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Abstract 

Abhyankar, S.S., S. Chandrasekar and V. Chandru, Intersection of algebraic space curves, 

Discrete Applied Mathematics 31 (1991) 81-96. 

Bezout’s theorem gives the degree of intersection of two properly intersecting algebraic varieties. 

As two irreducible algebraic space curves never intersect properly, Bezout’s theorem cannot be 

directly used to bound the number of intersections of such curves. A general technique is 

developed in this paper for bounding the maximum number of intersection points of two 

irreducible space curves. The bound derived is a function of only the degrees of the respective 

curves. A number of special cases of this intersection problem for low degree curves are studied 

in some detail. 

1. Introduction 

Recent research in geometric modeling with curves and surfaces has focussed on 

the value of algebro-geometric techniques [5-7,10,11,13,15,18]. The early 

contributions in this context showed the applicability of elimination techniques, 
Bezout’s theorem, and the resolution of singularities in the realization of improved 
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algorithms for computing parametrizations, implicitizations, inversions and 

intersections of rational plane curves and rational surfaces. 

Algebraic space curves are widely used in computer aided geometric design. These 

curves include Hermite interpolants, splines of various kinds and those arising from 

intersections of two or more algebraic surfaces. Two interrelated topics involving 

algebraic space curves that are of both mathematical and computational interest are 

representation and intersection. 
Representation issues which have been addressed include problems such as 

finding the minimum number of equations needed to define an algebraic space curve 

in affine and projective three-space as well as the degrees of these defining 

equations. Also relevant are the problems of determining when there exist rational 

(polynomial) parametric representations of such curves. These parametrization 

issues are well solved for the case of algebraic plane curves and to a lesser extent 

for the case of algebraic surfaces [5-71. The resolution of singularities of plane 

curves and surfaces [l] plays a key role in these solutions. 

Consider the intersection of two nonoverlapping algebraic plane curves (in the 

projective plane). Bezout’s theorem provides a complete answer to the problem of 

counting the number of intersection points since it implies that plane curves of 

degree m and n respectively intersect in exactly mn points (when counted 

appropriately). At present, no analogous theorems are known for the intersection 

of arbitrary algebraic space curves. For the special case of two rational cubic space 

curves it has been shown [10,13] that there are no more than five points of 

intersection and algorithms for determining the intersection set are given in the cited 

papers. 

In a recent paper [8] we considered the general improper intersection of algebraic 

curves in k-dimensional space and obtained some bounds on the number of 

intersection points. In this paper we consider the problem of intersecting algebraic 

space curves, that is curves in 3-dimensional space, and present a general technique 

for bounding the number of intersections of two algebraic space curves of arbitrary 

degree. 

The broad approach is to embed one of the space curves in appropriate low degree 

algebraic surfaces and then, using a version of Bezout’s theorem, to bound the 

cardinality of the intersection set. The intersection bound theorems obtained are 

more general than those obtained in [8] because of the use of alternative proof 

techniques for curves in 3-space. The representation issues play an important role 

even in the problem of counting intersections. We believe that this approach could 

ultimately lead to analogues of Bezout’s theorem for improper intersections of 

algebraic varieties. 
The organization of the paper is as follows. Section 2 contains the definitions and 

related background results. In Section 3 we present the general technique for 

embedding a curve on a surface and for obtaining bounds on the number of 

intersection points. We discuss a technique for tightening these bounds in Section 

4. Section 5 considers computational issues related to the constructions presented 
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in earlier sections. Finally, in an appendix we use some of the ideas developed for 

the intersection problem to show that every irreducible space cubic can be 

constructed as the exact intersection of three quadric surfaces. 

2. Definitions and background 

2.1. Representation 

We are concerned only with curves and surfaces that are algebraic. 

Consider, 

K: f(x,y) = 0 where f is a polynomial, 

S: g(x,y,z)=O where g is a polynomial. 

K and S represent a plane curve and a surface in R2 and IR3 respectively. K and 

S are irreducible if f and g respectively are irreducible polynomials. Equivalently K 
and S do not properly contain two or more curves or surfaces respectively of which 

they are the union. 

The definition of a space curve and its irreducibility is not as straightforward. On 

the one hand, we may consider some space curves in rational parametric form 

expressed by 

x=x(t), y=y(t), z=zZ(t) 

where x( e ), y( . ), z( . ) are rational functions. 

