Improper Intersection of Algebraic Curves

SHREERAM S. ABHYANKAR, SRINIVASAN CHANDRASEKAR, and VIJAYA CHANDRU
Purdue University

Abstract

Bezout's theorem gives an upper bound on the degree of the intersection of properly intersecting algebraic varieties. In spaces of dimension higher than two, however, intersections between many algebraic varieties such as curves are improper. Bezout's thedrem cannot be directly used to bound the number of points at which these curves intersect. In this paper an algebrogeometric technique is developed for obtaining an upper bound on the number of intersection points of two irreducible algebraic curves in k-dimensional space. The theorems obtained are applied to the specific case of intersecting algebraic space curves in three-dimensional space, and a number of examples are analyzed in this regard. The implications of the derived results for computer-aided geometric design are discussed.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-curve, surface, and object representations, geometric algorithms; J. 6 [Computer Applications]: Computer-Aided Engineering-computer-aided design General Terms: Algorithms, Design Additional Key Words and Phrases: Algebraic geometry, Bezout's theorem, curve intersections, space curves

INTRODUCTION

Algebraic curves are widely used in geometric modeling. They include, as special cases, Bezier curves, Hermite interpolants, splines of various kinds, and intersection curves of algebraic surfaces. An important problem in computer-aided geometric design is to determine tight bounds on the number of intersection points between two algebraic space curves and to develop efficient algorithms for finding these points [$13,14,17,19]$. Similar problems related to the intersection of trajectories in high-dimensional spaces frequently arise in computational geometry [12], dynamical systems, and control theory [11, 18].

[^0](C) 1990 ACM 0730-0301/90/0400-0147 \$01.50

The intersection problem for algebraic plane curves has been elegantly resolved using classical algebrogeometric techniques [5-7, 19, 20]. These successes may be viewed as straightforward consequences of Bezout's theorem [2, 4, 20] applied to the "proper" intersection of algebraic plane curves. This theorem implies that two algebraic curves of degree m and n can intersect in no more than $m n$ points on a plane. This, in general, provides the least upper bound for plane curves. Such well-defined bounds are hard to derive for curves in higher dimensional space, as Bezout's theorem does not extend to such "improper" intersections [20, 21].
Looking beyond plane curves, one considers the intersection of algebraic space curves, that is, curves in three-dimensional space. A simple example is the intersection of two nonoverlapping space cubics. Using planar projections (and Bezout's theorem) it follows that they can intersect in no more than nine points. Goldman [14] and Chandru and Kochar [10] showed that the actual number of points indeed is no greater than five. Exploiting the rational parameterizability of all space cubics, they also gave constructive methods for obtaining the intersection points.

More recently, Abhyankar, Chandrasekar, and Chandru [9] obtained "iight" bounds for the general problem of intersecting algebraic space curves of arbitrary degree. Asymptotically, they showed that two space curves of degree m and n intersect in $0\left(\min \left(m^{1 / 2} n, m n^{1 / 2}\right)\right)$ points.

In this paper we consider the general problem of intersecting algebraic curves in k-dimensional space. "Tight" upper-bound results are obtained using algorithmic, algebrogeometric techniques. The aforementioned results for algebraic space curves are derived as specializations of the general results. The implications for computer-aided geometric design are also discussed.

1. DEFINITIONS AND BACKGROUND

We are concerned only with curves and hypersurfaces that are algebraic. Unless otherwise stated, the curves considered are in spaces of dimension higher than two. Consider
$K: f(x, y)=0$, where f is a polynomial;
$S: g(x, y, z)=0$, where g is a polynomial; and
$H: h\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right)=0$, where h is a polynomial.
K and S represent a plane curve and a surface in \mathbb{R}^{2} and \mathbb{R}^{3}, respectively. H represents a hypersurface in $\mathbb{R}^{k} . K, S$, and H are irreducible if f, g, and h, respectively, are irreducible polynomials. Equivalently, K, S, and H do not properly contain two or more curves, surfaces, or hypersurfaces, respectively, of which they are the union.

The definition of an algebraic curve in k-space and its irreducibility is not as straightforward [1-3, 8]. It requires the abstract notion of an algebraic variety. An affine algebraic variety in \mathbb{C}^{k} is simply defined as the set of all common solutions to a system of polynomial equations in k variables.

