCD

∂mq
: ð16Þ

On the other hand, the term, TrðM†U þ U†MÞ, in the χPT
Lagrangian can be expanded up to the second order to
obtain the pion, kaon, and η mass terms, namely,

f2π
2
TrðM†U þ U†MÞ

¼ ðmu þmdÞπþπ− þ ðmu þmdÞ
2

π20

þ ðmu þmsÞKþK− þ ðmd þmsÞK0K0

þ ðmu þmd þ 4msÞ
6

η2 þ ðmu −mdÞffiffiffi
3

p π0η: ð17Þ

Hence, the masses are given as

m2
π ¼ Bðmu þmdÞ; m2

Kþ ¼ Bðmu þmsÞ;

m2
K0 ¼ Bðmd þmsÞ; m2

η ¼ B
ðmu þmd þ 4msÞ

3
: ð18Þ

Using the fact that the expectation values of the respective
Hamiltonians for the two theory should be equal, we have

hππj
X
q¼u;d

q̄ qj0i ¼ B: ð19Þ

On the other hand,

m2
π ¼ m̂B; m̂≡mu þmd; ð20Þ

and, therefore,

hππj
X
q¼u;d

q̄ qj0i ¼ m2
π

m̂
: ð21Þ

In a similar vein, we have (neglecting the difference
md −mu)

hKþK−j
X
q¼u;d

q̄ qj0i ¼ m2
π

2m̂
;

hKþK−js̄sj0i ¼ 2m2
Kþ −m2

π

2ms
;

hηηj
X
q¼u;d

q̄ qj0i ¼ m2
π

3m̂
;

hηηjs̄sj0i ¼ 3m2
η −m2

π

4ms
; ð22Þ
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where the matrix elements for the s̄s current are obtained by
differentiating LQCD with respect to ms.
At this order, the trace of the energy momentum tensor

reads

θμμ ¼ −∂μπ∂μπ þ 2m2
ππ · π: ð23Þ

Therefore, the corresponding form factors [see Eq. (10) for
a definition] are rendered

θπðsÞ ¼ sþ 2m2
π; Γπ

mðsÞ ¼ m2
π;

ΓπðsÞ ¼
m2

π

m̂
; ΔπðsÞ ¼ 0;

θKðsÞ ¼ sþ 2m2
K; ΓK

mðsÞ ¼
m2

π

2
;

ΓKðsÞ ¼
m2

π

2m̂
; ΔKðsÞ ¼

2m2
Kþ −m2

π

2ms
;

θηðsÞ ¼ sþ 2m2
η; Γη

mðsÞ ¼ m2
π

3
;

ΓηðsÞ ¼
m2

π

3m̂
; ΔηðsÞ ¼

3m2
η −m2

π

4ms
; ð24Þ

and, consequently, the total matrix element becomes

Fs ¼
1

Λ

�X
k¼c;b

−2
27mk

θ þ
�

2

27mc
þ 2

27mb
þ 1

m̂

�
Γm þ Δs

�
:

ð25Þ

It should be noted that, in the limit of isospin symmetry
(mu ¼ md ¼ m̂=2), the various scalar form factors obey

Γπ;sðsÞ≡ 2Γπ0π0
uu ðsÞ ¼ 2Γπ0π0

dd ðsÞ ¼ 2Γπþπ−
uu ðsÞ

¼ 2Γπþπ−
dd ðsÞ

ΔπðsÞ≡ Δπþπ−
ss ¼ Δπ0π0

ss : ð26Þ

Similar expressions hold for the kaonic form factors. Using
these form factors and the expressions for the cross
sections, we may obtain the relic abundance.
It should be realized, though, that the form factors

derived so far have been defined within the lowest-order
χPT. This is reflected by the form factors being constants
rather than functions of momenta. In other words, the
aforementioned values only reflect the values of the form
factors at a particular momentum scale, defined by the
decay/interaction which these are extracted from. As we
shortly see, the higher-order corrections can be quite
important. Consequently, we postpone the calculation of
the relic abundance until after at least some of these
corrections are evaluated.
The χPT Lagrangian can be expressed as a power series

in the exchange momentum p; terms containing quark

masses or external scalar or pseudoscalar fields are Oðp2Þ
whereas external vector or axial-vector fields are OðpÞ.
The next-to-leading order terms in the Lagrangian contains
terms that are Oðp4Þ or, in other words, suppressed by
further factors of Oðp2=Λ2

QCDÞ. With ΛQCD ∼ 200 MeV,
clearly, a perturbative calculation of the higher-order effects
is valid only for small momentum exchanges. In the present
context, this translates to a limit on the dark matter mass,
viz., mφ ≲ 300 MeV [35], for a perturbative expansion to
make sense. Instead, we calculate the form factors using
dispersion relations as this method relies solely on general
principles and data.

A. Form factors from dispersion relations

We now discuss how the form factors can be extracted
from scattering data using dispersion relations. This would
allow us to determine the deviations, as compared to the
preceding section, wrought in the relic abundances. Since
the pion and kaon final states result in the dominant
contributions, we would be concentrating primarily on
these two form factors. In this, we largely follow the
methodology developed in Refs. [36,41].