However, not all space curves are rational. One precise definition of a space curve 

uses the idea of parametrizing it by a plane curve: 

x= Jt(s, t), Y = ,a tX Y = a, t), a, t) = 0 (*) 

where A, ,D, v are rational functions and y is a polynomial. A space curve defined 

by (*) is irreducible if the polynomial y is irreducible. 

All of the above definitions may also be applied to curves and surfaces in pro- 

jective two- and three-space, i.e., P2(C) and P3(C) while keeping in mind that all 

defining polynomials would be of homogeneous degree in this case. 

Consider two polynomialsf(x,y, Z) and g(x,y,z) having no factor in common. The 

locus of common zeros of these two polynomials, i.e., the intersection of the two 

surfaces, is a finite union of irreducible space curves. The question arises whether 

each of these irreducible space curves is again the intersection of precisely two 

surfaces. 

Around 1885, Kronecker proved that four surfaces are always enough to repre- 

sent any irreducible space curve. In 1964, Kneser [16] sharpened this result by 

proving that in fact three surfaces suffice. The question as to whether two suffice 

remains open. A stronger version of this problem has been formulated in ideal- 
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theoretic terms and studied by Abhyankar [2-41, Abhyankar and Sathaye [9], 

Murthy and Towber [17] among others. The above question can be formulated for 

curves in projective three-space as well. There it is easy to see that a nonsingular, 

irreducible curve is not in general realized as the intersection of just two surfaces [3]. 

2.2. Degree 

The degree (order) of a plane curve K defined by the root locus of the polynomial 

f(x,y) is simply the degree off. Alternatively, 

degree(K) = maximum{ number of intersections of I and K 1 
(I is a line) 

IlnKl is finite}. 

The latter definition can be extended to define the degree of a space curve C as 

follows, 

degree(C) = maximum{number of intersections of P and C 1 

(P is a plane) 

IPfl Cl is finite}. 

We note that “most” planes will intersect C in degree(C) points. An algebraic 

definition of degree(C) can also be given in terms of the so-called Hilbert poly- 

nomial P, of C. A theorem of Hilbert (cf. [1,23]) states that the Hilbert function 

H&n) of C, which is the number of linearly independent surfaces of degree n 

containing C, is a polynomial P&n) of the form an + b (positive a,b E Z) for large 

n. The coefficient a of P&n) is precisely degree (C). 

SO far we have discussed points, curves and surfaces in two- and three-dimen- 

sional spaces. Generalization of these concepts to higher dimensions leads to the 

abstract notion of an algebraic variety. An affine algebraic variety in C” is simply 

defined as the set of all common solutions to a system of polynomial equations in 

n variables. In order to state Bezout’s theorem we will need to make precise terms 

such as irreducible subvarieties, dimensions and proper intersections of varieties. 

Let V be a variety of C”. By a subvariety of V we mean an algebraic variety W 
in c=” such that W is contained in I/. V is said to be reducible if I/ can be expressed 

as the union of two subvarieties each of which is nonempty and is different from 

V. V is said to be irreducible if it is nonempty and not reducible. The dimension 
of V is the largest integer d such that there exists a strictly ascending sequence 

vo, VI, v,, **., Vd of irreducible subvarieties of I/. By strictly ascending we mean 

that for i= 1,2, . . . . d we have that V;_, is contained in Vj and different from V,. 

We note that this definition is consistent with the geometric intuition that a point, 

a curve, and a surface are of dimension zero, one and two respectively. A hyper- 
surface in n-space is a variety of dimension n - 1. The co-dimension of a variety I/ 

in c=” is n - dim V. A variety is said to be pure if all of its irreducible components 

have the same dimension. For example, a curve is a pure l-dimensional object and 
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a surface a pure 2-dimensional object. Suppose V is a pure d-dimensional variety 

in n-space. Consider the intersection of I/ with all linear spaces, L, _d of dimension 

n-d. Then 

degree(V) = maximum { number of intersections of L, _d and I/ 1 

lLnpdfl VI is finite). 

Two intersecting pure varieties V, and V, are said to intersect properly provided 

co-dim( V, n V,) = co-dim( VJ + co-dim( V,). 