Let V be a variety in \mathbb{C}^{k}. By a subvariety of V we mean an algebraic variety W in \mathbb{C}^{k} such that W is contained in $V . V$ is said to be reducible if V can be expressed as the union of two subvarieties each of which is nonempty and is
different from $V . V$ is said to be irreducible if it is nonempty and is not reducible. The dimension of V is the largest integer d such that there exists a strictly ascending sequence $V_{0}, V_{1}, V_{2}, \ldots, V_{d}$ of irreducible subvarieties of V. By strictly ascending we mean that for $i=2,3, \ldots, d$ we have that V_{i-1} is contained in V_{i} and is different from V_{i}. We note that this definition is consistent with the geometric intuition that a point, curve, and surface are of dimension zero, one, and two, respectively. A hypersurface in k-space is a variety of dimension $(k-1)$. The codimension of a variety V in \mathbb{C}^{k} is $(k-\operatorname{dim} V)$. A variety is said to be pure if all of its irreducible components have the same dimension. For example, a curve is a pure one-dimensional object; and a surface, a pure two-dimensional object. Suppose V is a pure d-dimensional variety in k-space. Consider the intersection of V with all linear spaces L_{k-d} of dimension $(k-d)$. Then,

$$
\operatorname{degree}(V)=\operatorname{maximum}\left\{\left.\begin{array}{l|l}
\text { number of intersections } \\
\text { of } L_{k-d} \text { and } V
\end{array}| | L_{k-d} \cap V \right\rvert\, \text { is finite }\right\} .
$$

In k-space this yields the following definition for the degree of a curve C : degree $(C)=\underset{(P \text { isahyperplane })}{\operatorname{maximum}}\left\{\begin{array}{l|l}\text { number of intersections } & |P \cap C| \text { is finite } \\ \text { of } P \text { and } C\end{array}\right\}$.

We note that "most" hyperplanes will intersect C in degree (C) points. A purely algebraic definition of degree (C) can also be given in terms of the so-called Hilbert polynomial P_{C} of C. The interested reader may refer to [1] or [21] for this definition.

Two intersecting pure varieties V_{1} and V_{2} are said to intersect properly provided that

$$
\text { co }-\operatorname{dim}\left(V_{1} \cap V_{2}\right)=\text { co }-\operatorname{dim}\left(V_{1}\right)+\operatorname{co}-\operatorname{dim}\left(V_{2}\right) .
$$

Some concrete examples of proper intersections are
(1) ($P_{1} \cap P_{2}$) in 2-space, where P_{1} and P_{2} are irreducible plane curves that meet in a finite number of points (see Figure 1);
(2) ($P \cap S$) in 3-space, where P is an irreducible plane curve, S is an irreducible surface, and they meet in a finite number of points (see Figure 2);
(3) $(C \cap S)$ in 3 -space, where C is an irreducible space curve, S is an irreducible surface, and they meet in a finite number of points;
(4) ($S_{1} \cap S_{2}$) in 4-space, where S_{1} and S_{2} are irreducible surfaces of dimension two and they meet in a finite number of points; and
(5) ($C \cap H$) in k-space, where C is a curve, H is a hypersurface, and they meet in a finite number of points.
It is important to note that the intersection of two irreducible curves C_{1} and C_{2} in k-space is never proper (for $k \geq 3$).

1.1 Bezout's Theorem

Let V_{1} and V_{2} be two pure varieties intersecting properly. Then,

$$
\operatorname{degree}\left(V_{1} \cap V_{2}\right) \leq \operatorname{degree}\left(V_{1}\right) \cdot \operatorname{degree}\left(V_{2}\right)
$$

Fig. 1. Intersections between curves in the plane also illustrating Bezout's theorem. (a) A line (degree-one) intersects a degree-two curve, an ellipse, at two points. (b) A line intersects a degree-three curve, a nodal cubic, at three points. Note that some lines may intersect curves at infinity (e.g., the y-axis in (b)), in the complex plane, or more than once at a given point.

Fig. 2. The proper intersection between a hyperbola (degree two) and an ellipsoid (degree two) in 3 -space (after [16]). Note that there are four points of intersection between the curve and the surface, which is equal to the product of their degrees, again illustrating Bezout's theorem.
and $=$ holds in complex projective k-space, $P^{k}(\mathbb{C})$, if the intersection degree is counted with "appropriate" multiplicity.

When V_{1} and V_{2} are solids (hypersurfaces) in 4-space, then degree ($V_{1} \cap V_{2}$) is, in general, the degree of the intersection surface of codimension two. If V_{1} and V_{2} are hypersurfaces in k-space, then degree $\left(V_{1} \cap V_{2}\right)$ is the degree of the intersection variety of codimension two.

