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a b s t r a c t

Present study considers the situation where the removal of population is adopted as
a prevention measure for isolating the susceptible population from an infected region
to reduce the disease prevalence. To investigate the scenario, a dynamic error based
method, Z-type control is applied in an SI type disease model with the aim of achieving
a predetermined disease prevalence. The controlled system is designed by introducing
a new compartment (the population in an infection-free region) in the uncontrolled
system to capture the removal of susceptible population from the infected region to
an infection free region. By performing numerical simulations, our study shows that
using Z-control mechanism, the removal of susceptible to an infection free region can
effectively achieve a predetermined disease prevalence. The removal rates required
for achieving a specific reduction in infected population for different levels of disease
endemicity are quantified. Furthermore, the global sensitivity analysis (PRCC) is also
performed to have a more clear insights on the correlations of the control parameter
with the model parameters.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Recurrence of the diseases that have already persisted and also the appearance of newly invaded diseases make the
public health authorities and policy makers more vigilant about the control and prevention. Variations in ecological and
climatic factors enhance the possibility of the emergence of new pathogens [1]. Moreover, the evolution of pathogens
accelerates the emergence of the disease and worsens the predictability of disease invasion [2]. The diseases like HIV,
Small pox, Rabies, Measles, Dengue, Cholera, etc. have been emerged since decades whereas Zika, Ebola, Chikungunya,
MERS-CoV, etc. are recently invaded and spread worldwide within a short period of time. Communicable diseases become
a potential burden to the socio-economic condition of developing and under developed countries [3]. Some neglected
tropical diseases cause physical disabilities and even premature death to human which consequently slow down the
economic productivity of a country [4,5]. Not only human, infectious diseases also victimize the animals, birds causing
depletion in economic and agricultural growth. Diseases like avian influenza, foot and mouth disease, viral haemorrhagic
septicaemia virus in fish, etc. cause huge economic losses in food, agriculture and aquaculture every year [6]. Moreover,
the transmission of diseases among animals, birds, etc. create the possibility of infecting the human population. With the
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growing advancements in the modern transportation technology, infectious diseases spread in the distant parts of the
world very quickly and become a global concern [7,8].

Due to the infeasibility of performing experiments and the lack of disease related data, mathematical models become
popular to analyse the disease transmission mechanism as well as to investigate the consequences of the application
of control measures. Several modelling frameworks such as deterministic, stochastic, agent based model, chain binomial
model, spatial model, etc. have been employed to depict the disease transmission [9]. However, among these approaches,
mathematical modelling in a deterministic setting gained considerable attentions perhaps because of its modelling and
computational simplicity. In this approach, usually a set of ordinary differential equations are constructed with the
assumption that the population under consideration is homogeneously mixed.

The investigation of the consequences of interventions is one of the major aspect in the context of infectious disease
modelling. Incorporation of different intervention strategies into the model can be executed in different ways. For instance,
to model the behavioural change such as awareness [10,11], isolation [12,13] or to study the impact of vaccination [14], an
extra compartment is usually introduced in the model. On the other hand, in the context of vector borne disease modelling,
incorporation of self protection such as use of bed net, application of vector repellent on skin, etc. [15] can be accomplished
by introducing a control parameter to capture the reduction in the transmission rate. The application of different vector
control strategies, treatment, etc. [16] can also be encapsulated by using a control parameter to capture the increase in
the respective rates (mortality rate of vector and recovery rate). To quantify the efficiency as well as the outcomes of
the control strategies mainly two popular techniques: optimal control, impulsive control have been applied in numerous
studies [17,18]. In optimal control technique, usually one can seek for a time dependent control parameter for which
infection burden and the costs associated with the intervention of the disease is minimized [19,20]. On the other hand,
using impulsive control technique, the effect of non-continuous interventions such as weekly/monthly vector control,
spraying of insecticides, etc. are evaluated [21,22]. These techniques are very useful for the assessment of effectiveness
of different intervention strategies in lowering or even eliminating the disease. However, the above mentioned methods
are not so useful to analyse the situations where the key objective is to achieve a predetermined infected population
after applying suitable control. From epidemiological point of view, attaining a predetermined disease prevalence is an
important aspect for public health organizations. World Health Organization (WHO) has adopted proper strategies to
achieve targeted disease prevalence for several emerging diseases. For instance, WHO implemented strategies: Stop TB
and End TB to achieve targets of 50% reduction in the disease prevalence and disease induced mortality by 2015 and 95%
reduction in TB deaths between 2015 and 2035 respectively in India [23–25].

From a dynamical system’s point of view, the problem of achieving a pre-decided infected population can be addressed
by adopting Z-type dynamic control method proposed by Zhang et al. [26]. In Z-type control, an exogenous control is
introduced in the controlled system and the control mechanism is designed in such a way that the difference between
actual system’s output and targeted output is forced to converge to zero.

Though initially Z-type control method has been applied in the field of neural network [27–30], recently some studies
have applied this control mechanism to different ecological and eco-epidemiological models to explore the dynamics of the
systems [31–34]. In the context of infectious disease modelling [35] applied Z-type dynamic control in a simple SI model
and analysed the dynamics of the system. The author considered isolation of susceptible individuals through migration
as the control measure and explored that the rate of migration can be designed by using Z-control method to control
infectious disease. In contrast, Lacitignola et al. [36] recently studied the control of backward bifurcation phenomena
using Z-type control mechanism in an SIR disease model, where they considered isolation of a portion of susceptible
population by using suitable prevention measures such as masks, hand-washing, gargling, vaccination, etc. However, in
the present study we consider a different kind of prevention measure: removal of susceptible population from infected
region to a neighbouring infection-free region to control the disease spread. We consider a simple SI model and design
a Z-type controlled system aiming to explore the disease dynamics and quantify the rate of removal of susceptible to
maintain a specific disease prevalence.

