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1. Introdllctlon

Horn clauses are widely used in logical programming languages and knowledge-

based systems because inference is easy for them but generally quite hard for larger

classes of formulas. Unit resolution solves the inference (or satisfiability) problem

for Horn clauses in propositional logic in time that is linear in the number of

literals [12, 18], whereas the general satisfiability problem for propositional logic is

NP-complete [9].

The research of V. Chandru was supported in part by OffIce of Naval Research grant NOOO14-86-K-

0689 and by National Science Foundation grant DMC 88-07550.

The research of J. H. Hooker was supported in part by U.S. Air Force Oftice of Scientific Research
grant AFOSR-87-0292.

Authors’ addresses: V. Chandru, School of Industrial Engineering. Purdue Umverslty, West Lafayette,

IN 47907: J. N. Hooker. Graduate School of Industrial Administration, Carnegie Mellon University,

Pittsburgh, PA 15213,

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage. the ACM copyright notice and the title of the

publication and its date appear. and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

O 1991 ACM 0004-541 1/91/0100-0205 $01.50

Journal of the AssocMlon for Computmg Machlnwy, Vol 38.No 1,Janua~1Y91,pp 205-2!1



206 ~. CHANDRU AND J. N. HOOKER

It would obviously be desirable to extend Horn clauses to a larger class of

propositions for which the inference problem remains easy. Yamasaki and Doshita

[21 ] identified one such class, for which the inference problem can be solved in

cubic time; Arvind and Biswas [3] later found a quadratic time algorithm for the

class. Whereas Horn clauses have at most one positive literal, Yamasaki and

Doshita [21] consider sets of clauses that may have more than one positive literal,

provided the positive literals are “nested” in a certain way. Gallo and Scutella [13]

generalized the nested positives idea to obtain a recursively-defined hierarchy of

problems r(,, r, ,. ... where r. is the class of Horn problems, and rl the class

defined by Yamasaki and Doshita. The problems in 17~are soluble in O (Ln ~) time,
where L is the number of literals and n the number of atomic propositions. It is

unclear, however, how these classes of propositions might be more useful in practice

than ordinary Horn clauses.

We show below that there is another generalization of Horn clauses for which

inference is not only as easy as for Horn clauses but can be accomplished in the

same way—by a linear-time unit resolution algorithm. We call sets of such clauses

“extended Horn. ” A set of clauses is extended Horn if its atomic propositions

correspond to the arcs of some rooted arborescence (i.e., rooted directed tree in

which all arcs are directed away from the root) in such a way that each clause in

the set describes an “extended star-chain” flow pattern on the arborescence. That

is, if a positive (negative) literal indicates a forward (backward) unit flow on the

corresponding arc. then the resulting flow pattern consists of chains each of which

carries a unidirectional unit flow into the root, plus at most one such chain that is

unconnected to the root. Ordinary Horn sets correspond to arborescences that are

stars (i.e., all arcs incident to a central root), so that extended Horn sets represent

a substantial generalization of ordinary Horn sets. We also show that the inference
problem for “hidden” extended Horn sets, which are sets that become extended

Horn when one or more atomic propositions are replaced by their negations, can

likewise be solved by unit resolution, thus further enlarging the class of easy

inference problems. Finally, we characterize extended Horn sets of rules and suggest

one way that they might be interpreted and used in applications for which ordinary

Horn sets are inadequate.

We were led to a discovery of extended Horn sets by a theorem of Chandrase-

karan [6]. The theorem characterizes sets of linear inequalities for which a O-1

solution can always be found (if one exists) by rounding a real solution. which can

in turn be found by linear programming. We show that a set of inequalities with

coefficients in {O. 1, – I \ that corresponds to an arboresence (or any rooted, directed

tree) in the way noted above satisfies the conditions of Chandrasekaran’s theorem.

In this way, we give a network characterization of a family of 0-1 problems that

can be solved by linear programming and rounding. Extended Horn sets (explicit
or hidden) are those that, when expressed as a system of linear inequalities, belong

to this family of O– 1 problems. It follows that linear programming solves the

satisfiability problem for (explicit or hidden) extended Horn sets.

We also expose a remarkable parallel between unit resolution and the rounding

process dictated by Chandrasekaran’s theorem. This parallel sheds light on why

unit resolution solves extended Horn satisfiability problems.

Thus, the ease of solving Horn and extended Horn inference problems is directly

related to the fact that they pose O– 1 problems that can be solved by linear

programming and rounding. This adds to the collection of interesting mathematical

properties of Horn clauses that have recently been demonstrated by Blair et al [5],

Jeroslow and Wang [17], and Hooker [16]. See [8] and [15] for surveys.
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Although Aspvall [1] has discovered a linear-time algorithm for recognizing

hidden Horn sets, we know of no polynomial-time recognition algorithm for

hidden (or, for that matter, explicit) extended Horn sets. But once an arborescence

and a mapping of atomic propositions to arcs have been specified, one can check

in linear time whether a given set of clauses is a hidden extended Horn set

corresponding to the arborescence. We state an algorithm for doing so.

