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a b s t r a c t 

The outbreak of COVID-19 caused by SARS-CoV-2 is spreading rapidly around the world, which is causing 

a major public health concerns. The outbreaks started in India on March 2, 2020. As of April 30, 2020, 

34,864 confirmed cases and 1154 deaths are reported in India and more than 30,90,445 confirmed cases 

and 2,17,769 deaths are reported worldwide. Mathematical models may help to explore the transmission 

dynamics, prediction and control of COVID-19 in the absence of an appropriate medication or vaccine. 

In this study, we consider a mathematical model on COVID-19 transmission with the imperfect lock- 

down effect. The basic reproduction number, R 0 , is calculated using the next generation matrix method. 

The system has a disease-free equilibrium (DFE) which is locally asymptotically stable whenever R 0 < 1. 

Moreover, the model exhibits the backward bifurcation phenomenon, where the stable DFE coexists with 

a stable endemic equilibrium when R 0 < 1. The epidemiological implications of this phenomenon is that 

the classical epidemiological requirement of making R 0 less than unity is only a necessary, but not suffi- 

cient for effectively controlling the spread of COVID-19 outbreak. It is observed that the system undergoes 

backward bifurcation which is a new observation for COVID-19 disease transmission model. We also no- 

ticed that under the perfect lockdown scenario, there is no possibility of having backward bifurcation. 

Using Lyapunov function theory and LaSalle Invariance Principle, the DFE is shown globally asymptoti- 

cally stable for perfect lockdown model. We have calibrated our proposed model parameters to fit daily 

data from India, Mexico, South Africa and Argentina. We have provided a short-term prediction for In- 

dia, Mexico, South Africa and Argentina of future cases of COVID-19. We calculate the basic reproduction 

number from the estimated parameters. We further assess the impact of lockdown during the outbreak. 

Furthermore, we find that effective lockdown is very necessary to reduce the burden of diseases. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

An outbreak of 2019 coronavirus disease (COVID-19) has re-

ulted in 30,90,445 confirmed cases and 2,17,769 deaths as of April

0, 2020 according to WHO [1] . The outbreak was first taken

lace in Wuhan, China, in December 2019, with the majority of

arly cases reported in the city. Coronaviruses are single-stranded,

ositive-sense RNA viruses belonging to the Coronaviridae family

2] . It has been confirmed that 27 people have been infected due

o viral pneumonia, including seven critically ill cases [3] , and this

pidemic has drawn tremendous attention worldwide. It causes

ariety of symptoms, including dry cough, fever, weakness, trou-

le breathing, and bilateral lung infiltration, close to those caused

y SARS-CoV and MERS-CoV infections [4,5] . Severe outbreaks oc-

ur in so many countries and the disease continues to spread
∗ Corresponding author. 
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orldwide [1] . On 11 March 2020, WHO declared Novel Coron-

virus Disease (COVID-19) outbreak as a pandemic. SARS-CoV-2 is

trongly associated with two serious, bat-derived acute respiratory

yndrome-like coronaviruses. It is transmitted through human-to-

uman transmission through droplets or through direct contact

6,7] . On January 30, 2020, after H1N1 (2009), polio (2014), Ebola

n West Africa (2014), Zika (2016), and Ebola in the Democratic Re-

ublic of Congo (2019), the WHO announced the COVID-19 epi-

emic to be the sixth public health emergency of international

oncern. Since the first discovery and identification of coronavirus

n 1965, there are three major outbreaks occurred due to coro-

aviruses and the outbreak was called ‘Severe Acute Respiratory

yndrome’ (SARS) outbreak (2003) in China [8] . Saudi Arabia suf-

ered from ‘Middle East Respiratory Syndrome’ (MERS) outbreak

2012) [9] and South Korea (2015) [10] . 