1. From χPT to dispersion relations

With interactions amongst the hadrons switched on, at
the one-loop level, diagrams as in Fig. 2 would also
contribute. While we have denoted only a subset of the
one-loop diagrams, multiple intermediate states do con-
tribute. And, with the hadron-hadron interactions being
strong, there is no a priori compelling reason to limit
ourselves to only one-loop results. In other words, to write
down the S matrix for such a system, we need to include
contributions from channels like ππ → ππ, ππ → KþK−,
ππ → 4π, ππ → ηη, etc. The direct calculation of the loops
is, of course, a very difficult task. Instead, we take recourse
to determining the imaginary part (wherever applicable)
using the Cutkosky rules and, subsequently, calculating the
real part using dispersion relations. Although, all channels
do contribute to the total amplitude, in this work, we
are restricting to two channels alone, viz., ππ and KK̄ as
these are expected to overwhelmingly dominate up to

FIG. 2. Typical diagrams that contribute to φφ → ππ at the
next-to-leading order.
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mφφ ¼ 1.4 GeV [42], i.e., for dark matter of mass
≤ 700 MeV. Above mφφ ¼ 1.4 GeV, states such as 4π
and ηη come into play, with the contribution of f0ð1500Þ, in
particular, expected to be felt beyondmφφ ¼ 1.5 GeV [42].
Nonetheless, the two-channel approximation is expected to
be a very good one, as the other channels (X) mentioned
above typically suffer from either kinematic restrictions
(leading to a vanishing imaginary part) or small φφ → X
amplitudes.14 We see this explicitly in results below.
Given that the initial state (φφ) is well described by

JP ¼ 0þ, we are interested only in final states with I ¼ 0

and JP ¼ 0þ. Under the assumption that the other channels
can be entirely neglected, the S matrix for meson scatter-
ings (which lives in the aforementioned subspace) can be
further reduced to a 2 × 2 unitary submatrix given by

Sjk ¼ δjk þ 2i
ffiffiffiffiffiffiffiffiffi
σjσk

p
Mjk; σj ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

j=s
q

; ð27Þ

where j; k ¼ π; K and Mjk is the corresponding element of
the transition matrix.
Using the unitarity of the S matrix, the imaginary part of

the transition matrix can be expressed as

ImðMijÞ ¼
X
k

M�
ikMkjσkΘðs − 4m2

kÞ; ð28Þ

and, similarly, for the imaginary part of form factor, viz.,

ImðFi
sÞ ¼

X
k

M�
ikF

k
sσkΘðs − 4m2

kÞ; ð29Þ

with ΘðxÞ being the well-known step function.
More explicitly, the Cutkosky rules determine the dis-

continuity, and, hence, the imaginary part of the scattering
amplitude through the Schwarz reflection principle. In
doing this, it needs to be realized that [36] the form factors
of Eq. (10), treated as functions of s≡ p2, where pμ is the
momentum transfer, are analytic in the complex s plane,
except for a cut along the positive real axis. For the
two-meson (BB) case, the cut starts at s ¼ 4m2

B. While
for s > 4m2

B, the identifications in Eq. (10) hold, for
0 < s < 4m2

B, the function θBðsÞ represents the matrix
element h0jθμμjBBi. Similarly, for real and negative values
of s, it corresponds to hBjθμμjBi and is real. This, in turn,
implies that the values above and below the cut are complex
conjugates of one another.
Consider, for example, the region 4m2

φ < s < 4m2
K; the

only allowed process for DM annihilation is thus15

φφ� → ππ, with 3π final states being precluded by isospin

invariance. Consequently, the only allowed final state
rescattering is ππ → ππ, and, in the limit of identical
masses for the charged and neutral pions, is an entirely
elastic process. Concentrating on the rescattering, the in
and out states only differ in phase. For such a single-
channel case, if we denote the form factor on the upper side
of the cut by Fπ

s, then

Fπ
s ¼ SππF�π

s ; Sππ ¼ exp ½2πiδπðsÞ�; ð30Þ

where δπðsÞ is the I ¼ 0, J ¼ 0 pion-scattering phase shift.
Consequently, as the cut is approached from the above,
Fπ
s exp ðiπδπÞ is a real quantity.
Once δπ is known (from data), what remains is to

determine Fπ
s . If, for s → ∞, the phase shift δπ tends to

a finite value and Fπ
s does not grow faster than a power of s,

then the form factor is known to be given by the Omnès
function [43] ΩðsÞ as

FsðsÞ ¼ PðsÞΩðsÞ ¼ PðsÞ exp
�
s
π

Z
∞

4m2
π

ds0

s0
δπðs0Þ

s0 − s − iϵ

�
;

ð31Þ

where PðsÞ is a polynomial to be fixed by the behavior
of FsðsÞ. It is straightforward to prove that, for
δðs → ∞Þ → απ, the Omnès function is monomially sup-
pressed, namely, Ωðs → ∞Þ → s−α. Moreover, the high-
energy behavior of QCD dictates that, asymptotically, the
form factor behaves as s−1. So, for pion-pion scattering,
where phase shift at s ¼ ∞ goes as π, the Omnès function
would go as 1=s and PðsÞ, immediately, is constrained to be
a constant, to be determined from the value of form factor
at s ¼ 0.
For larger values of s, further channels come into play.

Restricting ourselves, as argued for above, to two channels,
the expression above is generalized to

Fi
s ¼

X1
j¼0

ðδij þ 2iσjMijÞF�j
s ; ð32Þ

where the interaction amplitude for a process can be
expanded in partial waves with angular momentum l,

M ¼ 1

2iσ

Xl
l¼0

ð2lþ 1Þðe2iδl − 1ÞPlðcos θÞ:

For scalar form factors, we need to consider only the l ¼ 0
part. Taking a cue from the single-channel case, the S
matrix for the two-channel process can be parametrized as

Stotal ¼
�

cos θe2iδπ i sin θeiðδπþδKÞ

i sin θeiðδπþδKÞ cos θe2iδK

�
; ð33Þ

14In addition, for certain choices of X, even the amplitude for
ππ to X is suppressed as well.

15Here, we include the possibility that φ may represent a real
scalar. Similarly, ππ includes both πþπ− and π0π0.
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where cos θ determines the mixing between the two
channels. Clearly, for cos θ ¼ 1, the two channels decouple
entirely, and the solutions are to be obtained independently
from ππ → ππ and KK → KK, respectively, namely,

FπðsÞ ¼ F1ðsÞ ¼ P1ðsÞΩ1
1ðsÞ;

FKðsÞ ¼ F2ðsÞ ¼ P2ðsÞΩ2
2ðsÞ:

However, as is expected, and as can be ascertained from
data (see, e.g., Fig. 4 of Ref. [44]), cos θ ≠ 1. Nontrivial
values of cos θ essentially parametrize the relative strength
of, say, KK admixture in the determination of the ππ → ππ
scattering. Known as the elasticity parameter, cos θ is a
function of energy, angular momentum, and isospin. Along
with the phase shifts, we treat cos θ as an experimen-
tal input.
It is useful to parametrize the consequent form factors

through 
FπðsÞ
2ffiffi
3

p FKðsÞ

!
¼
 
Ω1

1 Ω1
2

Ω2
1 Ω2

2

! 
Fπð0Þ
2ffiffi
3

p FKð0Þ

!
; ð34Þ

where the Clebsch-Gordan coefficient occurring in the
projection of the ππ state with I ¼ 0 is shifted to FK ,
and can be thought of as a relative normalization.