2. Preliminaries

A literal is an atomic proposition .~, or its negation 1.Y,; in the former case

the literal is positive. A clause is a disjunction of zero or more literals, such as

.Y1 V 1.YZ. A unit clause contains exactly one literal, and the empt~’ clause con-

tains no literals. Any formula of propositional logic can be transformed to a con-

junction of clauses (co~~unctive normalform ) using well-known techniques [ 14].

A model is an assignment of truth values to atomic propositions. A model

satisfies a clause if it makes at least one literal in the clause true. A set (or

conjunction) of clauses is satisfiable if some model satisfies all the clauses. (The

empty clause is regarded as unsatisfiable. ) A set S of clauses lo.gicall]) implies a

clause C if every model satisfying the clauses in S satisfies C, which is to say that

when the negation of every literal in C is added to S, the resulting set if unsatisfiable.

Thus, one can check for implication by checking the satisfiability of a set of clauses.

A clause C absorbs clause D is every literal in C occurs in D. It is clear that C

logically implies D if and only if C absorbs D.

A Horn clause is a clause containing at most one positive literal. A set of clauses

is Horn if it contains only Horn clauses. A set of clauses is hidden Horn if it

becomes Horn when one or more atomic propositions are replaced by their

negations throughout the set.

If there is exactly one atomic proposition .x, that occurs negated in clause c and

unnegated in clause D, then C and D are the parents of a resolvent (on .x, ), which

is the clause containing every literal in C or D except .x, and 7.T,. In unitresolution,

at least one parent is a unit clause. lt can be shown [19, 20] that a set of clauses is

unsatisfiable if and only if repeated application of resolution, each time adding the

resolvent to the set. eventually generates the empty clause. The satisfiability of a

hidden or explicit Horn set can be so checked using unit resolution only [12].

A clause, such as .Y1 V =.Yz, can be written as a linear inequality in

binary variables, in this case .Y1 + (1 – .Yz) 2 1, where .Y1 and .Y? must ta!ce values

in {0, 1}. We say that .Y, is true when .Y, = 1 and false when “XJ= 0. The inequality

can be written .Y1 – .Yz >0, or in general a.Y 2 a~, where a is a row vector with

components in {0, 1, – 1}, x a column vector (x-l, . . . . .Y,,), and a~ is one reduced

by the number of – 1‘s in a. Thus. a set of m clauses can be represented as a linear

system Hx > h, where H is an m x n matrix and .Y is binary. Clearly, the set of

clauses is satisfiable if and only if the following system has a solution:

–.x- ~ –p

x > 0, x integral, (1)

where e is a vector of n ones. The linear relaxation of(1) is obtained by removing

the integrality constraint on .Y. Linear programming finds a solution of the iinear

relaxation if one exists.
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3. Chandrasekaran’s Theorem

Let ral be the smallest integer greater than or equal to a, and for a vector x let

component i of rx 1 be r.~l 1. Chandrasekaran’s theorem is in part the following:

THEOREM 1 (Chandrasekaran [6]). Consider lhe linear system Ax z b, x z O,

~~here.4 is an m x n integral ~natri.x and b afl lnlegral vector. Let T be an n x n

nonsingular matrix that sati~fies the follo~ving conditions:

(a] T and T-l are inlegyal;
(b) Euch rev! of T-l contulns at most one negative entry, and all such entries

are–1:

(c) Each TOJVof A T-l contains at most one negati~’e entr~y, and all such entnes

are–l.

Then ifx satisfies the linear s~stem, so does the integrul vector T-l r Tx].

Chandrasekaran proves this result, but it is instructive to review here why it is

true. It is based on the following lemma:

LEMMA 1 (Cottle and Veinott [10], Chandrasekaran [6]). .4 no~zempty set of the

jorm S = lx:.4 ‘s- > b‘, x > Oi has a least element if each ro)t of A‘ has at most

one positive component. (A least element is one s~~ch that no other eleme~u IS

snzaller in any component. ) Furthermore, (f A‘ and b‘ are integral and ever]’

positive component of A’ is one, then the least element of S is integral.

For instance, if A ‘x > b‘ is the following:

–Xl – xl > –6, (2)

-y2 > 1, (3)

l-l – 2.Y-22 2. (4)

it is clear in Figure 1 that S has the least element (4, 1). Since (3) and (4) have but

one positive coefficient, the slopes of the constraint lines are such that the intersec-

tion of the corresponding half planes (and, in general, the positive orthant) has a

least element. Furthermore, if X2 in (3) or xi in (4) had an integral coefficient other

than one, the least element would be nonintegral.