Some concrete examples of proper intersections are: 

(a) (Pi flP,) where P, and P2 are irreducible plane curves that meet in a finite 

number of points. 

(b) (PflS) where P is an irreducible plane curve and S is an irreducible surface 

and they meet in a finite number of points. 

(c) (Cfl S) where C is an irreducible space curve and S an irreducible surface and 

they meet in a finite number of points. 

(d) (S, fl S,) where Si and S, are irreducible surfaces and they meet in a finite 

number of curves. 

It is important to note that the intersection of two irreducible space curves C, 

and C, is never proper. 

Bezout’s theorem. Let V, and V, be two pure varieties intersecting properly. Then 

degree( V, fl V,) I degree( V,) . degree( V,) 

(and = holds in P”(C) if intersections are counted with “‘appropriate” multi- 
plicity) . 

Bezout’s theorem may be regarded as one of the central results of algebraic geo- 

metry. It has recently also been the focus of considerable interest in the area of 

computer aided geometric design and robotics [ 181. For a discussion of this theorem 

including proofs, see [20]. Elimination techniques which played an important role 

in classical proofs of this theorem have enabled development of algorithmic 

techniques in these applied areas. As was noted above, intersections of space curves 

do not fall in the class of proper interections and Bezout’s theorem therefore has 

little to say directly about them. An indirect approach is to project the two space 

curves C and D onto a common plane and then invoke Bezout’s theorem for the 

“shadow” plane curves. As projection preserves intersection points we would 

obtain a valid upper bound on the number of intersection points of C and D. 

However, we may also expect this bound to be loose as many spurious intersection 

points result from projections. Thus for the example of two space cubits this 

technique yields a bound of nine whereas, as noted above, the true value is no larger 
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than five. These observations provided the motivation for our investigation of the 

space curves’ intersection problem. 

3. Embedding a space curve in a surface 

We first examine a classical combinatorial formula. 

Proposition 3.1. The minimum number of points needed to define a hyper-surface 
of degree d in n-space is [(di”)- I]. 

Proof. The number of coefficients of the defining polynomial of a hyper-surface of 

degree d in n-space is equal to the number of monomials of exactly degree d in n + 1 

variables. This latter number equals the number of combinations of d elements that 

can be chosen from a selection of n + 1 distinct elements with replacement 
permitted. This combinatorial identity is precisely (di,“). Thus we may conclude 

that there are (di”) coefficients of the defining polynomial for our given hyper- 

surface. It follows that there is some selection of [(dj!j”) - l] points on the hyper- 

surface which yields a system of [(din)- l] homogeneous linear equations whose 

unique solution specifies all coefficient values in the polynomial. q 

Other proofs of this proposition appear in standard algebraic geometry texts, see 

for example Griffiths and Harris [14], and Semple and Roth [19]. In particular, this 

proposition implies that there always exists a surface S, of degree d in P3(C) 

containing any collection of [(d13) - l] points. The chosen points will, however, 

have to be in general position (i.e., the points define a linearly independent system 

of equations) to uniquely define Sd. For the proofs that follow this is not 

necessary. Consider now a curve C, of degree m also in P3(C). By Bezout’s 

theorem, 1 C, fl Sdl is either md or C, and Sd have a common component. 

Furthermore, if C, is irreducible and 1 C,n& is greater than md, then C, lies on 

S,. These observations lead to a general technique for embedding any curve in a 

suitably “low” degree surface. 

Examples. (i) An irreducible C, can always be embedded in an Si. By Proposition 

3.1 there exists an S, containing any three points. Given C,, we can choose any 

three distinct points on it and construct an Si containing them. Now C, intersects 

Si in at least three points. But by Bezout’s theorem, if 1 C,flS1 1 > 2, then C, lies 

on S, (for C, is irreducible). Hence the constructed S, contains C,. This is a proof 

of the well-known fact that irreducible degree two space curves are actually tonics. 

(ii) An irreducible C3 can always be embedded in an S,. Again by Bezout’s 

theorem, if 1 C,nS, j > 2.3, then C3 lies on S,. Of the nine points needed to 

construct S2 we choose seven points on C3. Thus a cubic space curve always lies on 

a quadric surface. 