2. The two-channel solution: iterative procedure

The parameters of the S matrix (or, equivalently, the
T matrix) may be determined using various scattering data
and certain theoretical constraints in the Roy-Steiner
equations [45]. (An easier route would be to use the
existing determination of phase shifts and inelasticity
parameters, such as those found in Refs. [44,46].)
Before we describe the calculation of Ωi

j ’s, let us express
the form factors in terms of their values at low momentum
transfers (s ¼ 0), viz.,

ΓπðsÞ ¼ m2
π

�
Ω1

1 þ
1ffiffiffi
3

p Ω1
2

�
;

ΔπðsÞ ¼
2ffiffiffi
3

p
�
m2

K −
m2

π

2

�
Ω1

2;

θπðsÞ ¼ ð2m2
π þ p1sÞΩ1

1 þ
2ffiffiffi
3

p ð2m2
K þ p2sÞΩ1

1;

ΓKðsÞ ¼
m2

π

2
ð
ffiffiffi
3

p
Ω2

1 þ Ω2
2Þ;

ΔKðsÞ ¼
�
m2

K −
m2

π

2

�
Ω2

2;

θKðsÞ ¼
ffiffiffi
3

p

2
ð2m2

π þ p1sÞΩ2
1 þ ð2m2

K þ p2sÞΩ2
2: ð35Þ

Similarly, Ωi
j are normalized as Ω1

1ð0Þ ¼ Ω2
2ð0Þ ¼ 1 and

Ω1
2ð0Þ ¼ Ω2

1ð0Þ ¼ 0. The parameters pi are related to the

slopes (dθi=ds and dΩi
j=ds) evaluated at s ¼ 0. Relatable

to SUð3Þ breaking effects, and estimated by the use of
unsubtracted dispersion relations, these lie in the range
(0.9,1.1). In other words, pi ¼ 1 represents a very good
approximation and reproduces the zeroth-order relations of
Eq. (24). Armed with these initial conditions, we follow an
iterative procedure similar to that outlined in Refs. [36,41],
to calculate the form factors. It is convenient to begin with,
say,Δπ andΔK , as these can be handled in a fashion similar
to the one-channel case. We confirmed that, asymptotically
these two solutions indeed go as s−1. Furthermore, in the
zeroth approximation, it is assumed that form factors
behave as FπðsÞ ¼ 1, FKðsÞ ¼ λ, where λ is a real number.
Then, the imaginary part of FiðsÞ at every iteration is
computed via Eq. (29) and the real part is computed using

Re½FiðnÞðsoÞ� ¼
1

π

Z
∞

4m2
π

ds
ImFiðn−1ÞðsÞ

s − so
:

The nested integral equations can be evaluated using
standard numerical methods (see, e.g., Ref. [42]). The
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FIG. 3. The sð¼4m2
ππÞ dependence of various form factors

associated with (a) the pion and (b) the kaon.
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resultant form factors, as displayed in Figs. 3(a) and 3(b),
are consistent with those obtained in Refs. [47,48].

B. Revisiting the relic abundance for scalar interaction

Having obtained the form factors for scalar interaction,
we have, once again, plotted the contours in the mφ − Λ
plane in Fig. 4 using form factors determined at the lowest
order in χPT. Whereas Fig. 1 corresponds to the evidently
untenable assumption that the quarks may be treated as free
particles, Fig. 4 reflects the inclusion of bound-state effects.
One particular effect was expected. Contrary to the pre-
vious case, the annihilation channel into quarks open up
only for mφ ∼mπ. This was only to be expected as the pion
is the lightest of the hadrons. That values of mφ slightly
smaller than mπ are allowed too is ascribed to the fact that
the DM does have a nonzero momentum, albeit somewhat
smaller than its mass.

More interesting is the height of the peak. This sudden
change is to be understood in terms of the structure of the
annihilation cross sections for the different channels. For
annihilations into a pair of leptons, the rate is proportional
to Λ−2. While this scaling originates from the structure of
the effective Lagrangian in Eq. (1) and remains operative
for annihilations into mesons as well, now one has to
include the effect of the nontrivial wave function of the
bound state. For a two-pion final state, this appears in the
matrix element as Fsðq2Þ, which has mass dimension 2,
and the corresponding cross section would scale as
σ ∝ m4

π=ðΛ2m̂2ŝÞ. With ŝ ∼ 4m2
π . it is the smallness of m̂

that pushes up the cross section near the threshold. A
similar bump exists for mφ slightly larger than mK , but with
a much smaller amplitude owing to the analogue of m̂ being
dominated by the much larger ms. Even smaller is the
contribution from the ηmeson [as is testified to by Fig. 4(b)].
However, note that, for mφ ∼ 1 GeV the curve for the
lowest-order bound-state analysis (wherein we have used
only the ππ; KK; ηη final states) is already veering very close
to the free-quark one [which has been provided in Fig. 4(a)
for reference]. Clearly the inclusion of more bound states
will, asymptotically, render the contours very close to each
other. For mφ ≲ 1 GeV, on the other hand, the true anni-
hilation cross sections are, typically, larger than what
transpires for free quarks, and, hence, the preferred value
of Λ somewhat is larger.
We now move on from the lowest-order analysis, to the

inclusion of higher orders, through the use of dispersion
relations. Figure 5 displays the corresponding contours. As
is evident from a comparison with Fig. 4, the gross behavior
is quite similar. Overall, the increase in the sizes of the form
factors, that the higher-order terms entail, results in a
further rise in the preferred value of Λ. The bump around
mφ ≈mK is to be understood in terms of the interference
between the pion and kaon form factors whose details are
secured in the data of pion and kaon phase shifts.

