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Abstract-By considering a nonlinear reaction-diffusion negative feedback epigenetic control sys- 

tem, involving synthesis of the mitotic-inducing and inhibiting proteins simultaneously with intercel- 
lular self-diffusion and negative cross-diffusion of the latter only, Tapaswi and Saha [l] have showed 

the system generates a Turing structure during embryonic development. In this paper, we have 
observed, by using Lyapunov’s direct method, that the pattern, thus generated, is globally aaymp- 
totically stable. 

1. INTRODUCTION 

The problem of spontaneous pattern formation in biology, and the autoregulation of highly or- 
dered patterns, is one of the major challenges for theoretical biology. Turing [2] demonstrated 
that auto catalytic biochemical reactions coupled with internal diffusion, but without external 
control, could break up from the original homogeneous state and form stable well defined inho- 
mogeneous concentration gradients and patterns. Spontaneously created prepatterns in reaction 
diffusion systems may act as ideal, robust and well controlled platforms for spatial organisation 
in the early embryo. Genes may respond well to the ‘positional informations’ and thus may be 
activated in regions where prepattern concentration is high, thus generating a reliable system for 
globally controlled cell differentiation [3]. Tapaswi and Saha [l] have showed the mechanism of 
the formation of the primary layers of differentiation, namely, endoderm, mesoderm and ecto- 
derm, during the embryonic development with the help of a reaction diffusion model involving 
negative cross diffusion of the inhibitor of mRNA synthesis. 

In this paper, we have derived conditions under which a stable prepattern may be generated 
by the model of Tapaswi and Saha [l], with the help of a suitable Lyapunov’s function. 

2. THE MATHEMATICAL MODEL 

Let z(t), Y(t) and r(t) d enote the concentration of mRNA, activator and inhibitor, respectively, 
at any time t. The controlled biochemical system then can be represented by the following 
equations: 

ax 1 -- at= I+Y 712, 

dY 82% 
t=x-Y2Y+D23872’ (2.1) 

az 62.2 
at=~-~3~+D33df2, 

where 023 and 033 are the cross-diffusion and self-diffusion coefficient of z, respectively. 
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The model equation (2.1) has to be analysed with the following zero flux boundary conditions 

(2.2) 

3. GLOBAL STABILITY 

We shall show that the steady state pattern which has been generated [l] by the system (2.1) 
is globally asymptotically stable, under certain parametric conditions. 

THEOREM 1. The system (2.1) with boundary conditions (2.2), and initial conditions x(r, 0) = 
41(r), Y(T,O) = 42(r) and z(r,O) = 43(p), where 41, 4 2 and 4s are non-negative continuous 
functions, which are not identically zero on a subinterval [0, R] and have vanishing derivative at 
P = 0, R, is globally asymptotically stable, if the following conditions 

0) yi (i = 1,2,3) > 0, 

(ii) 022 > d23 (d23 = -023 > o), 

@i) 7’1 Y2 > ; > 72 (73 + r2 (022 - d23)}, and (3.1) 

(jv) by < iI_? 

dr - dr 

are satisfied. 

PROOF. Let the unique interior equilibrium point of the spatio-temporal system (2.1) (when 

t -+ oo) be denoted by (h(r), G(r), z(r)). We define a functional 

vyx, y, %) = f 
[J 
oR(x - :)2 + (y - i)” + (z - E)2 

1 
dr. (3.2) 

It is easy to see that the integrand in (3.2) is non-negative for all positive x, y, z and it vanishes 
only for 

x(r, t) E I, y(r, t) E i, z(r, t) E E. 

The rate of change of V’ along the solution of (2.1) is 

(3.3) 
dV’ R 
-= 

J{ d 0 
(x - I) $f + (y - 6) g + (z - k) $} dr 

&-fix) +(?/-il;r) (r-y2Y+D23$) 

+ (y - i) 023 $$ + (Z - E) {(y - c) - 73 (z - z)} + (z - E) 022 g 1 dr. (3.4) 
By using the boundary conditions (2.2), equation (3.4) reduces to 

dVt 

J 

R 

x= -71 o (z - ZJ)~ dr + lR(x - Z) (y - G) dr - 1 JR (x jf)+(yY, ” dr 
(1+ ii) 0 

J 

R 

- 72 (~-_?;)~dr-D23 o aa,dr+lR(t-;)(y--j)dr 
J 

R dy d% 
(3.5) 

0 

- 73 oR(.z - E)2 dr - D 
J 

221R (“‘>z;‘)‘dr. 



Embryonic development 21 

Without loss of generality, we can sssume 

(3.6) 

As the system generates a pattern if and only if the cross-diffusion coefficient is negative [l], we 

can take 

023 = -d23 (d23 > 0). (3.7) 

Now, using the hypotheses (3.6) and (3.7), and the Wirtinger inequality (see [4]) 

1’ (g>'dr> r211(z)2dr; (3-g) 

in (3.5), we have 

R 

Jr -W(Z - 1>2 +a12(z - G) (Y - &, - a13 (x - I> (Y - ;, 
0 (3.9) 

- 
022 (Y - ;)” + a23(2 - i) (Y - ?;) - a33(2. - ;)"I dr, 

where 
1 1 

a11 = 

71, a12 

= 

a21 

= -- 
2 

{ l-(l+y)(l+;) 1 ’ u22=y2’ (3.10) 
1 

a13 = aal = 0, a23 =a32 = --, 
2 

a33 = ~3 +r2(D22 - d23). 

The integrand in the r.h.s. of (3.9) can be written as 

-XT AX, 

where XT(z - s, y - $, z - E) and 

A= I Yl 
o+Y~lo+;~ 

0 

o+Y~l~l+;l Y2 
1 I. (3.11) 

-z 

0 1 -5 73 +r2(D22 - d23) 

From (3.9), it is obvious that $ < 0 if the matrix A is positive definite, which is possible, if 
hypotheses (i)-(iii) are satisfied. 

Thus, the diffusive system (2.1) evolves into a steady-state dissipative structure which is 
globally asymptotically stable under the parametric conditions (i)-(iv), as stated in the 
theorem. I 
NOTE. Equation (3.5) is synunetric in 2 and g. As there is no real loss of generality in equa- 
tion (3.6), the theorem also goes through under changed parametric conditions if the inequality 
is reversed. 

4. DISCUSSION AND CONCLUSION 

The most important conclusion in this paper is that the system (2.1) generates a pattern which 
is a stable one in the following situations: 

(1) The self-diffusion coefficient of the inhibitor must be larger than the absolute value of the 
cross-diffusion coefficient. 

(2) The product of the degradation rates of mRNA and activator must exceed a threshold 
value. 
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(3) The product of the degradation rates of activator and inhibitor must remain below a 
certain threshold level. 

(4) The spatial distribution of the activator is less than the spatial distribution of the inhibitor. 
(5) In real biological situations, all the rate constants are positive (7i > 0). Negative cross- 

diffusion coefficient (d 2s = -d23 where d23 > 0) means active counter transport of the 
inhibitor against the concentration gradient of the activator. The existence and utility 
of active counter transport has been observed in many biological situations (see details 
in [l]). The other parametric conditions (ii)-(’ ) iv are also biologically realistic, and thus 

the theorem may be tested in real biological terms by proper experimental set ups. 
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