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Bezout’s theorem gives an upper bound on the degree of the intersection of profierly intersectirig 
algebraic varieties. In spaces of dimension higher than two, however, intersections between many 
algebraic varieties such as curves are improper. Bezout’s thedrem cannot be directly used to bound 
the number of points at which these curves intersect. In this paper an algebrogeometric technique is 
developed for obtaining an upper bound on the number of intersection points of two irreducible 
algebraic curves in k-dimensional space. The theorems obtained are applied to the specific case of 
intersecting algebraic space curves in three-dimensional space, and a number of examples are analyzed 
in this regard. The implications of the derived results for computer-aided geometric design are 
discussed. 
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INTRODUCTION 

Algebraic curves are widely used in geometric modeling. They include, as special 
cases, Bezier curves, Hermite interpolants, splines of various kinds, and inter- 
section curves of algebraic surfaces. An important problem in computer-aided 
geometric design is to determine tight bounds on the number of intersection 
points between two algebraic space curves and to develop efficient algorithms for 
finding these points [13, 14, 17, 191. Similar problems related to the intersection 
of trajectories in high-dimensional spaces frequently arise in computational 
geometry [12], dynamical systems, and control theory [ll, 181. 
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The intersection problem for algebraic plane curves has been elegantly resolved 
using classical algebrogeometric techniques [5-7, 19, 201. These successes may 
be viewed as straightforward consequences of Bezout’s theorem [2,4,20] applied 
to the “proper” intersection of algebraic plane curves. This theorem implies that 
two algebraic curves of degree m and n can intersect in no more than mn points 
on a plane. This, in general, provides the least upper bound for plane curves. 
Such well-defined bounds are hard to derive for curves in higher dimensional 
space, as Bezout’s theorem does not extend to such “improper” intersections 
[20, 211. 

Looking beyond plane curves, one considers the intersection of algebraic space 
curves, that is, curves in three-dimensional space. A simple example is the 
intersection of two nonoverlapping space cubits. Using planar projections (and 
Bezout’s theorem) it follows that they can intersect in no more than nine points. 
Goldman [14] and Chandru and Kochar [lo] showed that the actual number of 
points indeed is no greater than five. Exploiting the rational parameterizability 
of all space cubits, they also gave constructive methods for obtaining the 
intersection points. 

More recently, Abhyankar, Chandrasekar, and Chandru [9] obtained “tight” 
bounds for the general problem of intersecting algebraic space curves of arbitrary 
degree. Asymptotically, they showed that two space curves of degree m and n 
intersect in O(min(m%, mnl”)) points. 

In this paper we consider the general problem of intersecting algebraic curves 
in k-dimensional space. “Tight” upper-bound results are obtained using algo- 
rithmic, algebrogeometric techniques. The aforementioned results for algebraic 
space curves are derived as specializations of the general results. The implications 
for computer-aided geometric design are also discussed. 

1. DEFINITIONS AND BACKGROUND 

We are concerned only with curves and hypersurfaces that are algebraic. Unless 
otherwise stated, the curves considered are in spaces of dimension higher than 
two. Consider 

K: f(x, y) = 0, where f is a polynomial; 
S: g(x, y, z) = 0, where g is a polynomial; and 
HI h(Xl, x2, x3, . . . , 3tk) = 0, where h is a polynomial. 

K and S represent a plane curve and a surface in R2 and R3, respectively. 
H represents a hypersurface in R k. K, S, and H are irreducible if f, g, and h, 
respectively, are irreducible polynomials. Equivalently, K, S, and H do not 
properly contain two or more curves, surfaces, or hypersurfaces, respectively, of 
which they are the union. 

The definition of an algebraic curve in k-space and its irreducibility is not as 
straightforward [l-3, 81. It requires the abstract notion of an algebraic variety. 
An affine algebraic variety in 6Zk is simply defined as the set of all common 
solutions to a system of polynomial equations in k variables. 