We can argue in general that S has an integral least element .Y*. Let ~ =

{.t 1.4 ‘.~ = ~], where i- = x – .Y* and ~ = b‘ – A ‘x*. Initially .x* = O, so that

~ = b‘ and ~ = S is nonempty. If ~ s 0, then .~ = O is a least element of ~,

which implies that x* is a least element of S. Otherwise, pick the largest 1>0.

Since ~ is nonempty, row i of A‘ must contain at least one and therefore exactly

one positive component, a ~ = 1. This implies t, > 5,, so that we can increase

x~ by ~,, observe that ~ is still nonempty, and repeat the process. Since some

finite .Y belongs to S, the process must terminate. Obviously, the minimum

element x* is integral. In the example. eq. (4) implies xl = 2, so that we set
X* — 2 0) and obtain the new SJ’SterII ‘.~-l ‘.~-z ~

-(, ‘4, .Y2 a 1, .? I – 2.Z2 > (). since

.Y2 > 1, we get .Y* = (2, 1) and the system —.71 — i-2 > —3, ,tl > (), .Z1 — ZX-7 > ~.

This implies .~l >2, and we get x* = (4, 1), which is the minimal element-since

the resulting system has a nonposhive right-hand side.

To obtain Theorem 1 from Lemma 1, we reason as follows. Using the change of

variable J = a – x and setting .4’ = –44T-1, b‘ = b – ,4 T-1a3 Lemma 1 implies

that { y:.4 T-’} > b, ]’ s a ] has an integral maximal element for integral b and

integral a, provided the integral matrix AT-1 has at most one negative component

per row, namely –1. Thus, if z = S’ = {}:AT-l~’ > b}, then by setting a = rzl we
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see that rz 1 G S‘. This means,

~~-lj’ > b implies Arlrl’1 2 b.

Setting .T = T-’y, we get,

A.Y z b implies x4T-’r Txl > b. (5)

Similarly, by setting j’ = a – .~, .4’ = –T–l, and b‘ = –T–la, Lemma 1 implies

that {y: T-lJ’ >0, ~’s a } has an integral maximal element. From this we infer, as

above, that

~>() implies T-lrT.x-l z O, (6)

provided the integral matrix T-1 has at most one negative component per row,

namely – 1. Theorem 1 follows from (5) and (6).

4. Trees and Extended Horn Sets

Recall that a set of clauses is satisfiable if and only if a system of inequalities of the

form (1) has a solution. We use Theorem 1 to identify conditions under which (1)

has a solution if its linear relaxation does. Sets of clauses that satisfy these conditions

will be denoted e.rtended Horn (or hidden extended Horn).

To apply Theorem 1, we let

[1H.4 =
–I ‘

where His the matrix in (1). To satisfy condition (c) of Theorem 1. – T- 1 as well

as HT-l must have at most one negative entry in each row, namely – 1. We can

therefore characterize T as a matrix that satisfies condition (a) and the following;

(b’) Each row of T-l contains at most one +1, at most one – 1, and no other

nonzero entries;

(c’) Each row of HT-I contains at most one negative entry, which must be – 1.
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Condition (b’) immediately implies that the nonzero rows of 1’-’ may be

interpreted as the arclnode incidence matrix of a directed network, with one

column removed. In such a matrix, each row corresponds to an arc and each

column to a node. If arc lc runs from node i to node j, then row ik contains a 1 in

column i, a – 1 in column j, and zeros, otherwise. For instance, the following

matrix corresponds to the network in Figure 2.

.4 B CDEFG

–1000000
o–1 o 0 0 0 0

0 o–1 o 0 0 0

00 1–1 o 0 0
001 o–loo

0010 o–lo

,00000 1 –1

R

I

1

1

1

0.
0

1
0
0

Vertex R corresponds to a column omitted from T-’ but shown to the right of T-’

above. In general, the kth entry of the omitted column is 1 if – 1 but not 1 appears

in row k of T–l, – 1 if 1 but not – 1 appears. and O, otherwise.

Furthermore, the nonsingularly of T-l implies that T-l may be interpreted as

the arc-node incidence matrix of a directed tree Y– on n vertices, due to classical

network theory (see [11. Chap. 17]). Figure 2 is again an illustration. It will be

convenient to let the mot of Y–, which is R in Figure 2, be the node corresponding

to the omitted column. .
To understand condition (c ‘), regard any row h ‘“ of H as a vector of flows on

the arcs of ,7. In the example of Figure 2, let h~ = [– 1 – 1 1 0 0 1 1], which

indicates the flow marked by, heavy arrows. Note that negative flows are in a

direction opposite the orientation of the arc. Clearly, h~T-l indicates the net supply

at each node. In the example, h~T-l = [ 1 1 0000 – 1], which says that nodes A

and B have supply +1, G has – 1, and all other nodes (except possibly the root R)

have supply O. Condition (c’) states that at most one node (other than the root)

can have negative supply, and its supply must be – 1. It follows that the flow pattern

must consist of chains on which the flow moves in a single direction, and that the

downstream end of at most one of the chains can be a node other than the root.