Remaining parts of the manuscript are organized as follows: Section 2 describes a brief description of the model under
consideration, Section 3 is devoted in analysing the long-term temporal behaviour of the uncontrolled system, design
of controlled system incorporating Z-type control is presented in Section 4. The results of our study are presented in
Section 5 with the help of numerical simulation. The manuscript is ended with conclusion (Section 6).

2. Description of model

We consider a simple deterministic SI-type compartmental model. The demography of the population is considered in
the model in order to study the long term behaviour of the system. Total population is partitioned into two compartments:
susceptible(S) and infected(I) depending on the health condition of the individuals. Susceptible population is assumed to
be recruited via birth, immigration, etc. at a constant rate Λ. It is also assumed that population is decreased due to natural
death at a rate µ. To model the transition from susceptible to infected we consider non-linear incidence rate. There
are several studies where non-linear incidence rate has been used to capture the saturated contacts or ‘‘psychological
effect’’ of the population [37–39]. Following the above mentioned literatures, we consider the incidence rate as βSI

a+I , which
essentially captures more restrained increase in incidence than that of bilinear incidence and exclude the possibility of
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unrestricted contact rate. Here β represents the transmission rate and the parameter a is used to capture the saturation
factor. We consider the following set of ordinary differential equation to represent the disease transmission mechanism:

dS
dt = Λ −

βSI
a+I − µS

dI
dt =

βSI
a+I − µI,

(2.1)

together with the initial conditions S(0) > 0 and I(0) > 0.

3. Basic dynamical properties

In this section, we will explore some basic dynamical behaviours of the proposed model by using standard methods of
non-linear dynamics. One of the key quantity in epidemiology, the basic reproduction number (R0) is derived by following
next generation matrix approach and based on this quantity the conditions for local and global stability of disease free
equilibrium as well endemic equilibrium are derived.

Lemma 1. Consider the compact set Ω = {(S, I) : S ≥ 0, I ≥ 0, S + I ≤
Λ
µ
}. Then the set Ω is positively invariant and all

the forward solutions of the system (2.1) are ultimately bounded.

Proof. Let us denote the total population by H(t),

H(t) = S(t) + I(t). (3.1)

We take time derivative of Eq. (3.1) along the solution of our system (2.1),
dH
dt =

dS
dt +

dI
dt

= Λ − µH.

(3.2)

Solving the linear differential equation (3.2) we have,

H(t) =
Λ

µ
+ (H(0) −

Λ

µ
)e−µt .

From the above equation it follows that, if H(0) ≤
Λ
µ
, then H(t) ≤

Λ
µ
. Therefore, the compact set Ω is positively invariant

with respect to the system (2.1). Any solution with initial conditions within Ω will stay in Ω for all t and therefore
bounded. □

The basic reproduction number, R0 measures the potential of disease invasion in a entirely susceptible population. By
applying the next generation matrix approach [40], it follows that the basic reproduction number for the system (2.1) is

R0 =
βΛ

aµ2 .

3.1. Equilibrium and stability analysis

The system (2.1) has two equilibrium points: (i) disease-free equilibrium (DFE), E0 = (Λ
µ
, 0), and (ii) the endemic

equilibrium E∗
= (S∗, I∗), where

S∗
=

µa(β + µR0)
β(β + µ)

,

I∗ =
µa(R0 − 1)

β + µ
.

Here the endemic equilibrium E∗ is feasible only if R0 > 1.

3.1.1. Disease free equilibrium and its stability

Lemma 2. The disease free equilibrium (DFE), E0 for the system (2.1) is locally asymptotically stable if R0 < 1.

Proof. To perform local stability analysis of DFE, the corresponding Jacobian matrix JE0 of the system (2.1) at the point
E0 is computed as follows,

JE0 =

[
−µ −

Λβ

µa
0 Λβ

µa − µ

]
.

The eigenvalues of JE0 are −µ and βΛ

µa −µ. Therefore, the DEF is locally asymptotically stable if βΛ

µa −µ < 0, i.e. βΛ

µ2a
< 1.

This implies if R0 < 1, then the DFE is locally asymptotically stable. □
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Lemma 3. The disease free equilibrium (DFE), E0 for the system (2.1) is globally asymptotically stable if R0 < 1.

Proof. It is already shown that the disease free equilibrium (DFE), E0 is the only equilibrium for the system (2.1) in the
compact set Ω = {(S, I) : S ≥ 0, I ≥ 0, S + I ≤

Λ
µ
} if the basic reproduction number R0 < 1.

From the second equation of (2.1), we get
dI
dt =

βSI
a+I − µI

≤
βΛI

µ(a+I) − µI
≤ ( βΛ

µa − µ)I
≤ µ( βΛ

µ2a
− 1)I

≤ µ(R0 − 1)I.

(3.3)

From the above inequality, it follows that, dI
dt < 0 if R0 < 1 and consequently I(t) tends to zero as t approaches to +∞.

This proves that the disease free equilibrium (DFE), E0 for the system (2.1) is globally asymptotically stable if R0 < 1. □

3.1.2. Endemic equilibrium and its stability

Lemma 4. The endemic equilibrium, E∗ for the system (2.1) is locally asymptotically stable if R0 > 1.

Proof. The Jacobian matrix JE∗ of the system (2.1) at the endemic equilibrium E∗ is given by,

JE∗ =

[
−

βI∗

a+I∗ − µ −
aβS∗

(a+I∗)2
βI∗

a+I∗
aβS∗

(a+I∗)2
− µ

]
.

The trace (tr) and determinant (det) of the Jacobian matrix JE∗ are given by,

trJE∗ = −
βI∗

a + I∗
− µ +

aβS∗

(a + I∗)2
− µ,

detJE∗ = (−
βI∗

a + I∗
− µ)(

aβS∗

(a + I∗)2
− µ) +

aβS∗

(a + I∗)2
βI∗

a + I∗
.

Substituting the values of S∗ and I∗ in the above expressions we get simplified form of trJE∗ and detJE∗ in terms of R0
and other model parameters as follows:

trJE∗ =
µ2

−
2βΛ

a −
β2Λ

aµ

β + µR0
,

detJE∗ =
µ2(β + µ)(R0 − 1)

(β + µR0)2
(µ + β).

