
Degree Complexity Bounds on the Intersection of Algebraic Curves 

Shreeram S. Abhyankar *, Srinivasan Chandrasekar** and Vijaya Chandru** 

Purdue Unviersity, West Lafayette, IN 47907, U.S.A. 

ABSTRACT 

The intersection of algebraic curves in 
three and higher dimensional spaces is 
considered. An algebrogeometric technique is 
developed for obtaining an upper bound on 
the number of intersection points of two 
irreducible algebraic curves. The asymptotic 
bounds are shown to be a function of only 
the degrees of the two intersecting curves. 
Some specific examples involving curves in 
S-space are analyzed. 

INTRODUCTION 

An important problem in geometric 
modeling is to obtain tight bounds on the 
number of intersection points between two 
algebraic space curves and thence to develop 
efficient algorithms for finding these points 
[4,6,8]. Similar problems related to the 
intersection of trajectories in high 
dimensional spaces arise in dynamical 
systems and control theory [5]. 

Intersection problems for algebraic plane 
curves have been elegantly solved using 
classical algebrogeometric techniques [ 81. 
These successes may be viewed as 
straightforward consequences of Bezout’s 
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theorem applied to the “proper” intersection 
of algebraic plane curves. This theorem 
implies that two algebraic curves, of degree 
m and n, intersect in no more than m n 
points on a plane, unless the curves overlap. 
This, in general, provides the least upper 
bound for the intersection of algebriac plane 
curves. Such well defined bounds are hard to 
derive for curves in higher dimensional space, 
as Bezout’s theorem does not extend to such 
*‘improper” intersections [1,4,6]. 

In this paper we present a general 
technique for bounding the number of 
intersections of two algebraic space curves of 
arbitrary degree. The broad approach is to 
embed one of the space curves in appropriate 
low degree algebraic surfaces 
hypersurfaces and then, using a version “df 
Bezout’s Theorem, to bound the cardinality 
of the intersection set. Asymptotic bounds 
are obtained for intersecting curves in both 
3- and higher dimensional space. We believe 
that this approach could ultimately lead to 
analogues of Bezout’s Theorem for improper 
intersections of algebraic varieties. 
Throughout this paper we are concerned only 
with curves and other varieties that are 
algebraic. 

DEFINITIONS 

Some terminology and propositions 
frequently used in this paper are briefly 
defined below, For detailed definitions refer 
to [1,3]. 

(i) An algebraic variety is said to be 
pure if all its irreducible components have 
the same dimension. 

(ii) Two intersecting pure varieties Vr 
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and -Vz are said to intersect properly 
provided co-dimension (Vr nVz) equals the 
sum of the co-dimensions of VI and Vz. The 
intersection of two irreducible curves C and 
D in k-space is never proper (for k >_ 3). 

(iii) For any given curve C,, of degree 
m, a manimal degree hypersurface Sd of C, is 
a hypersurface of degree d that contains C,, 
where d is chosen to be the smallest positive 

integer such that c&d 2 -md-1 

evaluates to a positive val& 
.I 

(iv) A curve C, is called special if it can 
be embedded in a hypersurface S& of degree 
d’, for some d’ smaller than d, where d is the 
degree of a minimal degree hypersurface of 
C rn- 

(v) An irreducible curve D,, which lies 
in the intersection of all the minimal degree 
hypersurfaces Sd of C,, is called a sibling of 
C m* 

(vi) Bezout ‘s Theorem 

Let V, and Vz be two pure varieties 
intersecting properly. Then 

degree (VI nVz) 5 degree (VI) l degree (Vg) 

(and = holds in complex ,projective n-space 
P,(C) if intersections are counted with 
“appropriate” multiplicity). 

RESULTS amd 5 

We first examine a classical 
combinatorial formula. 

Proposition 

The minimal number of points needed 
to define a hyper-surface of degree d in k- 

space is 

The proof of this may be found in any 
of the classical algebraic geometry textbooks; 
see for example Ref. [12]. 

In particular, this proposition implies 
that there alwavs exists a hypersurface Sd of 

degree d in P”,(C) containing any collection 

- 1 points. Consider now a curve 

Cm’of degree ‘m also in Pk(C). By Bezout’s 
Theorem lC, nS, 1 is either 5 md or Cm 
and Sd have a common component. 
Furthermore, if Cm is irreducible and 
lC, n Sd 1 is greater than md, then Cm lies 
on Sd. These observations lead to a general 
technique for embedding any curve in a 
suitably “low” degree hypersurface. Some 
straightforward consequences this 
discussion in P3(C) are that ir:!ducible 
degree two space curves can be embedded in 
the plane and that an irreducible cubic space 
curve lies on a quadric surface. 