Bezout's theorem may be regarded as one of the central results of algebraic geometry. It has recently also been the focus of considerable interest in the area of computer-aided geometric design and robotics [13, 14, 17]. Elimination techniques that played an important role in classical proofs of this theorem have enabled development of algorithmic techniques in these applied areas.

As was noted above, intersections of curves in n-space do not fall in the class of proper intersections, and Bezout's theorem therefore has little to say directly about them. In k-space an indirect approach is to project the two space curves C and D onto a common plane and then invoke Bezout's theorem for the "shadow" plane curves. As projection preserves intersection points, we would obtain a valid upper bound on the number of intersection points of C and D. However, we may also expect this bound to be loose, as many spurious intersection points result from projections. Thus, for example, for two space quintics (degree five) in 3 -space this technique yields a bound of 25 on the intersection points, whereas the true value can be no greater than 13 [9]. Other such examples are discussed in [9], where "tight" bounds are derived by the authors for the intersection of curves in 3 -space. This motivated the generalization to curves in k-space, which is the focus of this paper.

2. EMBEDDING A CURVE IN A HYPERSURFACE

We first examine some implications of the following combinatorial formula:
Proposition 1. The minimum number of points required to define a hypersurface of degree d in k-space is

$$
\left[\binom{d+k}{k}-1\right] .
$$

Proof. See, for example, [15] and [20].
In particular, this proposition implies that there always exists a hypersurface S_{d} of degree d in $P^{k}(\mathbb{C})$ containing any collection of

$$
\left[\binom{d+k}{k}-1\right]
$$

points. Consider now a curve C_{m} of degree m also in $P^{k}(\mathbb{C})$. By Bezout's theorem, $\left|C_{m} \cap S_{d}\right|$ is either $\leq m d$, or C_{m} and S_{d} have a common component. Furthermore, if C_{m} is irreducible and $\left|C_{m} \cap S_{d}\right|$ is greater than $m d$, then C_{m} lies on S_{d}. These observations lead to a general technique for embedding any curve in a suitably "low"-degree hypersurface.

2.1 Examples

(1) In $P^{3}(\mathbb{C})$, an irreducible C_{3} can always be embedded in an S_{2}. By Proposition 1 there exists an S_{2} containing any seven points. Given C_{3} we can therefore choose any seven distinct points on it and construct an S_{2} containing them. Now C_{3} intersects this S_{2} in at least seven points. But by Bezout's theorem if $\left|C_{3} \cap S_{2}\right|>6$ then C_{3} lies on S_{2}, since C_{3} is irreducible. Hence, the constructed S_{2} contains C_{3}. All irreducible space cubics in 3 -space therefore lie on a quadric surface.
(2) In $P^{4}(\mathbb{C})$, an irreducible C_{3} can always be embedded in a hypersurface S_{1}. Proposition 1 implies that in 4 -space the number of points required to define an S_{1} is four. Again, by Bezout's theorem if $\left|C_{3} \cap S_{1}\right|>3 \cdot 1$ then C_{3} lies on S_{1}. We can choose all the four points required to construct an S_{1} on C_{3}. Thus, a cubic curve in 4 -space always lies on a hyperplane.

In general, using the reasoning illustrated above, it is always possible to embed a curve C_{m} on a hypersurface S_{d} in $P^{k}(\mathbb{C})$ by choosing d to be the smallest positive integer satisfying the inequality

$$
\begin{equation*}
\binom{d+k}{k}>m d+1 \tag{1}
\end{equation*}
$$

Lemma 1. In k-space any irreducible curve of degree less than k lies on a hyperplane.

Proof. Consider an irreducible curve C_{m} of degree m in k-space. If m satisfies inequality (1) above with d equal to one, then C_{m} lies on a hyperplane. The inequality with d equal to one is

$$
\binom{k+1}{k}>m \cdot 1+1
$$

that is, $k>m$. So any irreducible curve C_{m} in $P^{k}(\mathbb{C})$ lies on a hyperplane, if $m<k$.

Similar proofs appear in basic algebraic geometry texts; see, for example, [15].
Lemma 1 includes the well-known fact that all irreducible degree-two space curves in 3 -space are actually conics.

A stronger lemma along the same lines is as follows:
Lemma 2. Let V be an irreducible algebraic variety in $P^{k}(\mathbb{C})$. Then the following relation holds:

$$
\operatorname{degree}(V)+\operatorname{dimension}(V) \geq r(V)
$$

where $r(V)=$ dimension of the least-dimensional linear subspace containing V.
Proof. See [1].