Let an twtended star be a rooted tree consisting of one or more chains, all

incident to the root. If each column of H corresponds to an arc of tree Z, let H

have the extended star-chai?z pmpert~’ with respect to.7 if each row of H represents
a flow that consists of the following:

(a) Unit flow moving toward the root of X on every arc of some (possibly empty)

extended star subtree of v–;

(b) Unit flow in a single direction on every arc of some (possibly empty) chain in

>–. The following is now evident:

LEMMA 2. For u gi~vm T satisjj’ing (a) and (b‘ ) and the associated tree 7,

H ,~uti$ies (c’) f mzd onl~ (i H has the extended star-chain property >tith respect

to F.
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For instance, we can set h ~ = [– 1 – 1 1001 1] because it corresponds to a unit

flow along the chain A-R-C-F-G and an incoming unit flow on the extended star

subtree B–G. (Note that the chain and the extended star need not be disjoint.)

We can now state a condition under which one can use linear programming to

determine the O-1 volubility of any system of linear inequalities with integral right-

hand side and coefficients in {0, 1. – 1). Theorem 1 and Lemma 1 imply the

following:

THEOREM 2. Given an?’ set (1) oj”inequulities vtith integral h and components qf

H in {0, 1, – 1], if H has the extended star-chain pmpert?% ~ith respect to some

rooted, directed tree, then ( 1) is soluble fana’ onl~ (fits linear relaxatio~l is soluble.

A system (1) of the sort described in Theorem 2 represents a set of clauses when

each h, is equal to one reduced by the number of – 1‘s in row i of H. We say that

a set of clauses is e.~tended Horn if H in the representation (1) has the extended

star-chain property with respect to an arborescence, A set is hidden e.~tended Horn

if H has the extended star-chain property with respect to a rooted, directed tree

other than an arborescence. Therefore, linear programming solves the satisfiability

problem for both hidden and explicit extended Horn sets.

COROLLARY 1. .4H extended Horn set is satisfiable if and onl~ If the linear

relaxation qf its representation ( 1) has u solution.

We also note that Horn clauses are a special case of extended Horn clauses. In

fact, requiring each row of H to contain at most one +1 is equivalent to requiring

that H and T = –1 satisfy (a). (b’), and (c’). Requiring that the set be explicit or

hidden Horn is equivalent to requiring that H and some matrix Tthat is a diagonal

matrix with diagonal elements in {1, – 1] satisfy (a), (b’), and (c’). The network

corresponding to such a matrix T is a rooted, directed star with the root at the

center. We therefore have:

COROLLARY 2. i4n explicit m hidden Horn set oj’clauses corresponds to a Tooted,

directed star (~tith the root at the hub), and each clause in the set corresponds to a

fh pattern that consists of a unitflo~t louard the root on some subset of the a~cs,

plus a unit ,fkm aktu~’ .fiom the root on at most one arc. An explicit Horn set
corresponds to such a rooted star in )vhich all ams point out~tam’ from the root.

5. Extended Horn Sets and Unit Resolution

We can show that unit resolution solves the satistiability problem for explicit and

hidden extended Horn sets, just as it does for ordinary Horn sets.
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Suppose that (1) represents an explicit or hidden extended Horn set. We first

show how to find a solution of ( 1)’s linear relaxation, if one exists, using unit

resolution. Since by Theorem 1 this solution can be rounded to a solution of(1).

it will follow that ( 1) is soluble if and only if unit resolution solves its linear

relaxation.

To solve the linear relaxation of (1), apply the following unit resolution

procedure.

Step 1. If there are no unit clauses, assign every variable the value ~, and stop.

Otherwise, go to Step 2.

Step 2. Fix the values of the variables in unit clauses so as to satisfy the unit

clauses. If this requires setting a variable to both O and 1, stop: the linear relaxation

is insoluble. Otherwise, go to Step 3.

Step 3. Perform all possible unit resolutions on the current set of clauses, and

eliminate all clauses absorbed by the unit clauses in the current set (including the

unit clauses themselves). Add the resolvents to the current set, and return to

Step 1.

If this procedure finds a contradiction in Step 2, the linear relaxation of (1)

clearly has no solution. If it terminates in Step 1, then since all of the remaining

clauses have at least two literals, they are satisfied by setting every variable in them

to ~. We therefore have,

LEMMA 3. (Blair, et al [5]). ~~ (1) represents a set of clauses, (1 )’s linear

relaxation has a solution if and only fthe above algorithm finds one.