Intersection of algebraic space curves 87 

In general using the reasoning illustrated above, it is always possible to embed a 

curve C, on a surface S, by choosing the smallest integer d such that it satisfies the 

inequality 

>md+ 1. 

Remarks. (1) For “most” irreducible curves C, this construction yields the mini- 

mum degree surface Sd containing them. 

(2) The surfaces S, so constructed may sometimes be reducible. In this case, of 

course, C, lies on a surface of degree smaller than d. 

We may now formulate a heuristic for bounding the number of intersections of 

two curves C, and D, in P3(C). Using the construction described above we would 

first obtain a surface S, containing C,. Applying Bezout’s theorem we can deter- 

mine the number of intersection points between Sd and D,. This number will 

bound from above the number of intersection points between C, and D,. This 

heuristic may occasionally run into the difficulty that S, also contains D, whence 

we would obtain a trivial upper bound of infinity. In order to get around this 

difficulty we need to develop a technique for constructing S, containing C, such 

that Sd intersects D, properly. Let 

a md= -md- 1. 

In the discussion above we have always chosen d, the degree of Sd, to be such 

that ornd is a positive integer. A space curve C, is said to be special if C, C S,, for 

some d’ < d. Most curves are nonspecial. Unless otherwise stated, the rest of this 

paper will be concerned with nonspecial irreducible curves. 

Proposition 3.2. Let C, and D, be two distinct, irreducible, algebraic space curves 
in P3(c), with C, a nonspecial curve. If conditions (a) and (b) below hold, then 
there always exists a surface sd of degree d such that sd contains C,,, and sd inter- 
sects D, properly. 

(a) c&d 2 29 
(b) n>d2-m. 

Consequently, j C, (7 D, / I 1 sdn D, 1 = nd. 

Proof. Consider the vector space of all surfaces of degree d in P3(c) that contain 

C,. The rank of this space is precisely a,&. Therefore condition (a) implies that 

there exist at least two linearly independent surfaces $ and Sd that contain C,. If 
neither SJ nor Sd intersects D, properly, then D, lies on both (since D, is irre- 

ducible). Therefore (Sjn$) is of degree at least m+n. However, Bezout’s theo- 
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rem implies that the degree of (S@S$ is no larger than d2. These two 

observations are in conflict since (b) implies that m + n is larger than d2. q 

It is necessary that C, be nonspecial for Proposition 3.2 to hold. For if C, is 

special, then the surface S, constructed above may be reducible and a component 

of S, could contain both C,,, and D,; this would make the intersection between S, 

and D, improper. 

Examples (Space cubic (m = 3)). For an irreducible and nonplanar cubic space curve 

C, it follows that the minimum degree surface in which it can be embedded is a 

quadric, i.e., S,. Since for this case ~~32 equals 3 and d2-m equals 1 we can apply 

Proposition 3.2 to choose an S2 that intersects properly with D, for n greater than 

or equal to 2. Hence C3 and D, will intersect in no more than 2n points for n 2 2. 

In particular, C3 and D3 meet in no more than six points. 

(Space quintic (m=5)). In this case C, can be embedded in a cubic surface S3 

(d= 3) such that as3 equals 4. Proposition 3.2 applies as long as n is 5 or larger 

(d2-m is 4). Thus two space quintics intersect in no more than 15 points. 

The proposition gives us sufficient conditions under which we obtain a bound of 

nd on the number of intersection points of C, and D,. The asymptotic effects of 

this bound will be discussed below. First, however, let us examine the assumptions 

(a) and (b) in that order. As we shall see, the former is not restrictive at all and the 

latter is only mildly so. 

Lemma 3.3. amd= 1 if and only if one of the following holds, 
(6) m = 2; d = 1 (conic C2 on plane S,), 
@) m = 4; d = 2 (quartic C, on quadric S,), 
(y) m = 6; d = 3 (sextic C, on cubic S,). 

Proof. The definition of a md yields the following equation that is equivalent to 

fixing czmd at 1. 

6md=d3+6d2+ lld-6. 