Remarks

(1) For "most" irreducible curves C_{m}, the construction using inequality (1) yields the minimum-degree hypersurface S_{d} containing them.
(2) The hypersurfaces S_{d} so constructed may sometimes be reducible. In this case, of course, C_{m} lies on a hypersurface of degree smaller than d.
(3) Lemma 1 implies that in high-dimensional space "many" curves lie on hyperplanes.

We may now formulate a heuristic for bounding the number of intersections of two curves C_{m} and D_{n} in $P^{k}(\mathbb{C})$. Using the construction described above, we would first obtain a hypersurface S_{d} containing C_{m}. Applying Bezout's theorem we can determine the number of intersection points between S_{d} and D_{n}. This number will bound from above the number of intersection points between C_{m} and D_{n}. This heuristic may run into the difficulty that S_{d} also contains D_{n}, whence we would obtain a trivial upper bound of infinity. In order to get around this difficulty, we need to develop a technique for constructing S_{d} containing C_{m} such that S_{d} intersects D_{n} properly. In the given space $P^{k}(\mathbb{C})$, let

$$
\alpha_{m d}=\binom{d+k}{k}-m d-1
$$

In the discussion above, we have always chosen d, the degree of S_{d}, to be the smallest positive integer such that $\alpha_{m d}$ is positive. The natural number $\alpha_{m d}$ then represents the dimension of the vector space of hypersurfaces of degree d that contain the given curve C_{m} of degree m. Such an S_{d} is said to be a minimal-degree surface for C_{m}. A curve C_{m} is said to be special if $C_{m} \subset S_{d^{\prime}}$, for some $d^{\prime}<d$. Most curves are nonspecial. Unless otherwise stated, the rest of this paper will be concerned with nonspecial irreducible curves in $P^{k}(\mathbb{C})$.

Proposition 2. Let C_{m} and D_{n} be two distinct, irreducible, nonspecial algebraic curves in k-space with $m<n$. Then there exists a hypersurface S_{d} of degree d such that S_{d} contains C_{m} and S_{d} intersects D_{n} properly. Consequently, $\left|C_{m} \cap D_{n}\right| \leq$ $\left|S_{d} \cap D_{n}\right| \leq n d$.
Proof. Let d and d^{\prime} be the smallest integers for which $\alpha_{m d}$ and $\alpha_{n d^{\prime}}$ are positive. The dimensions of the vector spaces of hypersurfaces of degree d and d^{\prime} that contain C_{m} and D_{n} are, respectively, at least equal to $\alpha_{m d}$ and $\alpha_{n d^{\prime}}$. Consider the following two cases:

Case 1. d is not equal to d^{\prime}. There exists a hypersurface S_{d} of degree d that contains $C_{m} . D_{n}$ does not lie on S_{d} because it is nonspecial and the least-degree hypersurface $S_{d^{\prime}}$ on which it lies has degree $d^{\prime}, d^{\prime}>d$. Hence, this S_{d} intersects D_{n} properly.

Case 2. d is equal to $d^{\prime} . \alpha_{m d}$ is greater than $\alpha_{n d}$ because $m<n$. That is, the dimension of the vector space of hypersurfaces S_{d} of degree d that contain C_{m} is greater than the dimension of the corresponding vector space of degree-d hypersurfaces containing D_{n}. Hence, there certainly exists at least one hypersurface S_{d} that contains C_{m} and intersects D_{n} properly.

Remarks

(1) Since C_{m} and D_{n} are nonspecial curves, the hypersurfaces S_{d} and $S_{d^{\prime}}$ considered above are both irreducible.
(2) The proposition also holds if m and n are equal, provided D_{n} does not lie in the intersection of all degree- d hypersurfaces containing C_{m}. An irreducible curve D_{n} that lies in the intersection of all degree- d hypersurfaces containing C_{m} is said to be a sibling of C_{m}. Thus, Proposition 2 holds even if $m=n$ provided that C_{m} and D_{n} are not siblings.
(3) In 3-space, that is, when C_{m} is a space curve, the number of siblings of C_{m} is finite whenever $\alpha_{m d} \geq 2$. In particular, the total degree of the siblings can be no larger than $\left(d^{2}-m\right)$ [9]. Finding similar bounds on the number of siblings in higher dimensions ($k \geq 4$) appears to be a challenging problem.
(4) Even when C_{m} and D_{n} are siblings, it is always possible to find a hypersurface S containing C_{m} and not D_{n}. This follows from the ideal theoretical definition of these curves. A purely geometric construction of such a hypersurface can also be given. It is possible to construct a cone K that contains C_{m} and not D_{n}, with degree (K) a factor of m. Pick a point x on D_{n}, but not on C_{m}. Define K^{\prime}, the cone with apex at x and containing C_{m}. Now pick a point y outside K^{\prime}. Construct the cone with apex at y and containing C_{m}. This cone K cannot contain D_{n}, since if it did the line $x y$ would be a line of both K and K^{\prime}. This contradicts our choice of y outside K^{\prime}. It can be shown that degree (K) is a factor of m [20, 21]. Finding a minimal-degree hypersurface S containing C_{m} but not D_{n} is an interesting problem for future research.