The endemic equilibrium for the system (2.1) is locally asymptotically stable if trJE∗ < 0 and detJE∗ > 0. Now detJE∗ > 0
if R0 > 1. The condition R0 > 1 implies µ2 <

βΛ

a . Putting this condition in the expression of trJE∗ , we see that trJE∗

becomes negative. Therefore, the endemic equilibrium is locally asymptotically stable for R0 > 1. □

Lemma 5. The endemic equilibrium for the system (2.1) is globally asymptotically stable if R0 > 1.

Proof. Since we have considered a two-dimensional epidemic model, Dulac–Bendixson criterion can be applied to
investigate the existence of periodic orbit (closed orbit) in susceptible–infected plane.

Let f1(S, I), f2(S, I) represent the two functions on the right hand side of system (2.1). We choose the Dulac function
B(S, I) =

1
SI .

Now we consider the following expression

D =
∂

∂S
(f1B) +

∂

∂ I
(f2B).

On simplification we get D = −( Λ

S2I
+

β

(a+I)2
) < 0 for (S, I) ∈ R2

+
.

Therefore, by the Dulac–Bendixson theorem [41], there is no periodic orbit in R2
+
for the system (2.1). Moreover, since

E∗ is the unique positive equilibrium in R2
+

if R0 > 1, every positive solution will converge to E∗. Combining the above
argument with the local stability proved in Lemma 4 implies that E∗ is globally asymptotically stable if R0 > 1. □
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4. Design of Z-type control system

To design a Z-type control system, (i) extrinsic control, and (ii) targeted output variable are the two main quantities
which are required to be specified [31,32]. The extrinsic control acts as control system’s input which drives the actual
system to achieve its targeted output state.

Z-type control is an error-based method and the difference between the actual state and the targeted state is defined
to be the tracking error of the corresponding control system. The control scheme is considered to be successful if the error
approaches to zero.

The Z-control method can be applied in a dynamical system in two ways: direct method and indirect method. The
fundamental difference between these two methods is that in direct method the extrinsic control is applied to the
corresponding system component whose desired state is targeted to be achieved whereas in indirect method, the control
is applied to the system component other than the corresponding state variable whose desired state is aimed to be
achieved [31,32].

It is to be noted that application of Z-control mechanism in ecological, epidemiological and eco-epidemiological
systems implies isolation/removal and recruitment of population [31–34]. However, in epidemic situation if the Z-
controller is applied in susceptible population then the update parameter is likely to be positive [35,36] which implies
isolation/removal of susceptible population from the region of epidemic. In the present study, we consider a situation
where an infectious disease is prevalent in a region. To lower the disease prevalence, susceptible population is removed
from the infected region and moved to an accessible region free from infection. We intend to study the temporal dynamics
of the infected population as well as the dynamics of the population in the infection-free region with the help of Z-
type control mechanism. The primary aim is to reduce the level of disease endemicity and achieve a targeted infection
prevalence by removing susceptible population. Here, we introduce a new compartment consisting of the population of
an infection free region to design the Z-controlled system. The susceptible individuals removed from the infected region
enter the new compartment and increase the total population of the infection-free region. Our designed Z-control system
is given as follows:

dS
dt = Λ −

βSI
a+I − µS − u(t)S

dI
dt =

βSI
a+I − µI

dN
dt = ΛN − µN + u(t)S.

(4.1)

Here N(t) denotes the total population of the infection-free region and ΛN represents the constant recruitment rate of
the population in that region. The natural death rate of the population in the infection-free region is taken to be same as
that of the population in the infected region. This assumption is quite reasonable as the variation in demographic factor is
negligible between two neighbouring regions. Here u(t) denotes the time-dependent removal or recruitment rate. It is to
be noted that the removal or recruitment is always considered to be dependent on the number of susceptible population
of the infected region, not on the number of population in the infection-free region. To control the spread of infection or
to eradicate the disease, we indirectly control the abundance of susceptible individuals by means of restricted migration
depending on the abundance susceptible population in the region of infection. Such restricted migration (extrinsic control)
is designed by indirect Z-control parameter.

We are to derive an analytical expression for u(t) from Eq. (4.1) so that the actual number of infected population I(t)
is converged to the desired number of infected population Id(t). Following the procedure as described in [31] for indirect
method, we introduce two error functions v1 and v2. The design formulas for v1 and v2 are given by,

v1 = I(t) − Id(t)
v̇1 = −λv1
v2 = v̇1 + λv1
v̇2 = −λv2.

(4.2)

Here λ is called the design parameter which is always positive and measures the rate of convergence of the method.
Combining the Eqs. (4.1) and (4.2) we have

Ï(t) − Ïd(t) + λ(İ(t) − İd(t)) = −λ(İ(t) − İd(t)) + λ(I(t) − Id(t)).

Now substituting İ(t) and Ï(t) in the above equation we get the following equation,

β
(
aṠI + aS( βSI

a+I − µI) + ṠI2
)

(a + I)2
− µ

( βSI
a + I

− µI
)
− Ïd = −2λ

( βSI
a + I

− µI − İd
)
− λ2(I − Id

)
.

Solving for Ṡ we have,

Ṡ =
f (S, I) − βaS( βSI

a+I − µI)

β(aI + I2)
,
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where,

f (S, I) = (a + I)2
(
Ïd − 2λ(

βSI
a + I

− µI − İd) + µ(
βSI
a + I

− µI) − λ2(I − Id)
)
.

Let us denote g(S, I) =
f (t)−βaS( βSI

a+I −µI)

β(aI+I2)
. Using this expression we finally obtain the explicit expression for u(t) as follows:

u(t) =
1

S(t)

[
Λ −

βS(t)I(t)
a+I(t) − µS(t) − g(S, I)

]
. (4.3)

It is also noted that theoretically the expression of u(t) allows the possibility that any instant of time t , u(t) can take
both positive and negative values. Positive value of u(t) indicates the removal of susceptible population from the infected
region to infection-free region whereas the negative value represents the converse situation i.e the recruitment of the
susceptible to the infected region. However, from the point of view of disease eradication, we are likely to get positive
value of u(t).