Let V be a variety in Ck. By a subvariety of V we mean an algebraic variety W 
in Ck such that W is contained in V. V is said to be reducible if V can be 
expressed as the union of two subvarieties each of which is nonempty and is 
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different from V. V is said to be irreducible if it is nonempty and is not reducible. 
The dimension of V is the largest integer d such that there exists a strictly 
ascending sequence V,, VI, V,, . . . , Vd of irreducible subvarieties of V. By strictly 
ascending we mean that for i = 2, 3, . . . , d we have that Vi-1 is contained in 
Vi and is different from Vi. We note that this definition is consistent with 
the geometric intuition that a point, curve, and surface are of dimension zero, 
one, and two, respectively. A hypersurface in k-space is a variety of dimension 
(k - 1). The codimension of a variety V in ck is (k - dim V). A variety is said to 
be pure if all of its irreducible components have the same dimension. For example, 
a curve is a pure one-dimensional object; and a surface, a pure two-dimensional 
object. Suppose V is a pure d-dimensional variety in k-space. Consider the 
intersection of V with all linear spaces L&d of dimension (k - d). Then, 

degree(V) = maximum number of intersections of L _ and v ] Lk-d fl VI is finite . 
k d I- 

In k-space this yields the following definition for the degree of a curve C: 

degree(C) = maximum t;;t;;fCintersections , P n C , is finite . 
(Pisahyperplane) 

We note that “most” hyperplanes will intersect C in degree(C) points. A purely 
algebraic definition of degree(C) can also be given in terms of the so-called 
Hilbert polynomial Pc of C. The interested reader may refer to [l] or [21] for 
this definition. 

Two intersecting pure varieties VI and V, are said to intersect properly provided 
that 

co - dim( VI r) V,) = co - dim( V,) + co - dim( V,). 

Some concrete examples of proper intersections are 

(1) (P, rl Pz) in 2-space, where P, and Pz are irreducible plane curves that meet 
in a finite number of points (see Figure 1); 

(2) (P n S) in 3-space, where P is an irreducible plane curve, S is an irreducible 
surface, and they meet in a finite number of points (see Figure 2); 

(3) (C n S) in 3-space, where C is an irreducible space curve, S is an irreducible 
surface, and they meet in a finite number of points; 

(4) (Si n S,) in 4-space, where S1 and Sz are irreducible surfaces of dimension 
two and they meet in a finite number of points; and 

(5) (C fl H) in k-space, where C is a curve, H is a hypersurface, and they meet 
in a finite number of points. 

It is important to note that the intersection of two irreducible curves C1 and 
Cz in k-space is never proper (for k L 3). 

1.1 Bezout’s Theorem 

Let VI and V, be two pure varieties intersecting properly. Then, 

degree(V, n V,) 5 degree(V,) . degree(V& 
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Fig. 1. Intersections between curves in the plane also il- 
lustrating Bezout’s theorem. (a) A line (degree-one) inter- 
sects a degree-two curve, an ellipse, at two points. (b) A 
line intersects a degree-three curve, a nodal cubic, at three 
points. Note that some lines may intersect curves at infinity 
(e.g., the y-axis in (b)), in the complex plane, or more than 
once at a given point. 

I Ellipse 
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Fig. 2. The proper intersection between a hyperbola (degree two) 
and an ellipsoid (degree two) in 3-space (after [16]). Note that 
there are four points of intersection between the curve and the 
surface, which is equal to the product of their degrees, again 
illustrating Bezout’s theorem. 
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and = holds in complex projective k-space, P(C), if the intersection degree is 
counted with “appropriate” multiplicity. 

When V, and V, are solids (hypersurfaces) in 4-space, then degree(V1 rl V2> 
is, in general, the degree of the intersection surface of codimension two. If VI 
and V, are hypersurfaces in k-space, then degree(V1 (l V,) is the degree of the 
intersection variety of codimension two. 