Examples

(1) Space quintic ($m=5$). Consider a quintic space curve, C_{5}, in 3 -space. C_{5} can be embedded in a cubic surface $S_{3}(d=3) . C_{5}$ will therefore intersect any space curve, D_{n}, of degree $n(n>5)$ in no more than $3 n$ points. This bound is significantly lower than the bound of $5 n$ derivable from projection arguments using Bezout's theorem.
(2) Cubic curves $(m=3)$. It is instructive to look at the intersection of a cubic curve, C_{3}, with curves of degree $n(n>3), D_{n}$, in 2-, 3 -, and 4 -space. In 2 -space, that is, in the plane, C_{3} intersects any D_{n} also lying in the same plane in $3 n$ points. This follows from Bezout's theorem for the plane. In 3 -space C_{3} can be embedded in a degree-two surface S_{2}, and therefore, D_{n} intersects C_{3} in no more than $2 n$ points. In 4 -space any C_{3} lies on a hyperplane (Lemma 1) and therefore intersects D_{n} in no more than n points. This example brings out the fact that, as we go to higher dimensions, two space curves will tend to intersect less and less.

Proposition 2 gives us sufficient conditions under which we can obtain a bound of ($n d$) on the number of intersection points between C_{m} and D_{n} in k-space. We now consider some of the asymptotic effects of this bound.

2.2 Asymptotic Analysis

We know that in k-space any curve C_{m} of degree m can be embedded in a hypersurface S_{d} of minimal degree d. Recall that d is the smallest positive integer such that $\alpha_{m d} \geq 1$; that is,

$$
\frac{(d+1)(d+2) \cdots(d+k-1)(d+k)}{k!}-1-m d \geq 1 .
$$

A simple asymptotic analysis shows that d grows as $(k!m)^{1 /(k-1)}$. All curves D_{n} of degree n, where n is greater than m, will intersect this minimal-degree hypersurface, S_{d}, properly. In fact, any D_{m} that is not a sibling of C_{m} will also intersect S_{d} properly. We have proved the following:

Theorem 1. Let C_{m} be any nonspecial and irreducible curve of degree m in k-space. Then all irreducible nonspecial curves D_{n} of degree n, where n is larger than m, will intersect C_{m} in $O\left(m^{1 /(k-1)} n\right)$ points. The result is also true when n is equal to m, provided D_{n} is not a sibling of C_{m}. In the limit, as k tends to infinity, this bound tends to n.

The theorem brings out clearly the intuitive observation that the number of possible intersections must decrease as the dimension of the space increases. A challenging problem is to construct greatest lower bounds on the number of intersections. In [9] we argue that $0(n)$ is a valid lower bound for curves in 3 -space. The argument extends to k-space for arbitrary k.

3. TIGHTER INTERSECTION BOUNDS

In the previous sections, we showed that two distinct irreducible curves C_{m} and D_{n} in k-space (with minor restrictions) can intersect each other in no more than $n d$ points, where d is the smallest positive integer satisfying the inequality

$$
\binom{d+k}{k}>m d+1
$$

This is really a Bezout-type theorem for algebraic curves and generalizes the results derived in [9] for space curves.

It is possible to obtain tighter bounds on the number of intersection points between curves C_{m} and D_{n} satisfying the assumptions of Proposition 2, by exploiting further the techniques discussed above. We illustrate the approach used to tighten the intersection bounds with an example. The general theorem is then derived.