Theorem 1. The tracking error v1 of the Z-controlled system (4.1) equipped with the controller u(t), initiating from a positive
initial condition [S(0), I(0),N(0)]T converges to zero exponentially for a continuously differentiable and bounded desired state
Id(t).

Proof. From the Z-type control design formula (4.2) we have,

v2 = v̇1 + λv1.

Substituting the above equality into v̇2 = −λv2 we get,

v̈1 + 2λv̇1 + λ2v1 = 0. (4.4)

Solving (4.4), we obtain

v1 = (c1 + c2t)e−λt , ∀t ≥ 0,

where c1 and c2 are arbitrary constants. Using the initial conditions, we can obtain the arbitrary constants as

c1 = I(0) − Id(0) and c2 = İ(0) − İd(0) + λ(I(0) − Id(0)).

From Lemma 1 in [42], there exist ĉ > 0, λ̂ > 0 such that v1 ≤ ĉe−λ̂t . This implies that the tracking error v1 converges
to zero exponentially with rate λ̂ and consequently the infected population I(t) goes to the targeted infected population
Id(t). □

4.1. Equilibria and local stability analysis of Z-controlled system

In this section, using standard techniques of linear stability analysis, the stability properties of the equilibrium of the
system (4.1) are explored. We replace u(t) in the system (4.1) by the expression given in (4.3) and we now have the
following Z-controlled system

dS
dt = g(S, I)

dI
dt =

βSI
a+I − µI

dN
dt = h(S, I,N).

(4.5)

The expression of g(S, I) is already given previously and the expression of h(S, I,N) is given by,

h(S, I,N) = ΛN + Λ − µN −
βSI
a + I

− µS − g(S, I).

It is worthy to note here that the expressions of g(S, I) and h(S, I,N) do not include ‘t ‘ explicitly. Therefore the system
(4.5) is an autonomous system and we can apply the standard linearization technique to study the dynamical properties.
Here we consider the number of targeted infected population to be constant, Id(t) = Id = constant . The equilibrium point
of Z-controlled system (4.6) can be obtained by solving the following equations:

g(Sc, Ic) = 0

βSc Ic
a+Ic

− µIc = 0

h(Sc, Ic,Nc) = 0.

(4.6)



A. Senapati, P. Panday, S. Samanta et al. / Physica A 548 (2020) 123846 7

Solving the above equation we get a unique equilibrium (Sc, Ic,Nc), where Sc =
µ(a+Id)

β
, Ic = Id and Nc =

β(ΛN+Λ)−aµ2
−(µ2

+βµ)Id
βµ

.
For a biologically feasible equilibrium point, Nc should be always non-negative. Therefore we have,

β(ΛN + Λ) − aµ2
− (µ2

+ βµ)Id
βµ

≥ 0.

On simplifying the above inequality, we get an upper bound of the desired state Id as:

Id ≤
βΛN + aµ2(R0 − 1)

µ(µ + β)
.

From the expression of u(t) provided in (4.3), it is evident that u(t) is independent of the parameters related to the
newly introduced compartment N(t) (i.e the population in the infection-free region). Therefore, instead of considering
the Z-controlled system (4.1), if we apply Z-control to the two compartments SI model (2.1), the overall dynamics of
these two controlled systems would not be changed in terms of achieving a desired abundance of infected. However,
the inclusion of the new compartment, N(t) in our Z-controlled system helps to identify the differences between the
isolation of susceptible individuals by using protecting masks, bed net, vaccine, etc. and the isolation of individuals through
migration. In the new Z-control model (SIN) the preventive measure (spatial isolation/removal of a portion of susceptible
population) can be incorporated more accurately. After introduction of the compartment N(t), we obtain an upper bound
of the desired prevalence Id for which the biological feasibility of the equilibrium is preserved. If we wish to achieve a
desired infected abundance below the threshold value then the Z-control method can be applied successfully. However,
if the desired infected state is greater than that threshold, then the Z-control method will not work (will not preserve the
positivity of the solution trajectories of the controlled system).

Theorem 2. The unique equilibrium point Ec = (Sc, Ic,Nc) of the Z-controlled system (4.5) is locally asymptotically stable.

Proof. The Jacobian matrix at the interior equilibrium point Ec = (Sc, Ic,Nc) of the Z-controlled system (4.5) is

J(Ec) =

[a11 a12 0
a21 a22 0
a31 a32 −µ

]
,

where a11 = −2λ +
µId
a+Id

, a12 =
2aµλId+2µλI2d−µ2I2d−λ2(a+Id)2

βId(a+Id)
, a21 =

βId
a+Id

, a22 =
aµ
a+Id

− µ, a31 = −
βId
a+Id

− µ + 2λ −
µId
a+Id

,

a32 =
aµ
a+Id

−
2aµλId+2µλI2d−µ2I2d−λ2(a+Id)2

βId(a+Id)
.

The corresponding characteristic equation is

(−µ − x)(x2 − (a11 + a22)x + a11a22 − a21a12) = 0,

It is to be noted that −µ(< 0) is turned out to be an eigenvalue of the Jacobian matrix. The condition for the negativity
(negative or negative real part) of the remaining eigenvalues is (a11 + a22) < 0 and a11a22 − a21a12 > 0. On simplifying,
we get

(a11 + a22) = −2λ < 0 and a11a22 − a21a12 = λ2 > 0.

Therefore, the equilibrium Ec = (Sc, Ic,Nc) of Z-controlled system is locally asymptotically stable. □

4.2. Positiveness of the solution

We have the following analytical expression of I(t) by solving (4.4),

I(t) = Id + c1e−λt
− (c2 − λc1)te−λt (4.7)

where,

c1 = I(0) − Id, c2 = I(0)(µ −
βS(0)
a+I(0) ). (4.8)

To study the positivity of infected population, I(t), we present the following theorems.