The left-hand side is integer and hence so is the right-hand side. Further the left- 

hand side is divisible by d and so are the first three terms of the sum on the right- 

hand side. Hence six must be divisible by the positive integer d. This yields d = 1, 

2, 3 or 6 and the first three possibilities define the three cases (6), @) and (y) of the 

lemma. To see that d= 6 is impossible note that (Y,6 = 1 yields a nonintegral value 

for m. 0 

We note that the cases (a), (J) and (y) of the lemma are amenable to direct analysis 

even though Proposition 3.2 does not apply. In case (6) if the curve D, happens 
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not to lie on Sr, then (S, nD,) is a proper intersection. If D, lies on Sr, then C, 
and D, are both curves in the same plane and Bezout’s theorem can be directly 

applied to bound their intersection cardinality. In case (p), ~14,2 = 1 and this means 

that the vector space of linearly independent quadric surfaces S2 that contain the 

nonspecial curve C4 is 1. Since a43 = 7 there exist seven linearly independent cubic 

surfaces that contain C,. If we can show that at least two of these seven surfaces 

are irreducible, then we have an embedding of C4 in a cubic surface which does not 

contain D, (n L 6) and a bound of 3n for the cardinality of (C,nD,) is obtained. 

Suppose at least six of the above seven cubic surfaces are reducible. Since C4 is 

nonspecial and the least degree surface on which it lies is a quadric surface, each 

of these six linearly independent reducible cubic surfaces contain a plane and a 

quadric as their irreducible components, with the C4 lying on the quadric. But the 

vector space of planes in 3-space has dimension 3 and CJ~~= 1 and therefore the 

above six cubic surfaces cannot be linearly independent; a contradiction. Hence it 

follows that the number of linearly independent reducible cubic surfaces that 

contain C, is strictly less than six. So C, lies on at least two irreducible distinct 

cubic surfaces and by looking at the degrees of the intersection of these two surfaces 

it is easily seen that D, (n L 6) does not lie completely on at least one of these 

surfaces. In fact since C, lies on at least one irreducible quadric and an irreducible 

cubic surface, D, does not lie on at least one of these surfaces for n 1 3. Using 

Bezout’s theorem a bound of 3n is obtained for 1 C,fI D, j for n ~3. The argument 

is exactly the same for case (y) where a bound of 4n follows for j C,nD, 1, n L 7. 

It is also possible to arrive at similar conclusions using the classification of quartic 

and sextic curves given in [19]. But that approach works only for nonsingular 

curves. 

Now let us examine assumption (b) of Proposition 3.2. It dictates that the inter- 

section bound of nd for C, and D, is valid when n is chosen larger than d* - m. 
For small values of m the resulting value of d (so that amd 2 2) is such that this 

choice of n is not restrictive. However, a simple asymptotic analysis of (amd ~2) 

shows that d grows as (6m) 1’2 Therefore asymptotically, Proposition 3.2 applies . 
only for situations where n is larger than 5m. However, it is important to note that 

for “most” choices of S,, D, will meet it in a proper intersection. 

We define a sibling of C,,, to be an irreducible curve, distinct from C,,,, which lies 

in the intersection of all degree d surfaces containing C,,,. In view of the discussions 

following Lemma 3.3, the number of linearly independent degree d surfaces con- 

taining C, can be taken to be at least two except for the specific cases covered by 

Lemma 3.3. The degree of the intersection of two of these surfaces is d2. Therefore 

d2 - rn is an upper bound on the sum of the degrees of the siblings of C,. Hence, 

the number of siblings of C, is finite. We have proved the following. 

Theorem 3.4. Let C, be any nonspecial and irreducible space curve of degree m. 
Then all irreducible space curves D,, distinct from C,,, and its siblings, intersect C,,, 
in O(m “*n) points. 
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This is really a Bezout-type theorem for algebraic space curves. 

4. Tighter hounds 

In the previous sections we showed that two distinct irreducible space curves C, 

and D, (with minor restrictions) can intersect in no more than nd points, where d 

is the smallest positive integer satisfying the inequality 

>md+ 1. 

We now refine some of the techniques discussed above to obtain tighter bounds 

on the number of intersection points between space curves C, and D, meeting the 

assumptions of Proposition 3.2. Two examples involving space cubits and quintics 

will be used to motivate the general discussion. 

4. I. Space cubits (m = n = 3) 

Consider two irreducible curves Cs and D,. As shown earlier there exists a 

quadric surface S, > Cs which intersects D, properly. Furhermore, the vector space 

of quadric surfaces that contain Cs has dimension ~~32 = 3 (see proof of Proposition 

3.2). This implies that there exist three independent quadric surfaces S:, S,” and Si 

such that c, c s,l n$ns:. 