Example. Space quintic ($m=5$). In 3 -space consider the intersection of an irreducible quintic space curve, C_{5}, with an irreducible space curve, D_{7}, of degree seven. $\alpha_{53}=4$ and C_{5} can be embedded in a cubic hypersurface S_{3}. Since D_{7} is a nonspecial curve, the minimal-degree hypersurface on which it lies is an S_{4}. Hence, there exist at least four linearly independent cubic hypersurfaces S_{3}^{1}, S_{3}^{2}, S_{3}^{3}, and S_{3}^{4} that contain C_{5} and that intersect D_{7} properly. Proposition 2 implies that $\left|C_{5} \cap D_{7}\right| \leq 21$. Suppose $\left|C_{5} \cap D_{7}\right| \geq 19$. Let q_{1}, q_{2}, and q_{3} be three points belonging to $D_{7} \backslash C_{5}$. Then there exist constants a_{1}, a_{2}, a_{3}, and a_{4} such that q_{1}, q_{2}, and q_{3} lie on the cubic hypersurface

$$
T_{3}=a_{1} S_{3}^{1}+a_{2} S_{3}^{2}+a_{3} S_{3}^{3}+a_{4} S_{3}^{4}
$$

Now $\left|D_{7} \cap T_{3}\right|$ is at least 22 , and therefore, Bezout's theorem implies that $D_{7} \subseteq$ T_{3}. This yields a contradiction since the minimal-degree hypersurface containing D_{7} has degree equal to 4 . Therefore, our assumption that ($D_{7} \cap C_{5}$) is at least 19 is not possible. Hence, $\left|D_{7} \cap C_{5}\right| \leq 18$.

The above argument can be generalized as follows: Let C_{m} and D_{n} be distinct irreducible curves of degree m and n, respectively, in k-space, with $n>m . C_{m}$ can be embedded in a minimal-degree hypersurface of degree d that intersects D_{n} properly. $\alpha_{m d}$ is the dimension of the vector space of degree- d hypersurfaces containing C_{m}. In a similar manner, D_{n} can be embedded in a minimal-degree hypersurface of degree d^{\prime}. Two cases need to be considered:

Case 1. d is not equal to d^{\prime}. In fact, here, $d<d^{\prime}$ for $m<n$. Since the dimension of the vector space of hypersurfaces of degree d in $P^{k}(\mathbb{C})$ containing C_{m} is $\alpha_{m d}$, there exist linearly independent hypersurfaces $S_{d}^{1}, S_{d}^{2}, S_{3}^{3}, \ldots, S_{d}^{\alpha_{m d}}$, such that

$$
C_{m} \subseteq S_{d}^{1} \cap S_{d}^{2} \cap S_{d}^{3} \cap \cdots \cap S_{d}^{\alpha_{m d}}
$$

Each of these hypersurfaces intersects with D_{n} properly. Suppose $\left|C_{m} \cap D_{n}\right| \geq$ $n d-\left(\alpha_{m d}-2\right)$. Consider a set of points $q_{1}, q_{2}, \ldots, q_{\left(\alpha_{m d}-1\right)}$ belonging to $D_{n} \backslash C_{m}$. There exist constants $a_{1}, a_{2}, \ldots, a_{\alpha_{m d}}$ such that the above set of points is contained in the following degree- d hypersurface:

$$
T_{d}=\sum_{i=1}^{\alpha_{m d}} a_{i} S_{d}^{i}
$$

C_{m} is certainly contained in T_{d}. Therefore, $\left|D_{n} \cap T_{d}\right|$ is at least equal to ($n d-$ $\left.\left(\alpha_{m d}-2\right)+\left(\alpha_{m d}-1\right)\right)$, that is, $(n d+1)$ points. By Bezout's theorem, $D_{n} \subseteq T_{d}$. But the minimal-degree hypersurface containing D_{n} has degree d^{\prime} greater than d. This yields a contradiction. Therefore, $\left|C_{m} \cap D_{n}\right| \leq\left(n d-\left(\alpha_{m d}-1\right)\right)$.

Case 2. d is equal to d^{\prime}. Let $\alpha_{m d}$ and $\alpha_{n d}$ be the dimension of the vector space of hypersurfaces containing C_{m} and D_{n}, respectively. Since $n>m, \alpha_{m d}>\alpha_{n d}$. Therefore, there exist at least ($\alpha_{m d}-\alpha_{n d}$) linearly independent hypersurfaces of degree d that contain C_{m} and that intersect D_{n} properly. Following through the arguments presented in Case 1, with the number ($\alpha_{m d}-\alpha_{n d}$) playing a role similar to $\alpha_{m d}$ in Case 1, we find that

$$
\left|C_{m} \cap D_{n}\right| \leq n d-\left(\alpha_{m d}-\alpha_{n d}-1\right)
$$

We have proved the following tighter bound theorem for the intersection of algebraic curves:

Theorem 2. Let C_{m} and D_{n} be distinct irreducible algebraic curves in $P^{k}(\mathbb{C})$ with $m<n$. Let d and d^{\prime} be the degree of the minimal-degree hypersurfaces containing C_{m} and D_{n}, respectively.