Theorem 3. Suppose the desired infected state Id(t) = Id is positive for all t ≥ 0. If the inequality: (µ −
βS(0)
a+I(0) ) ≤ 0 or

λ ≥ (µ −
βS(0)
a+I(0) ) > 0 holds then I(t) ≥ 0, ∀t ≥ 0.

Proof. From Eq. (4.7) it is clear that I(t) > 0, if

Id(t) > (c2 − λc1)t − c1.
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Let us consider X(t) = Ideλt and Y (t) = (c2 − λc1)t − c1. Consequently, if the slope of Y (t) is less than the value of the
derivative Ẋ(0) = λId, i.e.

c2 − λc1 − λId = c2 − λI(0) ≤ 0. (4.9)

Then the above inequality holds true for t ≥ 0 and I(t) is strictly positive for all t ≥ 0. From Eq. (4.8), it is clear that if
(µ −

βS(0)
a+I(0) ) < 0, then c2 ≤ 0. Also the inequality (4.9) holds for all λ > 0. Again, if the condition: (µ −

βS(0)
a+I(0) ) > 0 holds

then the inequality (4.9) is satisfied provided λ ≥ (µ −
βS(0)
a+I(0) ). □

Theorem 4. Suppose Id > 0 and (µ −
βS(0)
a+I(0) ) > 0. If 0 < λT ≤ λ < (µ −

βS(0)
a+I(0) ), λT satisfy the following equation

log( c2−λT c1
λT Id

) −
c2

c2−λT c1
= 0, then I(t) ≥ 0, ∀t ≥ 0.

Proof. We consider a positive time T such that Ẋ(T ) = Ẏ (T ). For λ < (µ −
βS(0)
a+I(0) ), the inequality ( c2−λc1

λT Id
) > 1 can be

easily verified. Therefore, the time T =
1
λ
log( c2−λc1

λId
) is positive if ( c2−λc1

λId
) > 1, i.e. λ < (µ −

βS(0)
a+I(0) ). Now we want to keep

the function X(t) above the straight line Y (t), for all t > 0. This can be done by decreasing the value of λ until the value
λT which represents the case when Y (t) overlaps the tangent line to X(t) at T where X(T ) = Y (T ). In such a case, the
value of λT satisfies the equation

log(
c2 − λT c1

λT Id
) −

c2
c2 − λT c1

= 0. □

Theorem 5. Suppose I(0), Id ∈ [A, B] ⊂ R+ and

λ >
I(0)(µ−

βS(0)
a+I(0) )

I(0)−A , if (µ −
βS(0)
a+I(0) ) > 0

λ > −
I(0)(µ−

βS(0)
a+I(0) )

B−I(0) , if (µ −
βS(0)
a+I(0) ) < 0

then I(t) ∈ [A, B] for all t ≥ 0.

Proof. Let XA(t) = (Id−A)eλt , XB(t) = (Id−B)eλt , and Y (t) = (c2−λc1)t−c1. For the assurance of the fact that I(t) ∈ (A, B),
we should verify the following condition:

XA(t) < Y (t) < XB(t), for all t ≥ 0. (4.10)

Following the procedure described in Theorem 3, we have

XB(0) = Id − B < Id − I(0) = Y (0) < Id − A = XA(0).

In order to satisfy Eq. (4.10), it should be verified that the slop of Y (t) is bounded, having the upper bound and lower
bound as ẊB(0) = λ(Id − B), and ẊA(0) = λ(Id − A) respectively. That means the slop of Y (t) is bounded if the following
two conditions are satisfied:

c2 − λ(c1 + Id − A) = c2 − λ(I(0) − A) < 0, (4.11)

λ(c1 + Id − B) − c2 = −c2 − λ(B − I(0)) < 0. (4.12)

It can be observed that if c2 < 0, then the condition (4.11) holds true. On the other hand, if c2 > 0, then we have
λ >

c2
I(0)−A . In a similar manner, the condition (4.12) holds if c2 > 0 and λ >

c2
B−I(0) if c2 < 0. Hence, we can get bound for

λ according to the sign of c2. □

Theorem 6. Suppose I(0), Id ∈ [A, B] ⊂ R+ and

λTA ≤ λ <
I(0)(µ−

βS(0)
a+I(0) )

I(0)−A , if (µ −
βS(0)
a+I(0) ) > 0

λTB ≤ λ < −
I(0)(µ−

βS(0)
a+I(0) )

B−I(0) , if (µ −
βS(0)
a+I(0) ) < 0

where λTA and λTB satisfy the equations

log(
c2−λTA c1
λTA (Id−A) ) −

c2
c2−λTA c1

= 0 (4.13)

log(
c2−λTB c1
λTB (Id−B) ) −

c2
c2−λTB c1

= 0 (4.14)

with TA, TB ≥ 0 satisfying
(Id − A)eλTA TA = −c1 + (c2 − λTAc1)TA
(Id − A)eλTB TB = −c1 + (c2 − λTBc1)TB
then I(t) ∈ [A, B] for all t ≥ 0.
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Proof. We first consider the case (µ −
βS1(0)
a+I1(0)

) > 0. For the values of λ >
I(0)(µ−

βS(0)
a+I(0) )

I(0)−A , there exists a positive time TA
where ẊA(TA) = Ẏ (TA). This gives TA =

1
λ
log( c2−λc1

λ(Id−A) ).
Similarly, in case of (µ −

βS(0)
a+I(0) ) < 0, there exists a positive time TB, where

TB =
1
λ
log(

c2 − λc1
λ(Id − B)

) for λ < −
I(0)(µ−

βS(0)
a+I(0) )

I(0)−A .