Bezout’s theorem may be regarded as one of the central results of algebraic 
geometry. It has recently also been the focus of considerable interest in the area 
of computer-aided geometric design and robotics [13, 14, 171. Elimination tech- 
niques that played an important role in classical proofs of this theorem have 
enabled development of algorithmic techniques in these applied areas. 

As was noted above, intersections of curves in n-space do not fall in the class 
of proper intersections, and Bezout’s theorem therefore has little to say directly 
about them. In k-space an indirect approach is to project the two space curves C 
and D onto a common plane and then invoke Bezout’s theorem for the “shadow” 
plane curves. As projection preserves intersection points, we would obtain a valid 
upper bound on the number of intersection points of C and D. However, we may 
also expect this bound to be loose, as many spurious intersection points result 
from projections. Thus, for example, for two space quintics (degree five) in 
3-space this technique yields a bound of 25 on the intersection points, whereas 
the true value can be no greater than 13 191. Other such examples are discussed 
in [9], where “tight” bounds are derived by the authors for the intersection of 
curves in 3-space. This motivated the generalization to curves in k-space, which 
is the focus of this paper. 

2. EMBEDDING A CURVE IN A HYPERSURFACE 

We first examine some implications of the following combinatorial formula: 

PROPOSITION 1. The minimum number of points required to define a hypersur- 
face of degree d in k-space is 

[f-Y”)-11. 

PROOF. See, for example, [15] and [20]. q 

In particular, this proposition implies that there always exists a hypersurface 
Sd of degree d in Pk(C) containing any collection of 

[(“:“)-I] 
points. Consider now a curve C,,, of degree m also in Pk(C). By Bezout’s theorem, 
] C, n S, ) is either smd, or C, and S, have a common component. Furthermore, 
if C, is irreducible and ] C, n Sd ) is greater than md, then C, lies on &. These 
observations lead to a general technique for embedding any curve in a suitably 
“low’‘-degree hypersurface. 
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2.1 Examples 

(1) In P”(C), an irreducible C, can always be embedded in an S,. By Proposition 
1 there exists an S2 containing any seven points. Given C3 we can therefore 
choose any seven distinct points on it and construct an S, containing them. 
Now C, intersects this Sz in at least seven points. But by Bezout’s theorem 
if ] C3 n S, ] > 6 then C, lies on S 2, since Cs is irreducible. Hence, the 
constructed S:! contams C,. All irreducible space cubits in 3-space therefore 
lie on a quadric surface. 

(2) In P”(C), an irreduci.ble C’, can always be embedded in a hypersurface S1. 
Proposition 1 implies that in 4-space the number of points required to define 
an S1 is four. Again, by Bezout’s theorem if ( C3 n S1 ] > 3 . 1 then Ca lies on 
S,. We can choose all the four points required to construct an S1 on C,. 
Thus, a cubic curve in 4-space always lies on a hyperplane. 

In general, using the reasoning illustrated above, it is always possible to embed 
a curve C, on a hypersurface S, in pk(a3) by choosing d to be the smallest positive 
integer satisfying the inequality 

>md+1. 

LEMMA 1. In k-space any irreducible curve of degree less than k lies on a 
hyqerplane. 

PROOF. Consider an irreducible curve C, of degree m in k-space. If m satisfies 
inequality (1) above with d equal to one, then C, lies on a hyperplane. The 
inequality with d equal to one is 

>m.l+l; 

that is, k > m. So any irreducible curve C,,, in pk(C) lies on a hyperplane, if 
m<k. 0 

Similar proofs appear in basic algebraic geometry texts; see, for example, [15]. 
Lemma 1 includes the well-known fact that all irreducible degree-two space 

curves in 3-space are actually tonics. 
A stronger lemma along the same lines is as follows: 

LEMMA 2. Let V be an irreducible algebraic variety in Pk(C). Then the following 
relation holds : 

degree(V) + dimension(V) 2 r(V), 

where r(V) = dimension of the least-dimensional linear subspace containing V. 