Case 1. If d is not equal to d^{\prime}, then C_{m} and D_{n} can intersect in at most ($n d-\left(\alpha_{m d}-1\right)$) points.

Case 2. If d is equal to d^{\prime}, then C_{m} and D_{n} can intersect in at most ($n d-$ ($\alpha_{m d}-\alpha_{n d}-1$)) points.

3.1 Space Curves

We prove the following theorem for the intersection of space curves in [9]:
Let C_{m} and D_{n} be distinct irreducible space curves in $P^{3}(\mathbb{C})$ satisfying
(a) $n>d^{2}-m$ and
(b) $\alpha_{m d} \geq 2$,
where d is the minimal degree of a surface S_{d} containing C_{m}. Then C_{m} and D_{n} intersect in at most ($n d-\left(\alpha_{m d}-2\right)$) points.
Note that (*) is strictly subsumed by Theorem 2 with two exceptions: (1) $C_{3} \cap$ D_{3} and (2) $C_{5} \cap D_{5}$. Furthermore, the bound in Theorem 2 is smaller than that of (*) by 1 .

4. IMPLICATIONS FOR COMPUTER-AIDED GEOMETRIC DESIGN

The efficient computation of intersections of curves and surfaces in two- and three-dimensional spaces is of fundamental importance in computer-aided geometric design. The constructions presented thus far in this paper were used for proving upper bounds on the number of intersection points of two curves. We now discuss the possibility of using these constructive arguments to explicitly compute the intersection set of two algebraic space curves.

The fact that the representation of the given algebraic space curves C_{m} and D_{n} is not uniformly specified makes it difficult to present a totally unified discussion of the computational issues. At an abstract level, however, it is clear that the main steps of an algorithm would be to
(a) generate a requisite number of points on C_{m},
(b) construct one or more of the surfaces S_{d}^{i} to contain C_{m} (and not D_{n}),
(c) compute the intersection points in ($D_{n} \cap S_{d}^{i}$), and
(d) parse the candidates from step (c) to obtain the true intersection points in ($C_{m} \cap D_{n}$).
The two representation schemes most commonly used for space curves are (1) rational (polynomial) parametric and (2) implicit. Let us first consider the rational parametric case. Assume that C_{m} and D_{n} are defined by rational parametric forms in parameter t and s, respectively. To generate points on C_{m} (step (a)), we simply choose specific values of the parameter t. To construct the surfaces S_{d}^{i} (step (b)), we solve systems of linear equations, whose size depends of course on the degree d. To compute ($D_{n} \cap S_{d}^{i}$) (step (c)), we substitute the parametric form of D_{n} in the equation for S_{d}^{i} and solve for the roots of the resulting univariate polynomial in s. To detect the true intersection points (step (d)), we solve inversion problems on the parametric representation of C_{m}. There are well-known techniques for all of these computations (cf. [19]).

In some applications, each of the space curves C_{m} and D_{n} may be given in implicit form as the intersection of two or more surfaces. In this case there are several possibilities for carrying out the steps of the algorithm. We may decide to avoid steps (a) and (b) altogether by using the defining surfaces in selecting S_{d}^{i}. Alternatively, we can use a parametric plane (surface) along with the defining
equation and apply elimination techniques to generate points on C_{m}. The final choice, and perhaps the best one, would be to realize a plane curve parameterization of the space curve (one always exists [3]). This parametric form can be used to generate the requisite points on C_{m}. Hoffman [17] discusses an algorithm for realizing the plane curve parameterization of a space curve. This parameterization technique would also be useful in computing ($D_{n} \cap S_{d}^{i}$) in step (c) if D_{n} is given in implicit form.

The attentive reader may have noticed that we have glossed over certain technical issues in the description above. We have, for example, not discussed how to ensure that the constructed S_{d}^{i} intersect D_{n} properly and that C_{m} and D_{n} are nonspecial and irreducible. In most practical situations, these considerations may be irrelevant. However, we would like to propose that some of these algorithmic issues are worthy of attention in future research. Finally, we would also like to point out that the algorithmic realization of a "low-degree" surface embedding of a given algebraic space curve (steps (a) and (b) above) is of independent interest.

5. CONCLUSION

Improper intersections between algebraic varieties are quite common in highdimensional spaces and therefore necessitate study. In the present study, we have obtained an upper bound on the number of intersection points of irreducible algebraic curves in k-dimensional space ($k>2$) where their intersection is always improper. The bound derived is only a function of the degrees of the individual curves. Our earlier results for algebraic space curves [9] have been easily derived from the present results. Many of the ideas used in the proofs are quite algorithmic in nature, and therefore, several of the steps involved are amenable to explicit computation. This is especially useful for computer-aided geometric design. It is our hope that these ideas developed for curves can be made completely algorithmic and can also be extended to the study of other types of improperly intersecting algebraic varieties.