The Indian government reported that on 30 January 2020 in the

tate of Kerala, India’s first case of Coronavirus disease 2019, when

 Wuhan university student traveled back to the state [11] . On 24

https://doi.org/10.1016/j.chaos.2020.110163
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March, the Government of India ordered a 21-day nationwide lock-

down restricting the movement of India’s entire 1.3 billion popula-

tion as a preventive measure against India’s 2020 coronavirus pan-

demic. The lockdown was imposed when approximately 500 con-

firmed positive coronavirus cases were reported in India. As the

end of the lockdown period reached, it recommended an extension

of the lockdown by state governments and other advisory commit-

tees. On 14 April 2020, Prime Minister extended the nationwide

lockdown to May 3, with a conditional relaxation after April 20,

for those regions where the spread was contained. In addition to

the lock-down, India’s Ministry of Health and Family Welfare (MO-

HFW) has introduced various individual hygiene steps such as free-

quent hand washing, social distancing, mask use, avoiding touching

eyes, nose, or mouth, etc [12] . COVID-19 is an effectively spread-

ing pandemic across the world and an unprecedented threat to

the community’s health care, economy and lifestyle. For all, there

is a huge worry as to how long this condition can continue and

whether the epidemic can be handled. 

We also study the cases of Mexico, South Africa and Argentina

as the lockdown was carried out partially or in a less severe form

in these countries. In February 2020 the virus was confirmed to

reach Mexico. However, two cases of COVID-19 reported by the Na-

tional Council of Science and Technology (CONACYT) in the states

of Nayarit and Tabasco by mid-January 2020. A national lockdown

was announced in Mexico, starting on 23 March 2020. As of July

13, there had been 275,003 confirmed cases of COVID-19 in Mex-

ico and 32,796 reported deaths [13] . Health Ministery reported on

5 March 2020 that the virus spread to South Africa, with the first

patient being a male citizen who tested positively while returning

from Italy. On 23 March, a national lockdown was announced in

South Africa, starting on 26 March 2020. As of 9 July 2020, there

were 238,339 confirmed cases and 3720 people died. The virus had

been confirmed to have spread to Argentina on 3 March 2020. A

total of 90,693 people were confirmed to have been infected as

of 9 July 2020, and 1720 people were known to have died from

the virus. On 19 March in Argentina, a nationwide lockdown was

declared until 31 March. Later the government extended the lock-

down until mid-April, then June 28, 2020. 

Mathematical modeling based on differential equations may

provide a comprehensive mechanism for the dynamics of the dis-

ease and also to test the efficacy of the control strategies to re-

duce the burden of the disease. Several studies were performed us-

ing real-life data from the affected countries and analyzed various

features of the outbreak as well as assess the impact of interven-

tion such as lockdown approaches to suppress the outbreak in the

concerned countries [3,14–19] . There are also some mathematical

works investigating the effect of the lock-down on the dynamics

of COVID-19 transmission in India. 

Recently lockdown measure has been used successfully to con-

trol COVID-19 spread. The aim of this study is to investigate the

qualitative effect of the imperfect lockdown on the spread of dis-

ease dynamics. To achieve this goal, a mathematical model for

COVID-19 with the lockdown is proposed and analyzed. In this

model, we implemented the imperfect lockdown, which means

that the lockdown susceptible population also gets infected dur-

ing the lockdown period by unnotified infected individuals. We

looked at India’s situation during the outbreak period and fitted

our model with the newly daily cases reported from March 14 th ,

2020 to April 19 th , 2020. We also looked at the situation of Mex-

ico, South Africa and Argentina during the outbreak period and

fitted our model with the new daily cases reported for a certain

outbreak period. We are providing a short-term prediction for In-

dia, Mexico, South Africa and Argentina of future cases of COVID-19

using the estimated parameters for the period March 14, 2020, to

May 21, 2020, March 23, to July 9, March 17, to July 9, and March

14, to July 9, respectively. For the above-mentioned period we aslo
stimate the basic reproduction number. It is common for classi-

al epidemic models that a basic reproduction number is a thresh-

ld in the context that if the basic reproduction number is greater

han one, a disease will persist, and dies out if it is less than one.

n this case, for imperfect lockdown, the basic reproduction num-

er does not represent the required elimination effort; rather, the

ffort at the turning point is described by the value of the criti-

al parameter. Thus, to obtain thresholds for disease control it is

ecessary to identify backward bifurcations. However this back-

ard bifurcation phenomenon is not new in epidemic model. In

he past, the existence of a backward bifurcation and the condi-

ions for its emergence in epidemic models have been studied ex-

ensively. The problem of identifying the causes of backward bifur-

ation for the spread of some emerging and re-emerging diseases

tudied by A.B.Gumel in some standard deterministic models [20] .