C. Vector interactions

For a final state comprised of a pair of (pseudo-) scalars,
the form factors for a vector current can be calculated in
terms of those for the corresponding scalar current. As
discussed in Sec. IV C, such annihilation cross sections
suffer a v4 suppression and, as a result, for vector inter-
actions, such final states contribute very little (as compared
to, say, the leptons). On the other hand, were the final state
to comprise, say, a pion and a rho meson or a pair of vector
mesons, the cross sections would no longer be suppressed,
and the conclusions would change drastically. In view of
this, we next make an estimate of the timelike (TL) form
factors for these states.
In doing this, we would be using results pertaining to

the well-studied electromagnetic current, which, for light
mesons, reads
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FIG. 4. (a) Contours in themφ − Λ plane [for theOs operator in
Eq. (1)] with form factors determined using the lowest-order
chiral perturbation theory results; (b) illustration of how the
required Λ changes as more pseudoscalar states are included in
the analysis.
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X
q

h0jeqq̄γμqjB1B2i¼
2

3
h0jūγμujB1B2i−

1

3
h0jd̄γμdjB1B2i:

Assuming isospin symmetry, we further have

h0jd̄γμdjB1B2i ¼ h0jūγμujB1B2i ¼ 3
X
q

h0jeqq̄γμqjB1B2i

¼ 3Femðq2Þεμνσωpν
1p

σ
2ϵ

�ω

and, finally,X
q

h0jq̄γμqjπðp1Þρðp2; λÞi ¼ 6Femðq2Þεμνσωpν
1p

σ
2ϵ

�ωðλÞ;

ð36Þ

where λ denotes the polarization state of the ρ meson and
Femðq2Þ is the electromagnetic form factor. The other form
factors discussed in Table I can be defined analogously.

While, for the ρρ final state, the results of Ref. [49] can
be used in a relatively straightforward manner, the πρ
state needs more work, especially in determining the
timelike electromagnetic form factor in the region
q2 ≲ 4 GeV2. Toward this end, we make use of the vector
meson dominance model, wherein, for q2 ≲ 4 GeV2, the
major contributions accrue from the ωð782Þ, ϕð1020Þ,
and ωð1420Þ.
Restricting ourselves, for the time being, to a single

vector meson V̂μ, the part of the Lagrangian governing its
propagation, and the interactions with an external current
(such as that corresponding to a pionic current), Jμ can be
parametrized by [50,51]

L ¼ −
1

4
F̂μνF̂

μν −
1

4
V̂μνV̂

μν −
ê

2gV
F̂μνV̂

μν

þ 1

2
m2

VV̂μV̂
μ − êÂμJμ − gVJV̂μJμ: ð37Þ

Here, V̂μν and F̂μν are the usual field strengths correspond-
ing to V̂μ and the photon field Aμ. While gVJ determines the
strength of the coupling, the term containing gV para-
metrizes the kinetic mixing (between the two vector fields)
that is allowed in an Abelian theory. The presence of this
last term (which could also be thought of as a momentum-
dependent γ–ρ coupling vanishing at q2 ¼ 0) calls for a
rediagonalization of the kinetic part (including the mass
term) of the Lagrangian so as to permit usual perturbative
analysis. While this would be a standard exercise, a slightly
different formulation is more common [50,51], namely,

ê → e≡ ê

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ê2

g2V

s
; Âμ → Aμ ≡ e

ê
Âμ;

V̂μ → Vμ ≡ V̂μ þ
ê
gV

Âμ: ð38Þ

For the special point gVJ ¼ gV [necessary to maintain
Femðq2 ¼ 0Þ ¼ 1], this transformation leads to, approxi-
mately,

L ¼ −
1

4
F̂μνF̂

μν −
1

4
V̂μνV̂

μν þ 1

2
m2

VV̂μV̂
μ

−
em2

V

gv
V̂μÂ

μ þ e2m2
V

2g2V
ÂμÂ

μ − gVJV̂μJμ; ð39Þ

with the difference between the two Lagrangians being
Oðe3=g3VÞ. The existence, in Eq. (39), of a mass term for the
photon is, of course, a concern. However, note that there
now exists a mass mixing between the photon and the V, in
lieu of the earlier kinetic mixing. Summing to all orders in
this mixing (no loops, though), the tree-level photon
propagator can be easily seen to be proportional to
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FIG. 5. Contours in the mφ − Λ plane for dimension-5 oper-
ators satisfying Ωφh2 ¼ 0.1199� 0.0022, obtained using form
factors determined by chiral perturbation theory and dispersion
analysis (DA).
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1

q2

�
1þ e2m2

V

g2Vðm2
V − q2Þ

�−1
:

While the q2 → 0 limit reproduces the standard propagator
(modulo a renormalization), the existence of the second
pole is a reminder of the fact that the field redefinitions in
Eq. (38) are neither complete nor even unitary. Neglecting
this aspect for the time being, it is easy to see that, for
γ� → πþπ−, while the Lagrangian of Eq. (37) trivially
reproduces Femðq2 ¼ 0Þ ¼ 1, the one in Eq. (39) would
have done so only for gVJ ¼ gV, as claimed earlier. With the
absence of any direct coupling of the photon with the
current Jμ existing in Eq. (39), the latter represents,
explicitly, the situation of complete vector meson domi-
nance, leading to a wide acceptance of such a phenom-
enological Lagrangian. Furthermore, in such a theory, gVJ
should be identical for all currents (involving fields of a
given charge) so as to preserve gauge invariance.
With the second pole in the photon propagator appearing

only at m2
Vð1þ e2=g2VÞ, the Lagrangians of Eqs. (37) and

(39) are expected to give identical results for q2 ≪ m2
V.