The unit resolution and absorption in Step 3 of the above procedure eliminate

from the problem all variables that occur in unit clauses. Eliminating a variable is

equivalent to deleting the corresponding arc from Y– and identifying the endpoints

of the arc (arc contraction). Note that 7 remains a rooted tree, which we may call

&, after any number of arc contractions. Also, any chain in S remains a (possibly

empty) chain, and the same is true of any extended star subtree of y-. Therefore

an extended star-chain flow pattern remains an extended star-chain flow pattern

after any number of arc contractions. Let ~–1 be the incidence matrix for >L.

SinceA.Y =A (~, . . . . ~) solves the linear relaxation of(1), we have by Theorem 1

that T-1 r Tx 1 solves (1). Theorem 1 and Lemma 3 imply the following:

THEOREM 3. An e.splicit or hidden extended Horn set is satisfiable f and only
Ij thQ ubo~~e unit msoltttion algorithm -finds no contradiction.

6. Tk Rounding Pattern

It is instructive to see how the calculation ~-1 r ~.rl obtains a solution for (1). Let

us suppose that after applying the above procedure, we arrive at the tree y– of

Figure 2. Let us also suppose that one of the original rows of H has been reduced

to the row {– 1 – 1 100 1 1], which represents the flow pattern shown in Figure 2.

As guaranteed by the above argument, this flow pattern still has an extended star-

chain structure. The variables .~l, . . ., .TT have been assigned the value ~. To
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observe the rounding pattern that yields an integer solution, we note that,

T-lr Txl =

—

–1000000

0–100000

00–10000

001–1000

0010–100

00100–1

000001

–r–+1

–r–;l
–r–; l

–r–~1–r–11

–r–~1–r–11

–r–~1–r–11

r–11––r–;l

——

o
0
0
1

1

1

0

0
–1

–1000000+

0–100000+

00–10000;

00–1–1000+

00–10–100+

00–100–10+

o o–1 o 0–1–1+

Thus, the flow of ~ is rounded down on arcs incident to the root, up on arcs

once removed from the root, and down on the arc that is twice removed. Rounding

down corresponds to setting the associated logical variable .~, to false, and rounding

up corresponds to setting it to true.
This suggests that if one regards the arcs as arranged in levels depending on their

distance from the root, the rounded solution assigns false to the odd-numbered

levels and true to the even-numbered levels. This is in fact the case if the directed

tree is an arborescence. When an arc is pointed toward the root, one must reverse

the truth value assigned in this pattern.

For a given node i of Y–, let C, be the set of arcs in the chain from i to the root.

Also let arc k. be (i(k), j(k)).

THEOREM 4. Let x be the vector (~, . . . . ~) and T-’ be the n x n arc-node

incidence matri.s oj’ a rooted, directed spanning tree on n nodes ( }i’ith the column

corresponding to the root omitted). Then the kth component of T-’ r T.x 1 is O (f

I C,c~)I is odd and 1 othemise.

PROOF. Let T-1 = (u,,) and T = (t,,). Then for each arc k, t~k,(~) = 1,

24~,t~)= – 1, and u/,l = O for 1 # i(k), j(k). We can order the rows of T-’ so

that T-l is triangular, whereupon zl~~= 1 when arc k is pointed toward the root,

and u~~ = – 1, otherwise. For each node i, let P, = {k G C, I u~~ = 1} and N, =

{k G Cl I u,,, = –1}. It is easy to check that t,k is 1 if k e P,, –1 if k c N,, and O,

otherwise. Thus, the ith component of r Tk 1 is [(+)( I P, I – I N, I )1. This

means that the kth component of T-l r T.x 1 is

[() 1[();(l P,(k,l -INL(L)I) - 1;(IW-IM)I) (2)
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When arc k is pointed away from the root, I P,,),, I = I P,(L) I and I N,(it, I =

/ N,(A) I – 1. Thus. if I ~]~~ I = 11’,~~, I + I N,t~, I is odd, I f’,(~ I – I fV,O,j \ is odd,
and (2) has the value O; otherwise, (2) is 1. When k is pointed toward the root,

I F’,~~j I = I F’,(~~I + 1 and I N,(/.~ I = I N,~~) 1, and (2) is again O when I ~,~, I is
odd and 1, otherwise. ❑

We can now see why this rounding pattern satisfies(1) and, in the process, obtain

some insight as to why unit resolution solves the satisfiability problem for explicit

and hidden extended Horn sets. For ease of discussion, suppose that the Horn set

is explicit, so that the tree 7 is an arborescence. For any nonsingleton clause and

the corresponding extended star-chain flow pattern on Y–, we have the following:

(a) When variables associated with arcs on odd-numbered levels are assigned false

and the others true, the clause is satisfied. This is because:

(i) a nonempty extended star always contains at least one arc incident to the root,

and this arc corresponds to a negated variable that is set to false; and

(ii ) if the extended star is empty, the chain (along which flow moves in a single

direction) has length at least two and therefore contains either an odd-level arc

on which the flow is opposite the orientation of the arc or an even-level arc on

which the flow is with the orientation of the arc, and in either case the clause

is true.