PROOF. See [l]. q 

Remarks 

(1) For “most” irreducible curves C,, the construction using inequality (1) yields 
the minimum-degree hypersurface Sd containing them. 
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(2) The hypersurfaces Sd so constructed may sometimes be reducible. In this 
case, of course, C, lies on a hypersurface of degree smaller than d. 

(3) Lemma 1 implies that in high-dimensional space “many” curves lie on 
hyperplanes. 

We may now formulate a heuristic for bounding the number of intersections 
of two curves C, and D, in Pk(C>. Using the construction described above, we 
would first obtain a hypersurface Sd containing C,. Applying Bezout’s theorem 
we can determine the number of intersection points between Sd and D,. This 
number will bound from above the number of intersection points between C,,, 
and D,. This heuristic may run into the difficulty that Sd also contains D,, 
whence we would obtain a trivial upper bound of infinity. In order to get around 
this difficulty, we need to develop a technique for constructing Sd containing C, 
such that Sd intersects D, properly. In the given space Pk(C), let 

amd = - md - 1. 

In the discussion above, we have always chosen d, the degree of Sd, to be the 
Smallest positive integer such that &!,d is positive. The natural number &!,d then 
represents the dimension of the vector space of hypersurfaces of degree d that 
contain the given curve C, of degree m. Such an Sd is said to be a minimal-degree 
surface for C,. A curve C,,, is said to be special if C, C Sd,, for some d’ < d. Most 
curves are nonspecial. Unless otherwise stated, the rest of this paper will be 
concerned with nonspecial irreducible curves in Pk(C). 

PROPOSITION 2. Let C, and D, be two distinct, irreducible, nonspecial algebraic 
curves in k-space with m C n. Then there exists a hypersurface Sd of degree d such 
that Sd contains C, and Sd intersects D, properly. Consequently, 1 C,,, n D, ) 5 
1 sd fl D, 1 5 nd. 

PROOF. Let d and d’ be the smallest integers for which &,d and (Y,d’ are 
positive. The dimensions of the vector spaces of hypersurfaces of degree d and 
d’ that contain C, and D, are, respectively, at least equal to &,d and ff,d’. 
Consider the following two cases: 

Case 1. d is not equal to d’. There exists a hypersurface Sd of degree d that 
contains C,. D, does not lie on Sd because it is nonspecial and the least-degree 
hypersurface Sd’ on which it lies has degree d’, d’ > d. Hence, this Sd intersects 
D, properly. 

Case 2. d is equal to d ‘. a,,,d is greater than (lI,d because m < n. That is, the 
dimension of the vector space of hypersurfaces Sd of degree d that contain C, is 
greater than the dimension of the corresponding vector space of degree-d hyper- 
surfaces containing D,. Hence, there certainly exists at least one hypersurface 
Sd that contains C, and intersects D, properly. 0 

Remarks 

(1) Since C,,, and D, are nonspecial curves, the hypersurfaces Sd and Sd’ consid- 
ered above are both irreducible. 
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(2) The proposition also holds if m and n are equal, provided D, does not lie in 
the intersection of all degree-d hypersurfaces containing C,. An irreducible 
curve D, that lies in the intersection of all degree-d hypersurfaces containing 
C,,, is said to be a sibling of C,. Thus, Proposition 2 holds even if m = n 
provided that C, and D, are not siblings. 

(3) In 3-space, that is, when C, is a space curve, the number of siblings of C, is 
finite whenever (Y,,& 2: 2. In particular, the total degree of the siblings can be 
no larger than (8 - nr ) [9]. Finding similar bounds on the number of siblings 
in higher dimensions (iz > 4) appears to be a challenging problem. 