Nonetheless, we use the more common variant, namely,
Eq. (39). This can be trivially extended to include multiple
vector mesons. Similarly, Jμ can be generalized to different
currents. Given this, the amplitude for γ� → πρ can be
expressed as

Mðγ� → πρÞ ¼
X
V¼φ;ω

em2
V

gV

gVπρεμνσωpν
1p

σ
2ϵ

�ω

q2 −m2
V þ imVΓV

; ð40Þ

such that

Femðq2Þ ¼
X
V¼φ;ω

m2
V

gV

1

q2 −m2
V þ imVΓV

gVπρ: ð41Þ

In Table II, we list the processes used to estimate the
values of the different coupling constants. In calculating
these, we adopt the natural leading order form for the three-
point vector-vector-pseudoscalar meson vertex, viz.,
εμνσωpν

V1p
σ
V2. Note that Eq. (41) gives a good approxima-

tion only for relatively small range of q2 values where the

two poles dominate in turn. Consequently, we use this form
only for the region q2 ≤ 2.6 GeV2. For large q2 values
(q2 ≲ 5 GeV2), perturbative results (incorporating kT fac-
torization etc.) are available and quite accurate (see
Ref. [52]). In between these two regions, we interpolate,
maintaining a s−1 form (while poles do exist even in this
region, their contributions are small on account of the
corresponding vector mesons having only suppressed
couplings with a πρ pair). Finally, combining all the
results, the electromagnetic form factor for πρ, as used
by us, is shown in Fig. 6(a). It behooves us to estimate the
accuracy of our calculation of the form factor. While
comparison to data would be the natural check, unfortu-
nately, there exist no experimental data for the q2 >
0.5 GeV2 region, thereby ruling out this possibility. For
the q2 < 0.5 GeV2 region, data do exist, and a comparison
with Ref. [53] does show some deviation, but never
exceeding 25%. While even this may seem large, it should
be realized that this particular range has very little effect on
the numerical results that we present next. Rather, this
should be considered the maximal theoretical possible
uncertainty in our calculations. Indeed, the errors are
expected to be smaller for higher q2 values, as the leading
contributions have been accounted for.

D. Revisiting relic abundance for vector interactions

We use these results to calculate the relic abundance and
compare it with the case of free quarks [Fig. 1(a)]. The
contour satisfying Ωφh2 ¼ 0.1199 is depicted in Fig. 6(b).
Once again, we show the physically untenable curve
corresponding to the case of free quarks so as to facilitate
easy comparison. Note that, for largemφ, the realistic curve
approaches the free-quark curve. This is quite similar to the
case for the dimension-5 operators and is reflective of the
fact that, for such mφ values, the free-quark approximation
becomes better. More importantly, there exists a large peak
with a substantial width just prior to the asymptotic region,
where the free-quark approximation would have grossly
underestimated the annihilation cross sections and, hence,
the sensitivity to the scale Λ. As can be realized from the
behavior of the form factor as displayed in Fig. 6(a), this is

TABLE II. Here, the value of gρ ¼ 5.01 is calculated from the decay constant of the ρmeson while the decay rates
of the given processes are taken from PDG [54]. Note that the couplings marked by † are determined using vector
meson dominance in the respective processes.

Coupling constant Value Process

g†ω782
3.4gρ ω782 → e−eþ

g†ω782πρ 10.1 GeV−1 ω782 → πþπ−π∘

g†ϕ 2.7gρ ϕ → e−eþ

gϕπρ 0.2 GeV−1 ϕ → πω782

g†ω1420
0.9gρ ω1420 → e−eþ assuming br frac ¼ 10−5

gω1420πρ 3.8 GeV−1 ω1420 → πρ assuming br frac ¼ 70%
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but a reflection of the dominance of the ϕ and ω mesons.
Despite the narrowness of the two resonances, their
closeness implies that, when convoluted with the momen-
tum spreads of the DM, the two peaks are no longer
resolvable. Rather, the two contributions add coherently,
with the first one dominating.
While the discussion above has concentrated only on the

πρ final state, it is obvious that other final states too need to
be taken into account for largermφ. Obvious candidates are
states like KK�, which dominate when the DM pair couples
to a strange-quark current. Relatable by SUð3Þ symmetry
(albeit broken badly) to the πρ final state, we can use the
same formalism for this case too. More interesting are final
states comprising two vector mesons, such as ρρ. A very
similar analysis would go through for this as well. Indeed,
the break in the fall of the dashed curve in Fig. 6(b) and the
subsequent rise for larger mφ owes its existence to the
inclusion of the ρρ state. The inclusion of even more states
would drive this curve very close to the blue curve. This is
only to be expected as, for mφ > 2 GeV, the annihilation
can be well approximated by quasifree quarks.

VI. CMB CONSTRAINTS

A. Effective relativistic d.o.f.

Energy injection from DM annihilation in the early
Universe can alter the effective number of relativistic
d.o.f.Neff . Indeed, MeV scale DM is especially constrained
by these observations. If the DM freezes out after the
neutrinos have decoupled (at T ¼ Tdecoup

ν ), its annihilation
results in heating the e−–γ plasma relative to the neutrinos,
thereby reducing the ratio of the neutrino and photon
temperatures (Tν=Tγ). This results in a reduction of Neff as
Neff ∝ ðTν=TγÞ4. From standard cosmology results, Neff ¼
3.046 [7], and only small deviations from this value are
allowed.
To find the expression for Tf (equivalently, xf), we can

approximate hσvi ∼ σ0ð1þ b=xfÞ (partial wave expansion
of the cross section). On equating the interaction rate
(ΓðxfÞ) with the expansion rate (HðxfÞ), we get

x−1f ¼ Ke−xfð1þ bx−1f Þ; ð42Þ

where

K ¼ 0.038gφg
1=2
ρ mφMplσ0 ≫ 1:

Assuming that Y ≈ Yfreeze−out
eq [or that nφðTfÞ is equal to nφ

today, i.e., at T0 ¼ 2.73 K], we can solve this iteratively.
For example, at the first iteration, the solution reads

xf ¼ lnK þ lnðlnKÞ þ ln

�
1þ b

lnK

�
þ…: ð43Þ
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This implies that xf depends, mainly, on mφ, gφ, and σ0.
For a given particle, the magnitude of σ0 is similar for all
the operators under consideration, provided the respective
Wilson coefficients are similar.
In Fig. 7, we illustrate the decoupling temperature as a

function ofmφ for theO
f
s operator. With σ0 being similar in

magnitude for a given field, the value of xf would be very
similar for the other operators too. As the figure shows, for
mφ > 20 MeV, we have Tf > 2.5 MeV. In other words,
the scalar WIMP decouples prior to neutrino decoupling
(Tdecoup

ν ¼ 2 MeV). Consequently, on annihilation, it heats
the neutrinos along with the photons and electrons,
preserving the standard result of Neff ≈ 3.046.
The situation seemingly gets complicated for mφ ∈

½6; 20� MeV, when Tf ≈ Tdecoup
ν . However, note that the

bulk of the entropy transfer due to DM annihilation still
occurs at T ∼mφ=3, i.e., prior to ν − decoupling, and,
hence, the model is safe from such constraints. Thus, for a
complex scalar field φ, it is the mφ < 6 MeV range which
is constrained byNeff. Similarly, for a real scalar, the limit is
3 MeV. These results are in consonance with those in
Ref. [55]. However, it should be reiterated that this is
operative only in (standard) scenarios wherein the DM is
presumed to have been produced thermally and having
been in thermal equilibrium with the SM particles,16 for a
long enough phase with its abundance being defined
thereby. For a nonthermal DM, the couplings to neutrinos
and/or photons will have to be tuned such that the model
satisfies the above constraints.

B. CMB observations and indirect detection

The cosmic microwave background radiation encodes
information about the thermal history of the early Universe,
and is well described by SM physics. On the other hand,
DM annihilation, at early times, into high-energy photons
or charged particles can not only heat the gas, but can also
lead to atomic excitations and even its ionization. This
increase in the amount of the ionized fraction causes an
increase in the width of the last scattering surface, thereby
affecting the power spectrum of the CMB [57,58].
The energy injected by DM annihilation into the cosmic

microwave background radiation depends on its number
density nφ at that epoch, the rate of its annihilation into
(charged) SM particles, and the nature of the cascade of
particles produced after annihilation. Due to this cascading,
not the entire energy is transferred to the CMB (or the
plasma in equilibrium with it) but only a fraction. To
calculate the amount of the energy transferred, one needs to
track the evolution of the hydrogen and helium ion
fractions, and the spectra of e� and photons at that epoch.

With these being temperature and, hence, redshift depen-
dent, we are faced with a redshift dependent efficiency
function fðzÞ that describes the fraction of the energy
absorbed by the CMB plasma. It has been argued [59],
though, that the effect of fðzÞ can be well appro-
ximated by an effective, but redshift independent, effi-
ciency function feff . Indeed, Ref. [60] demonstrated that,
given a set of fðzÞ functions for a WIMP, the impact of an
appropriately chosen feff , on the CMB, is identical at the
subpercent level. This is the simplification that we adopt.
The rate of energy deposited, into the CMB, by DM pair

annihilation per unit time per unit volume is given by

dE
dtdV

¼ ρ2cΩ2
φð1þ zÞ6PannðzÞ;

where z is the redshift of the epoch, and ρcðΩφÞ is the
critical density of the Universe (DM relic abundance)
today, i.e., at z ¼ 0. The factor ð1þ zÞ6 just encapsulates
the standard evolution of the dark matter number density
(note that the annihilation rate is proportional to n2φ). CMB
observations [7] constrain Pann<4.1×10−28 cm3s−1GeV−1.
To translate this into the allowed region in the mφ − Λ
plane, we need fðzÞ (or, equivalently, feff ) and hσvi. Here,
v is the relative velocity (in units of the velocity of light)
of the second DM particle in the rest frame of the first. For a
complex scalar field, the thermal average of the annihilation
cross sections for different operators is given by

hσviOf
s
≃

1

4πΛ2

X
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
f

m2
φ

s

×

��
1 −

m2
f

m2
φ

�
þ 1

8

�
−2þ 5

m2
f

m2
φ

�
hv2i

�
; ð44Þ

hσviOf
p
≃

1

4πΛ2

X
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

m2
f

m2
φ

s �
2þ−2þ 3ðm2

f=m
2
φÞ

8ð1− ðm2
f=m

2
φÞÞ

hv2i
�
;

ð45Þ

hσviOf
v
≃

1

12πΛ4

X
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
f

m2
φ

s
m2

φ

�
2þ m2

f

m2
φ

�
hv2i; ð46Þ

hσviOf
a
≃

1

6πΛ4

X
f

�
1 −

m2
f

m2
φ

�3=2

m2
φhv2i; ð47Þ

hσviOγ;γ̃
≃

2

πΛ4
m2

φ

�
1 −

�
9

16
hv4i

��
: ð48Þ

For a real scalar field, similar expressions hold, but with an
extra factor of 4. As derived in the Appendix, we have
hv2i ¼ 6T=mφ and hv4i ¼ 60T2=m2

φ.
The dependence of hσvi on hvni is easy to understand in

terms of the angular momenta, especially if the DM pair is
viewed as a composite pseudoparticle (with some angular