REFERENCES

1. Abhyankar, S. S. Resolution of Singularities of Embedded Algebraic Surfaces. Academic Press, New York, 1966.
2. Abhyankar, S. S. A glimuse of algebraic geometry. Iokamanya Tilak Memorial Lectures, Dept. of Mathematics, Univ. of Poona, India, 1969.
3. Abhyankar, S. S. Algebraic space curves. Montreal Lecture Notes, Dept. of Mathematics, Univ. of Montreal, Quebec, 1970.
4. Abhyankar, S. S. Historical ramblings in algebraic geometry and related algebra. Am. Math. Monthly 83, 3 (June 1976), 409-448.
5. Abhyankar, S. S. The difference between a parabola and a hyperbola. Math. Intell. 10, 4 (July 1988), 36-48.
6. Abhyankar, S. S., and Baja.j, C. Automatic parametrization of rational curves and surfaces I: Conics and conicoids. Comput.-Aided Des. 19, 1 (Jan. 1987), 11-15.
7. Abhyankar, S. S., and Bajaj, C. Automatic parametrization of rational curves and surfaces II: Cubics and cubicoids. Comput.-Aided Des. 19, 9 (Nov. 1987), 499-503.
8. Abhyankar, S. S., and Sathaye, A. Geometric Theory of Algebraic Space Curves. Springer Lecture Notes in Mathematics, 423. Springer-Verlag, New York, 1982.
9. Abhyankar, S. S., Chandrasekar, S., and Chandru, V. Intersection of algebraic space curves. Tech. Rep. CC-88-13, Univ. Research Initiative in Computational Combinatorics, Institute for Interdisciplinary Engineering Studies, Purdue University, West Lafayette, Ind., Apr. 1988.
10. Chandru, V., and Kochar, B. Analytic techniques for geometric intersection problem. In Geometric Modeling: Algorithms and New Trends, G. Farin, Ed. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1987.
11. Devaney, R. I. Introduction to Chaotic Dynamical Systems. Benjamin/Cummings, Menlo Park, Calif., 1986.
12. Edelsbrunner, H. Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, Germany, 1987.
13. Farouki, R. T. Computational issues in solid boundary evaluation. Tech. Rep., Manufacturing Research Dept., IBM T. J. Watson Research Center, New York, 1987.
14. Goldman, R. N. The method of resolvents: A technique for the implicization, inversion and intersection of non-planar, parametric, rational cubic curves. Comput.-Aided Geom. Des. 2, 4 (Dec. 1985).
15. Griffiths, P., and Harris, J. Principles of Algebraic Geometry. Wiley, New York, 1978, p. 253.
16. Hilbert, D., And Cohn-Vossen, S. Geometry and the Imagination. Chelsea, Bronx, New York, 1952.
17. Hoffman, C. M. Algebraic curves. Tech. Rep. CSD-TR-675, Dept. of Computer Science, Purdue Univ., West Lafayette, Ind., May 1987.
18. May, R. M. Simple mathematical models with complicated dynamics. Nature 261 10, 3 (June 10, 1976), 459-468.
19. Sederberg, T. Algebraic geometry in computer-aided geometric design. In Geometric Modeling: Algorithms and New Trends, G. Farin, Ed. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1987.
20. Semple, J. G., and Roth, L. Introduction to Algebraic Geometry. Oxford University Press, Oxford, England, 1949.
21. Zariski, O., and Samuel, P. Commutative Algebra. Vol. 2. Van Nostrand Reinhold, New York, 1958.

Received September 1988; revised February 1989; accepted May 1989
Editors: R. H. Bartels and R. N. Goldman

[^0]: S. S. Abhyankar's research has been partially supported by NSF grant DMS 85-16286, ONR grant N00014-88-K-0402, and ARO contract DAAG 29-85-C-0018. S. Chandrasekar's research has been partially supported by the NSF Center for Intelligent Manufacturing Systems at Purdue University (CDR-8803017). V. Chandru's research has been partially supported by ONR grant N00014-86-0689 and NSF grant DMC 88-07550.
 Authors' address: School of Industrial Engineering, Purdue University, West Lafayette, IN 47907. S. S. Abhyankar can also be contacted at Department of Mathematics and Department of Computer Science, Purdue University, West Lafayette, IN 47907.
 Permission to copy witnout fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