arba et al. have been studying backward bifurcations in dynamics

f dengue transmission with imperfect vaccine [21] . There inves-

igation is the backward bifurcation phenomenon can be removed

y substituting the associated standard incidence function with a

ass action incidence. Influence of backward bifurcation on inter-

retation of reinfection in a model of epidemic tuberculosis stud-

ed by Singer et al. [22] . Backward bifurcation of a disease model

ith saturated treatment function was also studied [23] . Although

his is not a new phenomenon, it is new in the COVID model due

o imperfect nature of lockdown efficacy. The effect of lockdown on

he disease burden is also studied. The paper is organized as fol-

ows: Our proposed mathematical model which incorporates the

ockdown of susceptible individuals and imperfect lockdown effi-

acy is described in Section (2) . The model is analyzed specifi-

ally for the existence of backward bifurcation in Section (3) . In

ection (4) we fitted our model to daily new cases. We provided a

hort-term prediction for India, Mexico, South Africa and Argentina

f future cases of COVID-19 in the Section (5) . The impact of lock-

own and control strategies is studied in Section (6) . Finally in

ection (7) we discuss the results from our study. 

. Model formulation 

Mathematical models were previously identified for the spread

f infectious diseases [24,25] . We consider a compartmental deter-

inistic modeling approach to explain the mechanism for trans-

itting disease. We introduced a variant that incorporates some

f COVID-19 key epidemiological properties such as lockdown, iso-

ation, etc. The total human population denoted by N ( t ) is di-

ided into six mutually exclusive sub-populations of susceptible

uman S ( t ), lockdown population L ( t ), exposed individuals E ( t ), un-

otified infected individuals I ( t ), hospitalized or isolated individ-

als J ( t ) and recovered populations R ( t ), so that so that N(t) =
(t) + L (t) + E(t) + I(t) + J(t) + R (t) . The lockdown is nothing but

 percentage of the susceptible population that has been quaran-

ined at home for a certain period of time. The flow diagram of

he proposed model is shown in Fig. 1 . The susceptible individuals

s generated by recruiting people by birth or immigration into the

ommunity at a constant rate �. In this model, lockdown refers

o the separation of susceptible populations from the entire sus-

eptible populations during the lockdown phase, while hospital-

zation or isolation describes the separation of individuals infected

ith COVID-19 when the population is notified of symptomatic in-

ection. Here we consider 1 
ψ 

as a lockdown period, l is the lock-

own success rate. The population is reduced after infection, which

an be transmitted at a rate βI 
N−J (the force of infection of human)

hrough effective contact with an un-notified infected individu-

ls. We consider 0 < r < 1, the lockdown efficacy, 1 
γ as the incuba-

ion period. We assume the recovery rate of un-notified and hos-

italized individuals as τ and τ respectively. Our model incor-
1 2 
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Fig. 1. Flow diagram of the model (2.1) . 
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orates some demographic effects by assuming a disease-induced

eath rate δ of hospitalized individuals and natural death rate μ of

ach six sub-population. We develop the following compartmental

odel for COVID-19 outbreak based on these assumptions: 

dS 

dt 
= � + ψL − βSI 

N − J 
− (μ + l) S 

dL 

dt 
= lS − rβLI 

N − J 
− (μ + ψ) L, 

dE 

dt 
= 

βSI 

N − J 
+ 

rβLI 

N − J 
− (γ + μ) E, 

dI 

dt 
= γ E − (η + τ1 + μ) I, (2.1) 

dJ 

dt 
= ηI − (τ2 + δ + μ) J, 

dR 

dt 
= τ1 I + τ2 J − μR. 

All the parameters and their biological interpretation are given

n Table 1 respectively. 

. Mathematical analysis of model (2.1) 

.1. Positivity and boundedness of the solution for the model (2.1) 

Since the model (2.1) represent different human population, all

he variables of are nonnegative for all t ≥ 0. Let 

= 

{ 

(S, L, E, I, J, R ) ∈ R 

6 
+ | S + L + E + I + J + R ≤ �

μ

} 

We first claim the following result. 

heorem 3.1. Solutions of the model (2.1) with positive initial data

ill remain positive for all time t > 0 and the biologically feasible re-

ion 	 ∈ R 

6 + is positively invariant and globally attracting for system

2.1) . 