(4) Even when C,,, and D, are siblings, it is always possible to find a hypersurface 
S containing C, and not D,. This follows from the ideal theoretical definition 
of these curves. A purely geometric construction of such a hypersurface can 
also be given. It is possible to construct a cone K that contains C, and not 
D,, with degree(K) a factor of m. Pick a point x on D,, but not on C,. Define 
K’, the cone with apex at x and containing C,. Now pick a point y outside 
K’. Construct the cone with apex at y and containing C,. This 
cone K cannot contain D,, since if it did the line xy would be a line of both 
K and K’. This contradicts our choice of y outside K’. It can be shown that 
degree(K) is a factor of m [20,21]. Finding a minimal-degree hypersurface S 
containing C, but not D, is an interesting problem for future research. 

(1) Space quintic (m = 5). Consider a quintic space curve, C5, in 3-space. Cs 
can be embedded in a cubic surface S,(d = 3). C, will therefore intersect any 
space curve, D,, of de,gree n (n > 5) in no more than 3n points. This bound 
is significantly lower than the bound of 5n derivable from projection argu- 
ments using Bezout’s theorem. 

(2) Cubic curues (m = 3). It is instructive to look at the intersection of a cubic 
curve, C,, with curves of degree n (n > 3), D,, in 2-, 3-, and 4-space. In 
2-space, that is, in the plane, C3 intersects any D, also lying in the same 
plane in 3n points. This follows from Bezout’s theorem for the plane. In 
3-space C, can be embedded in a degree-two surface Sp, and therefore, D, 
intersects CB in no more than 2n points. In 4-space any C3 lies on a hyperplane 
(Lemma 1) and therefore intersects D, in no more than n points. This 
example brings out the fact that, as we go to higher dimensions, two space 
curves will tend to intersect less and less. 

Proposition 2 gives us sufficient conditions under which we can obtain a bound 
of (nd) on the number of intersection points between C, and D, in k-space. We 
now consider some of the asymptotic effects of this bound. 

2.2 Asymptotic Analysis 

We know that in k-space any curve C, of degree m can be embedded in a 
hypersurface Sd of minimal degree d. Recall that d is the smallest positive integer 
such that olrnd I 1; that is, 

(d + l)(d + 2:) ... (d + k - l)(d + k) _ 1 _ md ~ 1 
k! 
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A simple asymptotic analysis shows that d grows as (k! m) l’@-‘). All curves D, 
of degree n, where n is greater than m, will intersect this minimal-degree 
hypersurface, Sd, properly. In fact, any D, that is not a sibling of C, will also 
intersect S, properly. We have proved the following: 

THEOREM 1. Let C, be any nonspecial and irreducible curve of degree m in 
k-space. Then all irreducible nonspecial curves D, of degree n, where n is larger 
than m, will intersect C, in O(m l’(k-l)n) points. The result is also true when n is 
equal to m, provided D, is not a sibling of C,. In the limit, as k tends to infinity, 
this bound tends to n. 

The theorem brings out clearly the intuitive observation that the number of 
possible intersections must decrease as the dimension of the space increases. 
A challenging problem is to construct greatest lower bounds on the number 
of intersections. In [9] we argue that O(n) is a valid lower bound for curves in 
3-space. The argument extends to k-space for arbitrary k. 

3. TIGHTER INTERSECTION BOUNDS 

In the previous sections, we showed that two distinct irreducible curves C, and 
D, in k-space (with minor restrictions) can intersect each other in no more than 
nd points, where d is the smallest positive integer satisfying the inequality 

> md + 1. 

This is really a Bezout-type theorem for algebraic curves and generalizes the 
results derived in [9] for space curves. 

It is possible to obtain tighter bounds on the number of intersection points 
between curves C, and D, satisfying the assumptions of Proposition 2, by 
exploiting further the techniques discussed above. We illustrate the approach 
used to tighten the intersection bounds with an example. The general theorem is 
then derived. 