Proposition 3.2 implies that 1 C, nD, 1 I 6. Suppose 1 C3nD, 1 = 6. Let 4 be a 

point on D, that is not on C3. Since as2 = 3 there exist constants a, and bl such that 

q lies on the quadric surfaces 

Ti=$+a,Sf 
and 

2 T2 =S;+b& 

Ti # Ti since Si, S,’ and S: . . 
are linearly independent surfaces. Certainly Cs c - 

T; fl T; and both these surfaces T; and T,L intersect D3 in at least seven points (the 

six points on C3 nD, and q). Therefore, by Bezout’s theorem, D3 L Ti fl Ti. 
Furthermore C3 U D,, which is of degree 6, is contained in Tj fl T: which is at most 

of degree 4. This is a contradiction. Hence 1 C,flD3 1 I 5 refining our earlier 

bound of 6 (Proposition 3.2). 

4.2. Space quintics (m = n = 5) 

Let C, and D, be distinct irreducible space quintics. 05s = 4 and hence C, can be 

embedded in a cubic surface S3 that does not contain D,. Furthermore, there exist 

four linearly independent cubic surfaces S:, $, S: and Sf containing C5. Suppose 
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1 C, nD, 1 2 14. Let q1 and q2 be two points belonging to D, \ C,. Then there exist 

constants al, a2 and br, b2 such that q1 and q2 lie on both the cubic surfaces 

and 

T: = $ + a,$ + a2$ 

T,2=Sf+b&+b&. 

Since 1 D, 17 Ti 1 and 1 D, fl Ti 1 are both at least 16, Bezouts’s theorem implies that 

D, c T: fl Ti. In fact D, U C, (degree 10) c T: n T: (degree 9), which is a contra- 

diction. Therefore 1 C, nD, / I 13, a smaller bound than the 15 implied by Propo- 

sition 3.2. 

The results for the cubits and quintics may be generalized as follows. Let C, and 

D, be distinct irreducible space curves of degree m and n repsectively. C, can be 

embedded in a suitably “low” degree surface Sd, whose intersection with D, is 

proper, if m, n and d satisfy the conditions (a) and (b) of Proposition 3.2. Since 

the vector space of surfaces of degree d in P3(c) containing C, is a,&, there exist 

linearly independent surfaces SJ, S$ . . . , Sp such that 

c, c sjnsjn . . . nsp. 

Suppose 1 C, fl D, I 1 nd- (amd- 3). Let q1 ,q2,.. . ,q(a,,_2) be a set of points be- 

longing to D, \ C,. Again, using the fact that the surfaces Sj, $, . . . , Sp are 

linearly independent, it is possible to find constants al, a2, . . . , aCamdP2) and 

b,,&,..., bc,md_2j such that the above set {q;} of points lie on each of the following 

degree d surfaces: 

an?- 1 
Tj=SJ+ C aiS; 

i=2 

Td2=S~+ ff~d b,S~, 
i=3 

where Tj is not equal to Tj. Now / D,n TiI and I D,fl T,“l are both at 

t @ - @md - 3) + (a&-2)], that is nd+ 1. Bezout’s theorem implies that D, c _ 

least 

Tin 
Ti. Certainly C, c Tin Ti, therefore C,,,U D, c Tifl T$. C,UD, is of degree 

m + n whereas Tjfl Tj is at most of degree d2, by Bezout’s theorem. Therefore 

m + n I d2. But m, n and d satisfy Proposition 3.2 and this implies that m + n > d2, 

thereby leading to a contradiction. Hence our assumption that j C,tl D, 1 L 
nd-(a,d-3) is wrong. Therefore, lC,nD,I I nd-((rmd-2). 

We have proved the following upper bound theorem for space curve intersections. 

Theorem 4.1. Let C,,, and D, be distinct irreducible space curves in P3(C), C,,, 

being nonspecial, satisfying 

(a) n>d2-m, 

(b) a,,,d 12, 
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where d is the smallest positive integer satisfying the inequality 

>md+ 1. 

Then C,,, and D, intersect in at most [nd - (amd - 2)] points. 