We may now formulate a heuristic for 
bounding the number of intersections of two 
curves Cm and D, in Pk(C). Using the 
construction described above we would first 
obtain a hypersurface Sd containing Cm. 
APPlYhz Bezout’s Theorem we can 
determine the number of intersection points 
between Sd and D,. This number will bound 
from above the number of intersection points 
between Cm and D,. This heuristic may run 
into the difficulty that Sd also contains D, 
whence we would obtain a trivial upper 
bound of infinity. In order to get around this 
difficult we need to develop a technique for 
constructing Sd containing C, such that Sd 
intersects D, properly. In the given space 
Pk(C) let 

d is chosen as the smallest positive 
integer such that &md is positive. The 
number arnd represents the dimension of the 
vector space of hypersurfaces of degree d 
that contain the given curve Cm of degree m. 
Such an Sd is said to be a minimal degree 
surface for Cm. A curve Cm is said to be 
special if Cm cS#, for some d’ <d. Most 
curves are non-special. Unless otherwise 
stated, the rest of this paper will be 
concerned with non-special irreducible 
curves. 

Theorem 1 

Let Cm and D, be two distinct, 
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irreducible, non-special algebraic curves in 
k-space with m <n. Then there exists a 
hypersurface Sd of degree d such that Sd 
contains C, and Sd intersects D, properly. 
Consequently, lC, flD, 15 IS, flD, l<nd. 

Proof: Let d and d’ be the smallest integers 
for which a& and c&-l1 are positive. The 
dimensions of the vector spaces of 
hypersurfaces of degree d and d’ which 
contain C, and D, are respectively at least 
equal to f&l and ah&. Consider the 
following two cases 

Case 1; d is not equal to d’. 

There exists a hypersurface Sd of degree d 
which contains C,. D, does not lie on Sd 
because it is non-special and the least degree 
hypersurface S& on which it lies has degree 
;d’, d’>d. Hence this Sd intersects D, 
properly. 

Case 2: d is equal to d’ 

c&d is greater than c&j because m < n. That 
is, the dimension of the vector space of 
hypersurfaces Sd of degree d which contain 
C, is greater than the dimension of the 
corresponding vector space of degree d 
hypersurfaces containing D,. Hence, there 
certainly exists at least one hypersurface Sd 
which contains C, and which intersects D, 
properly. 18 

The hypersurfaces Sd and S& considered 
above are in fact irreducible since both C, 
and D, are non-special curves. Furthermore, 
the theorem holds even if m is equal to n 
provided C, and D, are not siblings. 

Asymptotic Bound 

We know that in k-space any curve C, 
of degree m can be embedded in a 
hypersurface Sd of minimal degree d. Recall 
that d is the smallest positive integer such 
that omd 2 1, that is 

(d+l)(d+2)...(d+k--1)(d+k) -l - 
k! 

md>l 
- 

A simple asympptic analysis shows that d 

‘grows as (k!m) tk-‘) . All curves D, of degree 
n, where n is greater than m, will intersect 
this minimal degree hypersurface, Sd, 

properly. In fact any D, which is not a 
sibling of C, will also intersect Sd properly. 
We have proved the following: 

Corollary 

For C, and D, meeting thf conditions 

in theorem 1, lC, (7D, (=O (m 
P-4 

k-1 n). 

This corollary provides a succinct 
description of the upper bound on the 
number of intersection points. Notice that as 
k, the dimension of the space, increases the 
bound decreases and ultimately becomes 
linear in n. This is the algebraic 
manifestation of the simple geometric 
intuition that as the dimension of the space k 
increases, the degree d of the minimal degree 
hypersurface containing C, must decrease. 
Eventually, for k > m, a hyperplane will 
suffice, i.e. d=l. If one is interested in the 
actual number of intersections, rather than 
the asymptotic behaviour, the following 
improvement of Theorem 1 is possible. 

Theorem 2 

Let C and D, be distinct, irreducible 
curves in F(C) with m, the degree of C,, 
less than n, the degree of D,. Let d and d’ 
be the degrees of the minimal degree 
hypersurfaces containing C, and D, 
respectively. Then, 

-1) if d#d’ 

d-ad-f)ifd=d’ n 

Proof: Abhyankar et al. [3]. 

Some further refinements of this 
theorem for curve intersection in 3- 
dimensional space may be found in [2]. 