(b) Any number of arc contractions on Y– leaves a (possibly empty) extended star-

chain flow pattern or a tree with no flow.

By (b), unit resolution leaves a tree F with an extended star-chain flow pattern.

If the pattern is empty (no flow remains), (1) is satisfiable if and only if unit

resolution detected no inconsistency. If flow remains, every clause is nonsingleton,

since otherwise unit resolution is not finished. This implies by (a) that ( 1) is

satisfiable. We conclude that ( 1) is satisfiable if and only if unit resolution detects

no inconsistency.

To find other classes of problems for which unit resolution checks satisfiability,

one might look for flow patterns that are preserved by arc contraction and for

which a prearranged assignment of truth values to arcs satisfies every clause.

7. Veri~~ing Hid&n Extended Horn Sets

We can describe a linear-time algorithm to determine whether a given set of clauses

is hidden extended Horn with respect to a particular arborescence and assignment

of variables to arcs. That is, the algorithm checks whether the clauses describe

extended star-chain flow patterns on the tree for some orientation of the arcs. The

problem of constructing in polynomial time a suitable arborescence for a given set
of clauses is open.

We generalize a method proposed by Aspvall [1] for checking, in linear time,

whether a set of clauses is hidden Horn. The idea is to transform the verification

problem into a specially structured 2-satisfiability problem, and it is best understood

in an example. Consider the tree of Figure 2 (without arc orientations), and

let H be,

[

–1 –1 00–111

–1 –1 1–lo–loo.

0–1–11 o –1 –1
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As it happens, His extended Horn for the orientation shown in Figure 2, but we

do not know this in advance. Each row of H illustrates a case we must consider.

Since for each row the flow pattern is a forest of one or more trees, we refer to

each such tree as a jlo~I tree.

ROM) 1. Here there are two flow trees, one of which contains the root

(Figure 3). If there had been two or more flow trees excluding the root, H clearly

could not have been hidden extended Horn. The sign of each .x, is indicated on

the corresponding arc. Note that 5-6-7 must be treated as the chain and the

remainder as the extended star. Since variable corresponding to the extended

star must be negated, their flows must be contrary to the direction of their arcs.

Thus if,

{

if arc j points away from the root,
J;= ; otherwise.

we can assert the propositions J’l and J’Z. ,41s0 the flow on 5–6–7 must be

unidirectional, and we require J’S = J’6 = I’T, where I’5 is unnegated because .~s is

negated in the clause. This is equivalent to y5 o ~’c ~ I’T o J’5. We have the set of

propositions,

Row 2. Here there is but one flow tree, and only the root has degree greater

than two, so that the tree is an extended star (Figure 4). Without loss of generality,

we can suppose that the root is not interior to the chain. if there is a chain, and

that the flow on the chain is away from the root. Clearly, if the flow on arc 3 is

away from the root, it is away from the root on arc 5 as well, so that m-t’s ~ 7J’5. It

will be convenient to define for row 2 auxiliary variables =;, z;, z; corresponding

to the chains of the extended star beginning with arcs 1, 2, and 3 respectively.

Variable z; will be true when the flow on one or more of the arcs of chain i is

directed away from the root. Thus we have lJ’1 O ::, lJ’Z O :;. ‘~’s 3 z:. Since at

most one z; can be true, we have the following set of propositions:

ROW 3. Here there is again one flow tree (Figure 5), but a node other than the

root (node C) has degree greater than two. We must therefore assume that the

chain contains node C. Obviously, we must force arcs 2 and 3 to be in the extended
star and their flow to be directed toward the root. We can now disregard arcs 2

and 3 and treat the network consisting of 4, 5, 6, and 7 as in the previous case,

regarding C’ as the root. Defining auxiliary variables z;, z;, z ~ to correspond to

the chains 4, 5, and 6–7, respectively, we have

The verification algorithm is as follows: We start with an undirected tree X with

n arcs and root r. a set Q of clauses in at most n variables. and a set 1’ of 2-literal
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clauses that is initially empty. We assign each variable .~, occurring in Q to a unique

arc of Y–.

Algorithm
For each clause C of Q do:

Let 7 be the forest consisting of the arcs of Y– that correspond to variables occurring
in ~.
If Y– contains r, Y< contains at most one node other than r with degree greater than 2, and
S contains no node other than r with degree greater than 4, then

if YA is a tree, then
if ~+ contains one node i other than r with degree greater than 2, then

perform Procedure 3.
Else

perform Procedure 2.
Else

if YA $ontains two trees, then
if Y—contains no node other t~an r with degree greater than 2, then

let’7 be the tree (chain) in Y– not containing r. and perform Procedure 1.
End do.
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If Y is satisfiable, then Q is extended Horn. (An empty Y is unsatisfiable.)