roof. The system (2.1) can be written as follows 

dx 

dt 
= f (x ) (3.1) 

here x = (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) = (S, L, E, I, J, R ) and f (x ) =
( f 1 (x ) , ., f 6 (x )) denotes the right hand side functions. It is

ery obvious that for every j = 1 , . . . , 6 , f j ( x ) ≥ 0 if x ∈ [0, ∞ ) 6 and

 j = 0 . Since the human populations, N(t) are positive, therefore

he right-hand side of (3.1) is locally Lipschitz in 	. So, by Theo-

em A.4 in [28] , model (2.1) has a unique solution in 	. Adding all

he equations of the model (2.1) , total human populations satisfy

he following equations, 

dN = � − μN − δJ ≤ � − μN 
dt 
ince dN 
dt 

≤ � − μN, it follows that dN 
dt 

≤ 0 if N ≥ �
μ . Thus, by us-

ng standard comparison theorem [29] , it can be shown that N ≤
(0) e −μt + 

�
μ (1 − e −μt ) . In particular, N(t) ≤ �

μ if N(0) ≤ �
μ . Thus,

he region 	 is positively-invariant. Further, if N(0) > 

�
μ , then

ither the solution enters 	 in finite time, or N ( t ) approaches
�
μ asymptotically. Hence, the region 	 attracts all solutions in

 + 6 . �

.2. Basic reproduction number and local stability of disease-free 

quilibrium (DFE) 

The basic reproduction number R 0 is a threshold value that is

pidemiologically significant and determines the potential of an in-

ectious disease to enter a population. To obtain the basic repro-

uction number R 0 of the system (2.1) , we apply the next gener-

tion matrix approach. The system has a disease-free equilibrium

iven by 

 0 = 

(
�(μ + ψ) 

μ(μ + ψ + l) 
, 

�l 

μ(μ + ψ + l) 
, 0 , 0 , 0 , 0 

)
. 

he infected compartments of the model (2.1) consist of ( E ( t ), I ( t ),

 ( t )) classes. Following the next generation matrix method, the ma-

rix F of the transmission terms and the matrix, V of the transition

erms calculated at ε0 are, 

F = 

⎛ 

⎝ 

0 

β(μ+ ψ+ rl) 
(μ+ ψ+ l) 0 

0 0 0 

0 0 0 

⎞ 

⎠ , 

 = 

( 

γ + μ 0 0 

−γ η + τ1 + μ 0 

0 −η τ2 + δ + μ

) 

. 

o, the next generation matrix F V −1 is, 

 V 

−1 = 

⎛ 

⎝ 

βγ (μ+ ψ+ rl) 
(μ+ γ )(η+ τ1 + μ)(μ+ ψ+ l) 

β(μ+ ψ+ rl) 
(η+ τ1 + μ)(μ+ ψ+ l) 0 

0 0 0 

0 0 0 

⎞ 

⎠ , 

alculating the dominant eigenvalue of the next generation ma-

rix F V −1 , we obtain the basic reproductive number as follows

30,31] 

 0 = 

βγ (μ + ψ + rl) 

(μ + γ )(η + τ1 + μ)(μ + ψ + l) 
(3.2) 

he basic reproduction number R 0 is defined as the expected num-

er of secondary cases generated by one infected individual during

ts lifespan as infectious in a fully susceptible population. The basic

eproduction number R 0 of (2.1) given in (3.2) . 

Using Theorem 2 in [31] , the following result is established. 

emma 3.1. The disease-free equilibrium ε0 of system (2.1) is locally

symptotically stable whenever R 0 < 1, and unstable whenever R 0 > 1 .

.3. Existence of endemic equilibrium 

We are now exploring the existence of endemic equilibrium.

et ε ∗ = (S ∗, L ∗, E ∗, I ∗, J ∗, R ∗) be any endemic equilibrium of system

2.1) . Let us denote 

 1 = μ + l, k 2 = μ + ψ, k 3 = γ + μ, k 4 = η + τ1 + μ, k 5 

= τ2 + δ + μ. 

urther, the force of infection be 

∗
h = 

βI ∗

N 

∗ − J ∗
(3.3) 
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By setting the right equations of system (2.1) equal to zero, we

have 

S ∗ = 

�(rλ∗
h 

+ k 2 )(λ
∗
h 

+ k 1 ) 