Remarks. (1) For the intersection of two irreducible space cubits, the upper bound 

of 5 given by Theorem 4.1 is also the least upper bound. This is because a minimum 

of six points are needed to define a unique rational space cubic [21]. Given C,, a 

rational D, can always be constructed to pass through five points of C, and by 

construction we have realized two space cubits which intersect at five points. In 

order to extend this argument to the intersection of any C, and D, (m 5 n), let us 

consider the equations which specify a rational D, given below: 

x(t)=a,t”+a,_,F’+... +a,t+aO, 

y(t)=b,t”+b,~,t”~‘+... +b,t+b,, 

Z(t)=C,t”+C,~It”-‘+... +c,t+co, 

w(t)=d,t”+d,_,F’+... +d,t+d,,, 

where ai, bi, ci and di are real constants. Using the Lagrange interpolation formula 

it can be shown that at least n + 1 points are needed to define the constants in each 

of these polynomials. Furthermore, using some relationships that exist between 

polynomials defining a rational curve D,,, it is conjectured that a minimum of n + 3 

points are required to define a unique D,. If this were proved to be true, then using 

our previous argument it is seen that the bound on the intersection cardinality of 

(C, fl D,) can never be made smaller than n + 2. 

(2) If either C, or D, is reducible, then the techniques are applied to the 

intersection of their irreducible components. 

(3) We always choose d to be the minimum value such that a,& is positive 

(barring the exceptional cases (p) and (7) of Section 3). Intuitively it seems possible 

therefore to find an irreducible surface Sd on which we may embed C,. In the case 

where C, does not lie on a surface of degree less than d, it is obvious that the 

chosen Sd is irreducible (for example a nonplanar cubic always lies on an irredu- 

cible quadric). 

(4) The central idea behind the technique used in this section was to exploit the 

fact that in most cases the curve C, can be embedded in many linearly independent 

surfaces of degree d. This naturally leads us to questions as how many of these 

surfaces are needed to precisely obtain C,,, as their intersection. This is akin to the 

representation problems adressed in the introduction [3,9,16,17] with the added 

caveat that we are controlling the degrees of the defining equations. In the appendix 

we present a solution for the case of space cubits by proving that three quadrics 

suffice. 

(5) The asymptotic analysis presented in Section 3 is unaffected by Theorem 4.1. 
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5. Computational issues 

It is of both practical and theoretical interest to examine the possibility of making 

all of the constructions presented in this paper completely algorithmic. The fact that 

the representation of the given space curves C, and D, is not uniformly specified 

makes it difficult to present a totally unified discussion of the computational issues. 

However, at an abstract level it is clear that the main steps of an algorithm would 

be to: 

Step 1. Generate a requisite number of points on C,. 

Step 2. Construct one or more surfaces S$ to contain C, (and not D,). 
Step 3. Compute the intersection points in (D,,nS,$). 
Step 4. Parse the candidates from Step 3 to obtain the true intersection points in 

(C,nD,). 

5. I. Rational parametric space curves 

Suppose C,, and D, are represented as rational parametric curves 

D, : (x&), Y,(S), z&h 

In this case the computations are easily carried out. To generate points on C, we 

simply choose values of the parameter t. To construct the Si we solve systems of 

linear equations. To compute (D, fl S$) we substitute the parametric forms of D, in 

the equation for Si and solve numerically for the roots of the resulting univariate 

polynomial in s. To detect true intersection points we solve inversion problems on 

the parametric representation of C,. There are well-known techniques for all of 

these steps [18]. 

5.2. Implicit space curves 

In some applications (for example in computer aided geometric design) each of 

the space curves C, and D, may be given as the intersection of two or more sur- 

faces. In such a situation we may avoid Steps 1 and 2 altogether and choose one 

of the given surfaces as Si. However, if we want a minimum degree surface the 

main difficulty is in generating the requisite points on C,. One approach would be 

to use an arbitrary rational parametric surface and compute intersections of this 

surface with the ones defining C,,,. By substituting the parametrizations and then 

eliminating a parameter using resultants we could obtain points on C,. 

A more elegant (and perhaps more efficient) approach may be to realize a plane 

curve parametrization of C,. The general technique would be to take a planar 

projection of C,,, (via elimination) and then to identify the appropriate irreducible 

plane curve component that is birationally related to C,,,. Some results along these 
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lines are discussed in Hoffmann [15] and Garrity and Warren [12] for special cases. 