Now we want to keep the function XA(t) and XB(t) above and below the straight line Y (t), for all t > 0. This can be done
by decreasing the value of λ until Y (t) overlaps the tangent line to XB(t) and XA(t) at TB and TA where XA(TA) = Y (TA) and
XB(TB) = Y (TB). In such a case, the value of λTA and λTB satisfy the following equations:
log(

c2−λTA c1
λTA (Id−A) ) −

c2
c2−λTA c1

= 0
and
log(

c2−λTB c1
λTB (Id−B) ) −

c2
c2−λTB c1

= 0. □

Theorem 7. Consider S(0), I(0),N(0) > 0 and let
(i) I(0) > Id > 0
(ii) (µ −

βS(0)
a+I(0) ) > 0

(iii) λ > (µ −
βS(0)
a+I(0) )

(iv) βS(0)I(0)
a+I(0) − µId > 0 and (λ − µ)[I(0)(µ −

βS(0)
a+I(0) ) − λ(I(0) − Id)] > 0.

Then S(t) ≥ 0, I(t) > 0 for all t ≥ 0.

Proof. By considering the assumptions of this theorem and also from Theorem 3, it follows that I(t) > 0 for all t ≥ 0.
From the Z-controlled system (4.1), the susceptible population S(t) can be expressed as follows

S(t) =
a + I

β
(
İ
I

+ µ).

By using Eq. (4.7) in the above expression, we obtain

S(t) =
a + I

β
(
(λ − µ)(c2 − λc1)t + c1µ − c2 + Ideλtµ

Ideλt + c1 − (c2 − λc1)t
).

Since I(t) > 0, we see that the denominator of the above expression is positive. The sufficient conditions for the numerator
be positive are

c1µ − c2 > 0 and (λ − µ)(c2 − λc1) > 0.

After simplification we have the following conditions for positiveness of S(t):

(µ −
βS(0)

a + I(0)
) > 0 and (λ − µ)[I(0)(µ −

βS(0)
a+I(0) ) − λ(I(0) − Id)] > 0. □

From Eq. (4.5), we get
dN
dt + µN = ΛN + Λ −

βSI
a+I − µS +

aS
a+I (

βS
a+I − µ)

−
(a+I)
βI

[
(µ − 2λ)( βSI

a+I − µI) − λ2(I − Id)

]
.

(4.15)

Substituting S(t) by a+I
β

( İI + µ) in Eq. (4.15) we have:

dN
dt + µN = ΛN + Λ +

a+I
βI

[
(λ − µ)2I − λ2Id

]

+
(İ+µI)
βI2

[
a(İ + µI) + 2a(λ − µ)I + 2(λ − µ)I2 − aµI − βI2

]
.

Solving the above linear differential equation in N , we get

N(t) =
ΛN+Λ

µ
+ e−µt

∫ [
eµτ a+I

βI(τ )

[
(λ − µ)2I(τ ) − λ2Id

]
+

( ˙I(τ )+µI(τ ))
βI2(τ )

[
a( ˙I(τ ) + µI(τ )) + 2a(λ − µ)I(τ )

+ 2(λ − µ)I2(τ ) − aµI(τ ) − βI2(τ )
]]

dτ .

(4.16)
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Fig. 1. Temporal variation of each compartment of the system (4.1). The desired number of infected population is fixed as Id = 10. The other
parameters are µ = 0.001, β = 0.0001, Λ = 1.5, ΛN = 1, a = 100, λ = 0.00125 and the corresponding basic reproduction number (R0) is 1.5. The
dashed line indicates the trajectory of the uncontrolled system and the solid line represents the trajectory of the controlled system. The temporal
variation of u(t) for the time intervals [0,760] (A) and [761,4656] (B) are presented separately.

Regarding the positivity of the compartment N(t), we do not find any simple parametric condition for which N(t) remains
positive for all t ≥ 0. However, in Section 5, the positivity of N(t) is verified numerically for a given set of parameter
values.

5. Results

In this section extensive numerical simulations are performed to demonstrate the impact of population
removal/recruitment and its effectiveness through Z-control mechanism by considering several situations like: (i)
achieving a predetermined disease prevalence, (ii) disease eradication, (iii) biological feasibility of Z-control method, (iv)
sensitivity between control parameter and other model parameters, (v) quantification of control parameter for different
levels of disease endemicity.

5.1. Achievement of a targeted disease prevalence

We investigate the disease dynamics and also the temporal variation of the control u(t) when a predefined disease
prevalence Id is targeted. For example, we consider an epidemic situation (R0 = 1.5) with the initial populations
(S, I,N) = (1000, 50, 1000). In such a situation, we fix Id = 10 and simulate the system (4.5) along with the update
parameter u(t) given in Eq. (4.3) using the in-built function ode45 in MATLAB (Mathworks, R2014a). From Fig. 1, it
is observed that by applying Z-control, the system (4.5) approaches towards the controlled equilibrium (Sc, Ic,Nc) =

(1100, 10, 1390). The control parameter u(t) assumes positive values throughout the specified time interval (see Fig. 1).
Positive value of u(t) indicates the removal of susceptible population from infected region to the infection-free region
which is indeed practically feasible. Fig. 1 shows that removal of susceptible population from infected region to infection-
free region can effectively achieve the targeted disease prevalence. Initially, 0.14% susceptible population should be
removed and the percentage of removal increases from 0.14% to 0.16% between the time interval [0, 760]. In the
subsequent time interval ([761, 4656]), the rate of removal decreases and achieve the desired infected population. It is to
be noted that 0.04% population should be removed to maintain the targeted disease prevalence (see Fig. 1).
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Fig. 2. Temporal variation of each compartment of the system (4.1). The desired state is fixed as Id = 0. The other parameters are same as given
in Fig. 1. The dashed line indicates the trajectory of the uncontrolled system and the solid line represents the trajectory of the controlled system.

5.2. Disease eradication

We analyse the possibility of the eradication of disease in the infected region through the removal of susceptible
population. For the case of disease eradication we set Id = 0 in system (4.5) with the initial condition (S, I,N) =

(1000, 50, 1000). We see from the Fig. 2 that the system (4.5) asymptotically converges to the controlled equilibrium
(Sc, Ic,Nc) = (1000, 0, 1500). This implies that the disease eradication is possible by removing the susceptible population
from the infected region to an infection-free region. Similar to the case described earlier, the removal rate gradually
increases at the initial time period and attains the maximum value 0.3 and in the subsequent time it decreases and
converges to zero (see Fig. 2). It is observed that in order to eradicate the disease stronger control effort (u(t)) is required.
It is to be noted that, once the infected population become zero, in the subsequent time there is no requirement of removal
of susceptible population to maintain the disease free state.