Examples 

1. Consider the intersection of a cubic curue 
C3 with curve D,(n 24) in 2-, 3- and 4- 
dimensional space. In %space, that is in 
the plane, Cs can intersect D, in as many 
as 3n points (Bezout’s Theorem). In 3- 
space, Cs can be embedded in a quadric 
surface Sz and therefore D, intersects C, 
in no more than 2n points. In 4-space, 
any C3 lies on a hyperplane and therefore 
intersects D, in no more than n points. 
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2. Space Quintic (m=S) 

In 3-space consider the intersection 
of an irreducible quintic space curve, Cz, 
with an irreducible space curve, Dr of 
degree seven. a53 =4 and Cz can be 
embedded in a cubic hypersurface Sa. 
Since D7 is a non-special curve, the 
minimal degree hypersurface on which it 
lies is an S4. Hence there exists at least 
four linearly independent cubic 
hypersurfaces S i, . Si, Si and St which 
contain Cz and which intersect Dz 
properly. Theorem 1 implies that 
1Cs nD, 1521, If we apply Theorem 2 
to this curve intersection problem, then 
we get a bound 
- (a53 -1) =18. 

tc, m, l=(7)(3) 

APPLICATIONS 

Some applications of the above results 
are outlined in this section. 

1. Embeddings 

A space curve can be embedded in a 
surface of appropriately “low” degree. This 
is based on the following two facts: 

a) The minimal number of points 
needed to define a hypersurface, of 

. 

b) An irreducible curve C, of degree m 
and a surface Sd of degree intersect 
in no more than md points, unless 
cm lies on $d. 

The technique we outlined to obtain the 
embedding also gives the equation of the 
surface. Embeddings are useful in geometric 
modelling and interpolation problems. 

Another specific embedding result is 

Lemma In k-space any irreducible curve of 
degree less than k lies on a hyperplane. 

Proof: Consider an irreducible curve C, of 
degree m in k-space. If m satisfies inequality 
(1) above with d equal to one, then C, lies 
on a hyperplane. The inequality with d equal 
to one is 

I >m-1 +l. 

that is k>m. 

So any irreducible curve C, in Pk(C) lies on 
a hyperplane, if ma. a 

2. Computations with Space Curves 

The proof techniques developed in this 
paper can be used algorithmically in several 
ways. In particular, they can be used in the 
explicit computation of the intersection 
points and in realizing implicit and 
parametric representations of curves. These 
applications are of particular significance in 

6 computer aided geometric design) when t e 
curves are taken to be space curves, i.e. 
curves in P3((r:). 

Intersections 

In order to mechanise the proofs of 
theorems 1 and 2, we need to 

l Generate a requisite number of points 
on c, 

0 Construct surfaces Sk to contain C, 
(and not Dn) 

l Compute (Dll nSh>, points on D, 

0 Select points on C, 

These steps are easily accomplished if 
C, and D, are given in rational parametric 
form. If they are given in implicit form, we 
can obtain a plane curve parametrization 
(using the technique of Hoffmann [7]) which 
can be the basis of explicit computation. 

Representations 

The surface embedding of a space curve, 
discussed above, can be the basis of new 
implicit representations. For example, it is a 
classical result that every space cubic can be 
expressed as the solution to three degree two 
equations (ie the intersection of three 
quadrics). Using a variation on the 
embedding proof of theorem 2, we can obtain 
an explicit construction of the three defining 
quadric equations for any given space cubic 
PI* 
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3. C6mbinatorial Complexity of 
Arrangements 

A unifying theme in computational 
geometry is the complexity of arrangements 
of objects in the plane, in space, etc. 
(Edelsbrunner [lo]). In this approach one 
considers the complexity of incidences of 
several objects of bounded algebraic 
complexity (points, lines, circles, spheres, . ..). 
The asymptotic bounds on this combinatorial 
complexity have been the focus of 
considerable attention in recent years 
(Aranov and Sharir [9], Clarkson et al [ll]). 

In the problems considered in this 
paper, we have exactly the reverse situation. 
We consider the intersection of only two 
objects at a time. However, each of the 
objects (curves) is of high algebraic 
complexity. A natural connection between 
these problems of improperly intersecting 
curves and other varieties, on one hand, and 
combinatorial arrangements, on the other, is 
obtained by considering a degree m curve to 
roughly correspond to m lines in space. In 
this light, the results of this paper may be 
viewed as an “algebriac” approach to 
analyzing the complexity of arrangements. 

CONCLUSION 

The problem of improperly intersecting 
algebraic curves commonly arises in three 
and higher dimensional spaces. This has 
been studied in the present paper with the 
objective of obtaining bounds on the number 
of intersection points. Such bounds have 
been derived using algorithmic algebraic 
geometry methods. The results should be 
useful for explicit computations with space 
curves, which arise in computer aided 
geometric design. 
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