16If light DM enters thermal equilibrium with the SM after
neutrino-photon decoupling, then the constraints from measure-
ments of Neff are significantly relaxed [56].
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momentum) decaying into a SM pair. For Of
s and Of

p, the
amplitude has both s-wave and p-wave components,
whereas for Of

v and Of
a, no s-wave component can exist

on account of the inherent angular momentum of the initial
state. Similarly, for Oγ and Oγ̃ , no p-wave component may
exist as it would require the diphoton state to exist in an
antisymmetric state.
With the DM being nonrelativistic, the CMB constraints

for p-wave annihilation are weaker compared to those for
the cases driven by s-wave DM annihilation. For pure
s-wave annihilation, hσvi is independent of velocity and
hence Pann is a redshift independent parameter. For vector
couplings, on the other hand, we need to estimate the
velocity of DM at the epoch where these interactions are
significant. To this end, we consider the epoch of kinetic
decoupling. When the Hubble rate equates the rate of
scattering, the dark matter can no longer reach kinetic
equilibrium with the plasma through a high momentum
exchange rate; the WIMPs kinetically decouple from the
plasma and attain free-streaming. This allows us to write

Pp−wave
ann ¼ feff

hσviCMB

mφ
;

and use

hv2iCMB ¼ hv2ikd
ð1þ zCMBÞ2
ð1þ zkdÞ2

¼ hv2ikd
Tφ
CMB

Tφ
kd

to calculate hσviCMB. As the DM was, hitherto, in kinetic
equilibrium with the plasma, hv2ikd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Tkd=mφ

p
.

A conservative estimate gives17 xkd¼Tkd=mφ∼10−4.

Using zCMB ∼ 1100, we may estimate Tγ
CMB ¼

Tγ
todayð1þ zCMBÞ. The temperature of φ at recombination

depends on the kinetic decoupling temperature. As long
as the DM remains kinetically coupled to the plasma, we
have Tγ

kd ¼ Tφ
kd. Once the DM decouples kinetically, its

temperature at a redshift z ∼ zCMB is decided by its non-
relativistic nature, i.e.,

Tφ
CMB

Tφ
kd

¼
�
zCMB

zkd

�
2

¼
�
Tγ
CMB

Tγ
kd

�
2

:

This implies

hv2iCMB ¼ ðTγ
CMBÞ2

mφT
φ
kd

¼ ðTγ
CMBÞ2
m2

φ
xkd;

or, in other words, hv2iCMB of φ of m ¼ 1 MeV exceeds
that for m ¼ 1 GeV by a factor of 109.
As for the effective efficiency factor feff, it depends upon

the details of the model (in our case, the relative sizes of the
Wilson coefficients), and rather than calculate it explicitly,
we allow it to vary within the range 0.4 < feff < 1which is
commensurate with that advocated in Ref. [61]. As we see
later, our results are not very sensitive to the exact choice.
Since DM annihilation to electrons and photons gives us

the tightest constraints, in Fig. 8, we depict the value of
hσviðφφ → e−eþÞ, as a function of mφ for the respective
operators of Eq. (1) and different final states. In Fig. 8, we
depict the value of hσviðφφ → e−eþÞ, as a function of mφ

for the respective operators of Eq. (1) and different final
states. In each case, Λ is chosen to be the maximum
allowed for by the measurement of the relic density, viz.,
the condition Ωφ ≤ ΩDM. Thus, it is the area above a curve
that is allowed. Also depicted, in solid blue, is the curve
corresponding to the aforementioned CMB observation,
viz., Pann ∼ 4.1 × 10−28 cm3 s−1GeV−1. The top (bottom)
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FIG. 8. We present the hσviðφφ → e−eþÞ −mφ plane obtained using those values of Λ that satisfy Ωφh2 ¼ 0.1199� 0.0022 for the
case when DM is allowed to (a) annihilate into leptons and free quarks and (b) annihilate into leptons and bound states.

17The exact value for different operators varies from 10−4 to
10−6, as can be estimated by equating the rate for elastic
scattering (DM and SM) to the expansion rate, i.e.,
nrelΓelastic ∼HðTdÞ.
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curves correspond to feff ¼ 0.4ð1Þ respectively. Clearly, it
is the area below these curves that is allowed. Had the
quarks in the final state been truly free, we would, thus,
have faced a seeming disagreement between the two sets of
observations, at least for smaller values of mφ. However,
before we entirely discard such a mass range, we need to
reconsider the correction wrought by considering bound
states instead. As Fig. 8(b) shows, this reduces the disagree-
ment to a very large extent. The inclusion of even more
bound states in the calculation of relic abundance would
have further reduced the remaining disagreement (espe-
cially for mφ ≲ 500 MeV). To appreciate this, recognize
that such an inclusion would raise the DM annihilation
cross section (into hadronic states) even further, thereby
implying a raise in the preferred value of Λ and, hence, a
suppression in the φφ → eþe− rates.
In addition, it should be borne in mind that the said

disagreement depends not only upon our understanding of
the early Universe being perfect, but also on several key
assumptions. For example, consider the case of the non-
thermal DM, where the annihilation cross sections are very
small and the final relic abundance is completely deter-
mined by its initial abundance which, in turn, depends on
the model at hand. For such small cross sections, these
limits can be evaded easily. For scenarios that fall some-
where in between the nonthermal and rigorously thermal
DM, the constraints would need to be scaled appropriately.

VII. SUMMARY AND CONCLUSIONS

In this work, we have systematically investigated the
interactions of a light scalar DM particle with the SM sector
within the framework of an effective field theory. This
entails examining the constraints imposed by astrophysical/
cosmological observations such as the CMB power spec-
trum, the deduced value of the relic abundance, as well as
the comparison of the photon and neutrino temperatures.
In the first part of the work, we considered leptons

and free quarks as final states (while this is not a good
approximation given the smallness of the DM mass and,
hence, energies available, it serves to illustrate certain
features and sets the stage for the second part of the study)
and analyzed the constraints imposed by the cosmologi-
cally deduced value of the relic density (ΩDMh2). This
allowed us to obtain relatively robust upper limits on the
scale Λ of the effective field theory, as a higher value for Λ
would imply a smaller DM annihilation cross section, and,
hence, a larger abundance. For the dimension-6 operators
under consideration, we have Λ ∝ ffiffiffiffiffiffimφ

p so as to produce
the right abundance, while, for the dimension-5 operators,
Λ ∼ 104 GeV with only a weak dependence on mφ. The
value of Λmax corresponding to the dimension-6 operators
might, at the first sight, seem too low to have escaped
detection in terrestrial experiments. However, this is not
quite so as we demonstrate in the accompanying paper [62].