5.3. Biological feasibility of Z-control method

It is already proved in Theorem 1 that Z-control method drives the system to the desired state for any positive initial
condition. However, this control method sometimes fails to capture the biological feasibility though the desired state is
achieved analytically [32,36]. Depending on the initial conditions one or more state variables of the controlled system
may traverse through negative values while approaching to the desired state, which is unrealistic from biological point
of view. In Fig. 3 it is shown that all the state variables remain positive while approaching to the controlled equilibrium
(Sc, Ic,Nc) = (1000, 0, 1500) for the initial condition (900, 40, 1000).

On the other hand, Fig. 4 shows that for a different initial condition (400, 90, 1200), the susceptible population becomes
negative in the transient period while approaching to the desired equilibrium (Sc, Ic,Nc) = (1000, 0, 1500).

We further demonstrate the role of the design parameter λ in determining the range of initial conditions for which
the Z-controlled system approaches the desired equilibrium maintaining the biological feasibility. In Fig. 5, the basins
of attraction for the controlled equilibrium (Sc, Ic,Nc) = (1000, 0, 1500) are plotted in S − I plane for increasing
values of the design parameter λ. From Fig. 5, it is observed that the basin of attraction for analytically as well as
biologically successful Z-control approach (i.e. the blue region) expands when the design parameter λ is increased (i.e
for λ = 0.0003; 0.0004; 0.0006) up to a threshold value λ∗. If the value of λ exceeds the threshold value then the basin
of attraction for successful Z-control approach gradually squeezes (i.e for λ = 0.00125; 0.0013). Finally the basin of
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Fig. 3. Time series of all the compartments of the system (4.5). All the state variables assume non-negative values throughout the specified time
interval. The desired state is fixed as Id = 0. The other parameters are same as in Fig. 1. The initial conditions are taken as (900, 40, 1000). All the
other parameters are fixed as in Fig. 1.

Fig. 4. Time series of all the compartments of the system (4.5) with initial conditions (400, 90, 1200). The desired state is fixed as Id = 0. The
susceptible population becomes negative for some time interval. All the other parameters are fixed as in Fig. 1.

attraction completely disappears when the value of λ is increased further (i.e for λ = 0.0015). Therefore, to make the
Z-control successful for a broader range of initial conditions, an intermediate value of the design parameter λ should be
chosen. Similar kind of observation has also been reported by Lacitignola et al. [36] in the context of epidemic model.

5.4. Sensitivity analysis

From the expression of u(t) in (4.3), it is clear that the control parameter u(t) depends on several model parameters and
also the design parameter of the Z-control system. Sensitivity analysis is performed to measure the contribution of input
parameters in the uncertainty of the output parameter [43]. Several techniques for performing sensitivity analysis are
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Fig. 5. Basins of attraction of the Z-controlled equilibrium point (Sc , Ic .Nc ) = (1000, 0, 1500) for increasing values of the design parameter λ:
λ = 0.0003; 0.0004; 0.0006; 0.00125; 0.0013; 0.0015 respectively. The blue region denotes the set of all initial conditions for which the Z-control is
successful and all the corresponding trajectories always preserve the positiveness while approaching the Z-controlled equilibrium. The black region
represents the set of all initial conditions for which the Z-control fails to achieve the desired equilibrium. The red region represents the set of all
initial conditions for which the Z-control is successful but fails to preserve the positiveness of the trajectories. All the other parameters are same as
in Fig. 1.

available. Here we adopt partial rank correlation coefficients (PRCC), a sample based approach to quantify the sensitivity
between u(t) and the model parameters. A correlation coefficient between the input xi(i = 1, 2, . . . ,M) and output y is
defined by,

ρxi,y =

∑N
k=1(xik − x̄)(yk − ȳ)√∑N

k=1(xik − x̄)2
∑N

k=1(yk − ȳ)2
.

The correlation coefficient ρxi,y lies between −1 and +1. If the data xi and y are rank transformed then the partial rank
correlation coefficient (PRCC) between xi and y is measured as the correlation coefficient between the residuals (xi − x̂i)
and (y− ŷ), where x̂i and ŷ follow some linear regression models [44]. By calculating PRCC, one can identify the influential
parameters and investigate how they are correlated with the output.
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Fig. 6. Temporal variation of PRCC of control profile u(t) with respect to different parameters.

We consider u(t) as output and evaluate PRCC by taking all the model parameters and design parameter as input. Since
u(t) is a dynamic quantity, we calculate the PRCC over the time period [0, 15000] to get insights on how the correlations
between u(t) and other parameters vary over time.

To perform sensitivity analysis, we adopt Latin Hypercube Sampling (LHS) technique to generate samples for each
input parameter [44]. For each parameter 1000 samples are drawn from uniform distribution from a biologically relevant
interval. The dynamics of the PRCC values between u(t) and the input parameters are depicted in Fig. 6. The temporal
variations of the PRCCs are represented in three time intervals: (i) at initial time interval, (ii) the time interval when
transitions occur and (iii) the time interval when system stabilizes (see Fig. 6). It is noted that u(t) and the natural
death rate µ are negatively correlated at the beginning and become positively correlated in the transition time and
subsequently the correlation becomes negative. The transmission rate is positively correlated with u(t) throughout the
time interval and specifically during the stabilization period the correlation becomes very high. Increase in transmission
rate implies higher disease incidence therefore in higher endemicity situation the rate of removal (u(t)) should be higher
to achieve the targeted disease state. This might be a possible reason for this positive correlation between β and u(t).
The design parameter λ is positively correlated with u(t) initially and the correlation becomes negative during transient
period and ultimately becomes uncorrelated as the system stabilizes. The recruitment rate of susceptible population in
the infected region is always positively correlated with u(t). Since recruitment of susceptible increases the possibility of
disease incidence and therefore the removal rate should be kept high to maintain a specified disease state. However the
recruitment rate of susceptible in the infection free region does not possess any correlation with u(t). This observation is
quite obvious since the rate of susceptible removal from infected region should not be dependent on howmuch population
is recruited in the infection free region. The parameter a is negatively correlated and the correlation becomes highly
negative when the system has achieved the desired state.