The three procedures correspond to the three cases above. For any node i of

degree din a tree, the tree is the union of d subtrees that are disjoint except for

having i as a terminal node: let these be the i-,subtrees of the tree. If .~, is negated

in clause C, let t,be Ty,, and otherwise let t]be y,.

Procedure 1

For each j G ~\~, add W, to 1’.
Let ‘Z” consist of the subchains of arcs jl, . . . . jfl and kl. . . . . kP, where J1 and ~1 are

incident to the node of Z“ closest to r (possibly p = O or q = 0).
Fors = 1 top – 1, add -t,, V t,,+, to Y.

Fors = 1 to q – 1, add tk, V __It,,,+,to Y.
Add ~t,,V tk,and t,,V ~tkqto Y.

Procedure 2

For each arc j incident to r, do:
Let the r-subtree of ~– at arc j be the chain of arcs ~ = ~,, ~~, . . . . jr.

Fors = 1 top – 1, add Tt,,V t,,+, to Y.
Add ~t,,V q to Y.
For each arc k (# j) incident to r. add -z; V =z~. to Y.

13nd do.

Procedure 3

Let F be the union of the i-subtrees of Y= not containing r
For each j E Y–l%, add ~t,to Y.

For each arc j incident to i, do:
Let the ~-subtree at j be the chain of arcs j = jl, . . . . jfl.
Fors = 1 top – 1, add Ttl,V t,,+,to Y.
Add ~t~,V q to Y.

For each k (# j) in F that is incident to i, add =z~ V nzi to Y.
End do.

In the above algorithm, the number of clauses in Y is quadratic in the number

of literals, since quadratically many clauses of the form Tz; V -z: are used to

ensure that at most one :; is true. We can use a construction of Apsvall [ 1] to

reduce the quadratic to linear size. For each clause C, we can require that at most

one of the variables:$, . . . , z; (renumbered for convenience) is true by introducing

auxiliary variables wi, . . ., M’;_ 1 and replacing the set of clauses of the form

1:; V lU f with the following clauses.

lZ\ V N’;,
w’;_l v 17;, Tt’:-l v M’;, 1:: v u’;, i=2, . . ..1. l,

W’; _} v 7;.

Since 2-satisfiability problems can be solved in linear time [2], our algorithm runs

in linear time.

8. Extended Horn Sets of Rules

It is useful to characterize extended Horn sets of rules as well as clauses, since rules

are commonly used to build knowledge bases.

We first characterize Horn sets of rules. For our purposes, a rule is a proposition

of the form,

(Yl~.l’? ~””” Aj>)E(Z, VZ~V. .. VZq),

where h means “implies.” The atomic propositions J,, , . . . . }> are the premises and

their conjunction the antecedent. The clause Z1 V Zz V . . . V Zq is the cmlsequent.
Thus, no negations appear. Also there may be no antecedents, or an empty
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consequent; “t- xl” simply asserts z,, and “Y1 R“ denies YI. We need not consider

disjunctions of antecedents or conjunctions of consequent, since ]’1 V J’2 } z is

equivalent to the two rules yl f z and ]’? t- z, and y !- Z1 A z? is equivalent to the

two rules J F z] and j’ } Z2. It is clear that any clause can be written as a rule. by

putting positive literals in the consequent and using the atomic propositions in

negative literals as antecedents. For instance, the clause T.yl V T.YZ V X3 V xl can

be written as the rule (.\-, A .~~) t- (.x3 V X4). A Horn set of rules is one that is one

that can be obtained from a Horn set of clauses in this fashion. Thus, a set of rules

is Horn if and only if it has at most one proposition in each consequent.

Given a set of rules, an equivalent set can be obtained by complementing one

or more variables (the complement .i, of x, is a variable interpreted as meaning the

negation of .t~). If a premise is complemented, the premise is removed and its

complement is added to the consequent. If a variable in the consequent is comple-

mented, it is removed from the consequent and its complement added to the

antecedent. A set of rules is hidden Horn if it can be obtained from an equivalent

Horn set by complementing variables.

We now characterize extended Horn sets of rules. Any such set must correspond

to an arborescence ti– in the following way. Since the atomic propositions in the

consequent of an extended Horn rule are positive in the associated clause, they

must form a chain Y– in which every arc is directed away from the root; we can

call it the consf ‘qtfent ckain. To characterize the antecedents, let us also say that a

conjunction of premises is a complete premise if the individual premises correspond

to a chain of Y with all arcs directed toward the root and one endpoint at the root.

A conjunction of premises is a partial p~emlse if it corresponds to a chain of 7

whose arcs are all directed toward the root and that is not incident to the root. A

partial premise is coterminal with the consequent chain if the two chains have an

endpoint in common.

Thus, a set of rules is extended Horn if and only if there is some arborescence

7 such that every consequent corresponds to a chain in Y, and the antecedent of

every rule is a conjunction of zero or more complete premises and at most one

partial premise, where the latter is coterminal with the consequent chain. A set of

rules is hidden extended Horn if and only if it can be obtained from an extended

Horn set by complementing one or more variables.