As already stated, for DM masses below a couple of
GeVs, it is not a good approximation to assume that a pair
of DM particles may annihilate into a pair of free quarks as
DM of such a mass would freeze out only around the QCD
phase transition temperature, leaving them with very little
overall energy. Consequently, we should, instead, reframe
the analysis in terms of bound states. Given that baryon
production is suppressed, we concentrate on mesons,
devising appropriate methodology to determine the leading
annihilation cross sections into such states. Chiral pertur-
bation theory as well as techniques of dispersion analysis
are used to obtain the effective couplings of DMwith a host
of light mesons, not only the pseudoscalars such as pions
and kaons, but vectors as well. However, it is the pseudo-
scalar states that dominate for dimension-5 operators and
obtaining the right relic abundance would require the scale
of the effective theory to be related to the DM mass as
Λ ∝ Fðq2Þm−2

φ . For dimension-6 operators, on the other
hand, annihilation to final state (pseudo-) scalar mesons is
v4 suppressed and, hence, we must include the vector
mesons in the mix. For a final state comprised of a pair of
vector mesons, very good results can be obtained using the
analogues of the timelike electromagnetic form factors. For
a pseudoscalar-vector combination, on the other hand, a
combination of data and the vector-meson-dominance

model does the job. This leads to Λ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mφFðq2Þ

q
for

vector interactions. What is particularly heartening to see is
that the inclusion of progressively more states brings the
results closer and closer to that obtained with free quarks.
This lends credence to the belief that the results found
herein present a very good approximation and can be made
even more robust by the inclusion of just a few more states
at best.
An orthogonal constraint emanates from the requirement

that the annihilation of the DM does not significantly alter
the ratio of the neutrino and photon temperatures, an
observable often recast as Neff (or the effective number
of neutrinolike species). For the effective Lagrangians
under consideration, once the requirement of reproducing
the right relic abundance is imposed, the freeze-out temper-
ature Tf ∼ d1mφ expðmφ=d2Þ with the constants d1;2 being
only very weakly dependent on the exact nature of the
current-current structure. A consequence is that the con-
straints are strong only for mφ ≲ 6 MeV, as for higher
values of mφ, the bulk of the entropy transfer to the plasma
takes place before T ≈mφ=3, and, hence, before the
neutrinos have decoupled. Even this constraint (for
mφ ≲ 6 MeV) can be evaded if the DM had a nonthermal
origin. However, with the dynamics of such DM being very
sensitive to the spectrum and the structure of the theory, it
does not easily lend itself to the effective Lagrangian
treatment.
A competing constraint emanates from the shape of the

CMB spectrum. The lack of significant distortions in the
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same puts an upper limit on the rate of DM annihilation
(Pann) to, e.g., e� or photon pairs. The lower limit on Λ that
this translates to is, often, in ostensible contradiction with
the aforementioned values of Λmax. These two opposing
constraints, thus, seemingly rule out such a light DM
(within the ambit of an effective theory). However, with
the inclusion of bound states, the disagreement between
the observables Ωφh2 and Pann is rendered comparatively
small. It should be realized, though, that existence of even
such a small “discrepancy” depends crucially on the
assumption that, in the early Universe, the DM was in
exact thermal equilibrium with the SM sector. If this
restriction is released, or, in other words, a nonthermal
initial condition on the DM allowed for, the constraints
from Pann are eased enough to permit a large overlap with
the parameter space allowed by ΩDM.
Similar to the CMB constraints, the inclusion of bound

states slightly changes the interpretation of the results in the
direct detection experiments which we have discussed in
the companion paper.
In summary, we may conclude that a substantial fraction

of the parameter space of light scalar DM is still viable.
Furthermore, an accurate estimation of the cosmological
constraints needs the proper inclusion of bound states.
While the inclusion of the few light mesons has already
given us a fast converging and robust result, the remaining
uncertainties can be reduced in a straightforward (though
painstaking) manner by the inclusion of even more states.
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APPENDIX: SOME USEFUL
THERMAL AVERAGES

For any observable fðp1; p2;…; pnÞ, constructed of the
momenta of n particles of a gas at equilibrium, the thermal
average is given by

hfi ¼

Z
d3p1

ð2πÞ3 � � �
Z

d3pn

ð2πÞ3 e
�
−
P

i
Ei=kBT

�
fðp1;p2;…; pnÞ

Z
d3p1

ð2πÞ3 � � �
Z

d3pn

ð2πÞ3 e
�
−
P

i
Ei=kBT

� ;

where Ei is the energy of the ith particle. For a single
nonrelativistic species,

Ei ≃mþ p2
i

2m
≃mþmv2i

2
:

Defining the relative velocity between two particles as

vrel ≡ v⃗1 − v⃗2; ðA1Þ

we have

hv2reli ¼

Z
d3v1d3v2 exp

�−mðv21 þ v22Þ
2kBT

�
jv⃗1 − v⃗2j2Z

d3v1d3v2 exp
�−mðv21 þ v22Þ

2kBT

�
:

Henceforth, we choose kB ¼ 1. Effecting a change of
variables, namely,

ðv⃗1; v⃗2Þ →
�
v⃗rel; v⃗cm ≡ v⃗1 þ v⃗2

2

�
;

the Jacobian is unity, and

hv2reli ¼
R
d3vcmd3vrelv2rel exp ½ð−m=TÞðv2cm þ v2rel=4Þ�R
d3vcmd3vrel exp ½ð−m=TÞðv2cm þ v2rel=4Þ�

¼
R
dvrelv4rel exp ½−mv2rel=4T�R
dvrelv2rel exp ½−mv2rel=4T�

¼ 6T
m

: ðA2Þ

Similarly,

hv4reli ¼
R
dvrelv6rel exp ½−mv2rel=4T�R
dvrelv2rel exp ½−mv2rel=4T�

¼ 60T2

m2
: ðA3Þ
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