The details of a general algorithm are yet to be worked out and we pose it as a 

problem for further study. Such a parametrization will be useful in Step 1 for 

generating points on C, and also in Step 3 for computing (D, 0 Sj) if D, is given 

in implicit form. 

6. Conclusion 

One may raise the issue as to why the problem of intersecting space curves is new. 

This is probably because geometric intuition is that most space curves do not inter- 

sect at all. However, in computer aided geometric design, where solid models are 

often constructed using surface patches, the selection of edges (space curves) is such 

that they meet at vertices (intersection points). In this context the “improper” 

intersection of space curves is quite natural. In other applications some other 

improper intersections such as that of a curve and a surface in four-dimensional 

space may be relevant. We conclude with the hope that the preliminary investi- 

gations of intersecting algebraic space curves, reported in this paper, will lead to 

further study of improper intersections of algebraic varieties. 

Appendix 

We show here how any space cubic can be obtained as the complete intersection 

of three quadric surfaces. Furthermore, it is also possible to obtain by explicit 

computation the equations of these defining quadric surfaces. 

Let C, be any irreducible space cubic in P3(c). C3 can be embedded in two 

quadric surfaces S,’ and S: (S,’ #$) using the techniques outlined in the main 

paper. Now C, c S: r)$ and Si flS,‘= C,UL, where L is a line. This follows from 

Bezout’s theorem. L meets C3 in at least one point since a connectedness theorem 

due to Zariski [22] states that the intersection of two surfaces is connected. 

Moreover L meets C3 in at most two points. For if 1 Ln C, 1 = 3, then we can 

choose a point q E C, \ L and construct a plane S, containing L and q. Then the 

plane S, intersects the space curve C, in at least four points contradicting Bezout’s 

theorem which states that 1 S, n C, 1 = 3. This proof carries over for the intersection 

of any line with a space cubic (their intersection cannot exceed 2). Suppose there 

are two distinct lines, each of which intersect the space cubic in two distinct points. 

These two lines cannot intersect each other. For if they intersect each other, we can 

construct a plane containing these two lines and this plane will intersect the space 

cubic in at least four points which leads to a contradiction (by Bezout’s theorem). 

With these preliminaries established we can prove the following proposition. 

Proposition A.l. Any irreducible space cubic C, in P3(c) is the exact intersection 
of three quadric surfaces. 
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Proof. Figure 1 is useful in visualizing some of the details of the proof. 

Fig. 1. 

C, is an irreducible space cubic and we choose eight distinct points ql, q2, . . . , qg 
on C3. This can be done using one of the methods discussed in Section 5 of the 

paper. Li and Lf) are two lines passing through points ql, q7 and q3, q5 respec- 

tively, q9 and ql,, are points on L: \ C, and L: \ C3 respectively. From the results 

obtained earlier we know that L: and L: do not intersect each other, nor do they 

intersect C, in any other point besides those shown in Fig. 1. Construct a quadric 

surface S: containing the points ql, q2, . . . , q7 and q9, q,O. It is easily seen, as a 

consequence of Bezout’s theorem, that &! 2 C3ULii U Lf. Let Si be a quadric 

surface defined by the nine points ql, q2, . . . , q7, q9 and a point not on S,‘. It is 

obvious that Si#S: and S,” 2 C3UL:. C3 U Li G Si US,’ and in fact as a conse- 

quence of having equal degrees, by Bezout’s theorem C,UL: =Si US,‘. Let S,’ be 

a quadric surface containing the nine points q1,q2,q3, . . . ,q7 on C3, qlo on LF and 

a point not on S, US,. $ > C, U Lf and S,’ tl S,’ = C, U LF as a result of Bezout‘s 

theorem. By construction S,” #S,’ and S: #S,“. 

Certainly C, c $ fl S,’ n S,“, 

s: n s,’ n s; c (s: n $1 n (s,’ n s:) c (c, u L,) n (c, u L,) 

c c,u(~,n~,)=cj 

(since ILlnL21 =0). Hence C,=$fIS,“n$. 0 

In fact it is easily seen that equality is stronger than just set-theoretic. 
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