(λ∗
h 

+ k 1 )((rλ∗
h 

+ k 2 )(λ∗
h 

+ k 1 ) − lψ) 
, L ∗ = 

�l 

((rλ∗
h 

+ k 2 )(λ∗
h 

+ k 1 ) − lψ) 
, 

E ∗ = 

λ∗
h 
S ∗(rλ∗

h 
+ k 2 + rl) 

k 3 (rλ∗
h 

+ k 2 ) 
, I ∗ = 

λ∗
h 
S ∗γ (rλ∗

h 
+ k 2 + rl) 

k 3 k 4 (rλ∗
h 

+ k 2 ) 
, J ∗ = 

λ∗
h 
S ∗γ η(r λ∗

h 
+ k 2 + r l

k 3 k 4 k 5 (rλ∗
h 

+ k 2 ) 

R ∗ = 

λ∗
h 
S ∗(rλ∗

h 
+ k 2 + rl)(τ1 γ k 5 + τ2 + ηγ ) 

μk 3 k 4 k 5 (rλ∗
h 

+ k 2 ) 
(3.4)

Substituting the expression in (3.4) into (3.3) shows that the non-

zero equilibrium of the model (2.1) satisfy the following quadratic

equation, in terms of λ∗
h 
: 

Aλ∗2 
h + Bλ∗

h + C = 0 (3.5)

where 

A = r(μk 4 k 5 + μγ k 5 + μηγ + τ1 γ k 5 + τ2 ηγ ) 

B = μrk 3 k 4 k 5 + m (k 2 + r l) − βγμr k 5 (3.6)

 = μk 3 k 4 k 5 (k 2 + l)(1 − R 0 ) 

The endemic equilibrium of the model (2.1) can be obtained by

solving for λ∗
h 

from (3.5) , and substituting the values of λ∗
h 

into the

expressions in (3.4) . The quadratic Eq. (3.5) can be analyzed for the

possibility of multiple endemic equilibria when R 0 < 1. Note that

the coefficient A is always positive of the quadratic Eq. (3.5) and C

is positive or negative if R 0 is less or greater than unity. Hence, the

following result is established. 

Theorem 3.2. The model (2.1) has (i) a unique endemic equilibrium

if C < 0 iff R 0 > 1 ; 

(ii) a unique endemic equilibrium if (B < 0 and C = 0 ) or B 2 −
4 AC = 0 ; 

(iii) two endemic equilibria if C > 0, B < 0 and B 2 − 4 AC > 0 ; 

(iv) no endemic equilibrium otherwise. 

Therefore, it is obvious from Case (i) of Theorem (3.2) that the

model (2.1) has a unique EEP (of the form ε∗) whenever R 0 > 1. In

addition, Case (iii) of Theorem (3.2) implies the possibility of back-

ward bifurcation where stable DFE coexists with a stable endemic

equilibrium whenever the basic reproduction number R 0 is less

than unity. The epidemiological importance of the phenomenon

of backward bifurcation is that the classical requirement of hav-

ing R 0 < 1 is, although necessary, not sufficient for disease elimina-

tion. In this case the elimination of disease would depend on the

initial sizes of the model’s sub-populations. Thus, the occurrence

of backward bifurcation in the dynamics of a disease transmission

complicates its effective control. 

In order to check the possibility of backward bifurcation in (2.1) ,

the discriminant B 2 − 4 AC of the quadratic (3.5) , is set to zero and

the result solved for the critical value (denoted by R c 
0 
) of R 0 . This

gives: 

R 

c 
0 = 1 − B 

2 

4 Ak 3 k 4 (μ + ψ + l) 

from which we have seen that backward bifurcation occurs for val-

ues of R 0 such that R c 
0 

< R 0 < 1 . We explore the details analysis of

backward bifurcation in the next section. This phenomenon is illus-

trated numerically by simulation of the model (2.1) (See the Fig. 2 ).

3.4. Backward bifurcation analysis 

For disease transmission models, having the associated ba-

sic reproduction number, denoted by R 0 , less than unity is nec-

essary condition for disease control. However, this condition

may not always be sufficient for the backward bifurcation phe-

nomenon, where a stable endemic equilibrium co-exists with a sta-

ble disease-free equilibrium for R < 1. Clearly, this phenomenon
0 
as significant public health consequences, as it makes the classi-

al requirement of the associated basic reproduction number being

ess than unity to be necessary, but not sufficient to eradicate the

isease. 