5.5. Quantification of removal rate in different levels of endemicity

From Figs. 1 and 2 we can see that in order to achieve a desired prevalence the removal rate (u(t)) initially increases
and attains the maximum value and in the subsequent time u(t) gradually decreases and asymptotically approaches to a
fixed value when the desired state of the infected population is achieved. Here we quantify the maximum value of u(t)
(see Fig. 7(A)) and the final value of u(t) (see Fig. 7(B)) while achieving the desired infected density. We vary the force of
infection and compute the basic reproduction number (R0) of the uncontrolled system which indicates the endemicity of
the current epidemic. Then we vary the density of the targeted infected density and calculate the percentage of change
among infected population and also note down the maximum value of update parameter u(t) and the end value of the
update parameter when the Z-control is successful. The percentage of reduction in infection (i.e. relative cases reduction)
for a successful implementation of Z-controller can be more informative than that of absolute value of reduction in
infection. Now we use contour plot of the maximum value of u(t) and the end value of u(t). In X-axis we vary the target
i.e. percentage of reduction in infected density and in Y -axis we vary the R0 (i.e. endemicity/infectiousness). This picture
can give a better idea for application of Z-control method in various endemic situations (for different disease transmission
rate) with different targets such as controlling up to a desired/predetermined disease prevalence. From Fig. 7(A) it is
seen that if the required percentage of infection reduction increases then the maximum value of the removal rate (u(t))
increases quite expectedly to achieve the desired disease prevalence. In particular, say forR0 = 5 to achieve up to 40% case
reduction maximum 0.05% susceptible population should be removed (see Fig. 7(A)). Further it is observed that to reduce
80% infection, maximum 0.25% susceptible population should be removed. It is also noted that to achieve comparatively
low cases reduction say up to 30%, in different levels of endemicity (i.e. for different values of R0), the maximum value
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Fig. 7. (A) The colour bar represents the maximum value of the rate of removal (u(t)) during the whole time interval for achieving particular
relative cases reduction for different values of R0 . The value of R0 is obtained by varying the transmission rate β . (B) The colour bar represents
the stabilized value of u(t) after achieving particular relative cases reduction for different values of R0 .

of the removal rate does not vary much. On the other hand, from Fig. 7(B) we observe that for a particular value of R0,
if the required percentage of infected cases reduction increases then the end value of u(t) also increases. Similar to the
case of maximum value of u(t) to achieve comparatively low cases reduction for different values of R0, a little variation
in the end value of the removal rate is observed.

6. Conclusion

Implementation of different efficient and novel control strategies becomes essential to curb the rapid invasion of
infectious diseases. Depending on the mode of transmission of the disease, the corresponding control strategies are
designed to reduce the current disease prevalence as well as to restrain future outbreaks. Different mathematical and
computational approaches have been employed by the researchers to capture the disease transmission scenario more
realistically and also assess the impact of applying control strategies in lowering the disease prevalence.

In this study, we considered the isolation of a suitable portion of susceptible population as a control strategy to achieve
a pre-determined disease prevalence. Isolation of susceptible population essentially reduces the contacts between infected
and susceptible and consequently slows down the disease transmission process. Effective contacts between susceptible
and infected can be lowered by the usage of suitable prevention measures such as use of masks, vaccination, hand-
washing, etc. Lacitignola et al. [36] have referred the above mentioned prevention measures as extrinsic controls in a
Z-type controlled system. However, in our study we have considered the spatial isolation of susceptible population, i.e., the
removal of susceptible population from the infected region to a neighbouring infection-free region is considered as the
prevention measure. We considered that a portion of susceptible population is removed from the region of infection
which resulted lower contacts between susceptible and infected individuals. In the context of epidemic outbreak, our
study considered a different kind of control measure on susceptible population and analysed various epidemiological
queries using Z-control method.

Our analysis showed that removal of susceptible population from infected region to the infection free region can
effectively achieve the predetermined disease prevalence. It has also been shown that the Z-control approach can be
applied for the elimination of the disease. Moreover, introduction of a new compartment in our Z-controlled system not
only captures the whereabouts of the removed susceptible population but also provides an upper bound of the desired
prevalence for which the biological feasibility of the equilibrium is preserved for the controlled system. Therefore, if the
desired infected abundance is below a threshold value, then the Z-control method can be applied successfully, otherwise
Z-control method will fail to achieve the target.

We have demonstrated that the violation of biological feasibility of the solution of the controlled system may be
observed due to the change in the initial conditions. Further numerical investigation suggested that intermediate value
of the design parameter λ should be chosen to have a broader set of biologically feasible basin of attraction.

Sensitivity analysis between the removal rate and other parameters provides the clue that how different epidemio-
logical and demographic factors influence the removal rate of the susceptible population which might help the policy
makers and public health authorities in designing the control measures. Our study also provides the insights on the rate
of removal to achieve a particular percentage of reduction in infected population for different levels of disease endemicity.
This quantified removal rate serves as essential information about the portion of susceptible population should be removed
to an infection free region to lower or even eliminate the disease.

The indirect Z-control approach can be successfully applied in severe disease outbreak situations. Since it is not always
manageable to provide medicines or vaccines in disease outbreak, the removal of susceptible population to safe region
might be beneficial in such a situation. The control mechanism described in our study can be applied not only to the fatal
human diseases like Ebola, MERS CoV, etc. but also to the diseases which infect animals, birds, fishes, etc. Therefore, we
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believe that the application of Z-control mechanism to disease dynamics can provide fruitful insights in designing suitable
disease control strategy.
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