Example. Space quintic (m = 5). In 3-space consider the intersection of an 
irreducible quintic space curve, C6, with an irreducible space curve, D7, of degree 
seven. (y53 = 4 and C, can be embedded in a cubic hypersurface S3. Since D7 is a 
nonspecial curve, the minimal-degree hypersurface on which it lies is an Sq. 
Hence, there exist at least four linearly independent cubic hypersurfaces Si, SZ, 
Sz, and S! that contain Cg and that intersect D7 properly. Proposition 2 implies 
that ] C, n D7 ] 5 21. Suppose ] Cg n D7 ( 2 19. Let ql, q2, and q3 be three points 
belonging to D7\C5. Then there exist constants al, a2, a3, and a4 such that ql, q2, 
and q3 lie on the cubic hypersurface 

T3 = aIS: + a2SZ + a3Si + a,.!%. 

Now I D, n T3 ] is at least 22, and therefore, Bezout’s theorem implies that D7 C 
T3. This yields a contradiction since the minimal-degree hypersurface containing 
D, has degree equal to 4. Therefore, our assumption that (D7 n C,) is at least 19 
is not possible. Hence, ] D, n C5 ( 5 18. 
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The above argument can be generalized as follows: Let C, and D, be distinct 
irreducible curves of degree m and n, respectively, in k-space, with n > m. C,,, 
can be embedded in a minimal-degree hypersurface of degree d that intersects 
D, properly. &!,d is the dimension of the vector space of degree-d hypersurfaces 
containing C,. In a similar manner, D, can be embedded in a minimal-degree 
hypersurface of degree d”. Two cases need to be considered: 

Case 1. d is not equal to d’. In fact, here, d < d’ for m < n. Since the 
dimension of the vector space of hypersurfaces of degree d in Pk(C) containing 
cm is ffmd, there exist linearly independent hypersurfaces Si, S:, S,“, . . . , 5’zd, 
such that 

Each of these hypersurfaces intersects with D, properly. Suppose 1 C, rl D, 1 z 
nd - ((Y& - 2). Consider a set of points ql, q2, . . . , qcatiel) belonging to D,\C,. 
There exist constants aIL, a2, . . . , aad such that the above set of points is 
contained in the following degree-d hypersurface: 

Td = ag ais:. 
i=l 

C, is certainly contained in Td. Therefore, 1 D, II Td 1 is at least equal to (nd - 
bmd - 2) + i&d - l)), that is, (nd + 1) points. By Bezout’s theorem, D, G Td. 
But the minimal-degree hypersurface containing D, has degree d’ greater than 
d. This yields a contradiction. Therefore, 1 C, n D, 1 5 (nd - (ff& - 1)). 

Case 2. d is equal to d’. Let (Y,d and (Ed be the dimension of the vector space 
of hypersurfaces containing C, and D,, respectively. Since n > m, (Y,,& > a!&. 
Therefore, there exist at least (a& - ad) linearly independent hypersurfaces of 
degree d that contain C, and that intersect D, properly. Following through the 
arguments presented in Case 1, with the number ((Us - cuti) playing a role 
similar to (Y,d in Case 1, we find that 

1 C, n D, ( 5 nd - (c&d - LQ - 1). 

We have proved the following tighter bound theorem for the intersection of 
algebraic curves: 

THEOREM 2. Let C, and D, be distinct irreducible algebraic curves in Pk(a3) 
with m < n. Let d and d’ be the degree of the minimal-degree hypersurfaces 
containing C, and D,, respectively. 

Case 1. If d is not equal to d ‘, then C, and D, can intersect in at most 
(nd - (&d - 1)) points. 

Case 2. If d is equal to d’, then C,,, and D, can intersect in at most (nd - 
(amd - a& - 1)) points. 
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3.1 Space Curves 

We prove the following theorem for the intersection of space curves in [9]: 

Let C, and D, be distinct irreducible space curves in P”(C) satisfying 

(a) n > d2 - m and 
lb) ffmd 2 2, 

(*I 

where d is the minimal degree of a surface sd containing C,. Then C, and D, 
intersect in at most (nd - (amd - 2)) points. 