9. An Interpretation qfE.xtended Horn Sets

There are two ways to obtain an extended Horn knowledge base in practice. One

is to test an existing knowledge base for whether it is hidden extended Horn, and

if it is, complement variables as necessary to make the rules explicitly extended

Horn. But this requires a yet undiscovered practical recognition algorithm for

extended Horn sets. Another approach is to build an explicitly extended Horn

knowledge base from scratch, adding no rule unless it preserves the extended Horn

structure. This is the approach now taken to build ordinary Horn knowledge bases,

and it is easy to implement because one need only check whether each clause is

Horn before adding it to the knowledge base, and the result is a Horn knowledge

base. But a knowledge base may fail to be extended Horn even if all of its rules are
extended Horn when considered individually. In fact, it is easy to see that any rule,

considered in isolation, is extended Horn. This raises the problem as to how an

extended Horn database can be built in the absence of a practical recognition

algorithm. One solution is to provide an interpretation of an extended Horn

structure such that, if one keeps the interpretation in mind, one will naturally
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construct an extended Horn knowledge base. We suggest here one such interpre-

tation. There may be other equally valid interpretations.

The arborescence that corresponds to an extended Horn set can be viewed as

defining paths of inquiry, corresponding to chains leading out from the root.

Ascertaining the truth of each proposition leads one to raise certain other questions.

represented by the children (immediate successors) of the propositions in the tree.

If a certain child is found to be true, one investigates its children, and so on. The

premises of a typical rule are satisfied when one pursues one or more lines of

inquiry and, in each case, finds the relevant propositions to be true. Thus, one

would expect the antecedent of a rule to consist of one or more complete premises,

each representing a line of inquiry.

Consider for example the arborescence of Figure 6, in which lines of inquiry

relate to solving a possible crime, the theft of a necklace. Consider the extended

Horn set of rules:

(i) If the necklace is missing. the house was not ransacked, there was no forcible

entry, and the maid just left town, then the maid is suspect.

(ii) If the necklace is missing. and the house was not ransacked, then there was
no forcible entry or it was an inside job (or both). (In the former case, the

necklace could have been lost rather than stolen.)

(iii) If the necklace is missing, it was an inside job and the maid just left town,

then the maid is suspect.

(Note that a proposition, in this case “The maid just left town,” can occur more

than once in the arborescence. The different occurrences are treated as distinct
propositions for the purposes of inference.)

The premises of rule (i) are satisfied when one successfully follows a line of an

inquiry down through, “The maid just left town. ” The premises of rule (ii) represent

the same line of inquiry taken not quite so far. Also the consequent of rule (ii) is a

disjunction. The whole point of using extended Horn sets. after all, is to allow
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disjunctions as consequent. Furthermore, one or more of the propositions in a

consequent can appear in an antecedent even when they are not part of a complete

premise. This occurs in rule (iii), in which “It was an inside job” is a partial

premise. But note that the consequent, “The maid is a suspect,” is coterminal with

the partial premise. as required for an extended Horn set. The combination of the

three rules permits one to suspect the maid without checking whether there was

forcible entry, provided that one verifies that the house was not ransacked and that

the maid just left town.

Thus, the extended Horn framework allows for some departure from the restric-

tion that an antecedent represent one or more lines of reasoning followed down

from the root. One is permitted to begin with an intermediate step in a line of

reasoning, which one presumably establishes by some means external to the

reasoning embodied in the rule base. That the necklace was stolen by an insider,

for instance, might be learned through an anonymous tip. The propositions verified

in this manner form a partial premise. But when external knowledge is used in this

way, the conclz~sion drawn must appear as a chain coterminal with the partial

premise.

Therefore, one can verify the premises of a rule either by reasoning wholly within

the framework of the rule base (i.e., by using complete premises only), or by using

external knowledge to establish an intermediate step and reasoning thenceforth as

prescribed by the rule base. In the former case, the consequent is a unidirectional

chain occurring anywhere in the tree, but in the latter it must be a unidirectional

chain that begins at the same node at which the line of reasoning begins. This

means that the children of a parent proposition consist not only of propositions

one would want to investigate after verifying the parent, but inferences one might

draw after beginning a line of reasoning with one of the other children.

10. Open Problems

We leave unsolved the general problem of recognizing extended Horn sets in

polynomial time. This problem appears to be a variation on the classical graph

realization question (e.g., [4]) in combinatorics. Chandru et al. [7] have described

a linear-time algorithm for recognizing instances of the generalized Horn sets of

Yamasaki and Doshita. Gallo and Scutell~ [13] showed that membership in their

classes rh can be checked in O (Ln ~) time. These results could suggest approaches

to recognizing extended Horn problems.
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