Note that (*) is strictly subsumed by Theorem 2 with two exceptions: (1) Cs rl 
D3 and (2) C, n D5. Furthermore, the bound in Theorem 2 is smaller than that 
of (*) by 1. 

4. IMPLICATIONS FOR COMPUTER-AIDED GEOMETRIC DESIGN 

The efficient computation of intersections of curves and surfaces in two- and 
three-dimensional spaces is of fundamental importance in computer-aided geo- 
metric design. The constructions presented thus far in this paper were used for 
proving upper bounds on the number of intersection points of two curves. We 
now discuss the possibility of using these constructive arguments to explicitly 
compute the intersection set of two algebraic space curves. 

The fact that the representation of the given algebraic space curves C, and D, 
is not uniformly specified makes it difficult to present a totally unified discussion 
of the computational issues. At an abstract level, however, it is clear that the 
main steps of an algorithm would be to 

(a) generate a requisite number of points on C,, 
(b) construct one or more of the surfaces Sa to contain C, (and not D,), 
(c) compute the intersection points in (D, n Sh), and 
(d) parse the candidates from step (c) to obtain the true intersection points in 

The two representation schemes most commonly used for space curves are 
(1) rational (polynomial) parametric and (2) implicit. Let us first consider the 
rational parametric case. Assume that C, and D, are defined by rational 
parametric forms in parameter t and s, respectively. To generate points on C, 
(step (a)), we simply choose specific values of the parameter t. To construct the 
surfaces Sh (step (b)), we solve systems of linear equations, whose size depends 
of course on the degree d. To compute (D, rl Sh) (step (c)), we substitute the 
parametric form of D, in the equation for S$ and solve for the roots of the 
resulting univariate polynomial in s. To detect the true intersection points (step 
(d)), we solve inversion problems on the parametric representation of C,. There 
are well-known techniques for all of these computations (cf. [19]). 

In some applications, each of the space curves C, and D, may be given in 
implicit form as the intersection of two or more surfaces. In this case there are 
several possibilities for carrying out the steps of the algorithm. We may decide 
to avoid steps (a) and (b) altogether by using the defining surfaces in selecting 
5’;. Alternatively, we can use a parametric plane (surface) along with the defining 
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equation and apply elimination techniques to generate points on C,. The final 
choice, and perhaps the best one, would be to realize a plane curve parameter- 
ization of the space curve (one always exists [3]). This parametric form can be 
used to generate the requisite points on C,. Hoffman [ 171 discusses an algorithm 
for realizing the plane curve parameterization of a space curve. This parameter- 
ization technique would also be useful in computing (D, n Sh) in step (c) if D, 

is given in implicit form. 
The attentive reader may have noticed that we have glossed over certain 

technical issues in the description above. We have, for example, not discussed 
how to ensure that the constructed Sd intersect D, properly and that C, and D, 

are nonspecial and irreducible. In most practical situations, these considerations 
may be irrelevant. However, we would like to propose that some of these 
algorithmic issues are worthy of attention in future research. Finally, we would 
also like to point out that the algorithmic realization of a “low-degree” surface 
embedding of a given algebraic space curve (steps (a) and (b) above) is of 
independent interest. 

5. CONCLUSION 

Improper intersections between algebraic varieties are quite common in high- 
dimensional spaces and therefore necessitate study. In the present study, we have 
obtained an upper bound on the number of intersection points of irreducible 
algebraic curves in &dimensional space (iz > 2) where their intersection is always 
improper. The bound derived is only a function of the degrees of the individual 
curves. Our earlier results for algebraic space curves [9] have been easily derived 
from the present results. Many of the ideas used in the proofs are quite algo- 
rithmic in nature, and therefore, several of the steps involved are amenable to 
explicit computation. Th.is is especially useful for computer-aided geometric 
design. It is our hope that these ideas developed for curves can be made completely 
algorithmic and can also be extended to the study of other types of improperly 
intersecting algebraic varieties. 
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