In this section, we explore the phenomenon of backward bi-

urcation in system (2.1) . First, we execute bifurcation analysis by

sing the center manifold theorem [32] (see the Theorem Ap-

endix A.1 in Appendix A ). Let x = (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) 
T =

(S, L, E, I, J, R ) T . Thus, the model (2.1) can be re-written in the form
dx 
dt 

= f (x ) , with f (x ) = ( f 1 (x ) , f 6 (x )) , as follows: 

dx 1 
dt 

= f 1 = � + ψx 2 −
βx 1 x 4 

x 1 + x 2 + x 3 + x 4 + x 6 
− (μ + l) x 1 

dx 2 
dt 

= f 2 = lx 1 −
rβx 2 x 4 

x 1 + x 2 + x 3 + x 4 + x 6 
− (μ + ψ) x 2 , 

dx 3 
dt 

= f 3 = 

βx 1 x 4 
x 1 + x 2 + x 3 + x 4 + x 6 

+ 

rβx 2 x 4 
x 1 + x 2 + x 3 + x 4 + x 6 

− (γ + μ) x 3 , 

dx 4 
dt 

= f 4 = γ x 3 − (η + τ1 + μ) x 4 , (3.7)

dx 5 
dt 

= f 5 = ηx 4 − (τ2 + δ + μ) x 5 , 

dx 6 
dt 

= f 6 = τ1 x 4 + τ2 x 5 − μx 6 . 

he Jacobian of the system (3.7) at the DFE ε0 is given as, 

 ε 0 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−(μ + l) ψ 0 − β(μ+ ψ) 
(μ+ ψ+ l) 0 0 

l −(μ + ψ) 0 − rβ l 
(μ+ ψ+ l) 0 0 

0 0 −(γ + μ) β(μ+ ψ+ rl) 
(μ+ ψ+ l) 0 0 

0 0 γ −(η + τ1 + μ) 0 0 

0 0 0 η −(τ2 + δ + μ) 0 

0 0 0 τ1 τ2 −μ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

,

hoose β as the bifurcation parameter, then setting R 0 = 1 gives 

= β∗ = 

(μ + γ )(η + τ1 + μ)(μ + ψ + l) 

γ (μ + ψ + rl) 
(3.8)

he system (3.7) at the DFE ε0 evaluated for β = β∗ has a simple

igenvalue with zero real part, and all other eigenvalues have neg-

tive real part. We therefore apply the Center Manifold Theorem in

rder to analyze the dynamics of (3.7) near β = β∗. 

The Jacobian of (3.7) at β = β∗, denoted by J ε 0 | β = β∗ has a

ight eigenvector (corresponding to the zero eigenvalue) given by

 = (w 1 , w 2 , w 3 , w 4 , w 5 , w 6 ) 
T , where 

w 1 = −
(
μ

l 
w 2 + 

β(μ + ψ + rl) 

l(μ + ψ + l) 
w 4 

)
, w 2 = w 2 > 0 , 

w 3 = 

β(μ + ψ + rl) 

(μ + γ )(μ + ψ + l) 
w 4 , 
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Fig. 3. Transcritical bifurcation for the force of infection ( λ∗
h 
) of the model (2.1) . Us- 

ing the parameter values: ψ = 0 . 0 0 0246 , μ = 0 . 0049 , r = 0, γ = 0 . 0016 , η = 0 . 0159 , 

τ1 = 0 . 0101 , β= 0.5.905, τ2 = 0 . 0094 , δ = 0 . 0332 , l = 0.09. 
 4 > 0 , w 5 = 

η

τ2 + δ + μ
w 4 , 

w 6 = 

τ1 (τ2 + δ + μ) + τ2 η

μ(τ2 + δ + μ) 
w 4 . (3.9) 

Similarly, from J ε 0 | β = β∗, we obtain a left eigenvector v =
(v 1 , v 2 , v 3 , v 4 , v 5 , v 6 ) T (corresponding to the zero eigenvalue),

here 

 1 = 0 , v 2 = 0 , v 3 > 0 , v 4 = 

β(μ + ψ + rl) 

(μ + ψ + l)(η + τ1 + μ) 
v 3 , 

 5 = 0 , v 6 = 0 . (3.10) 

We calculate the following second order partial derivatives of f i 
t the disease-free equilibrium ε0 to show the existence of a back-

ard bifurcation and obtain 

∂ 2 f 3 
∂ x 4 ∂ x 1 

= 

(1 − r) lμβ

�(μ + ψ + l) 
, 

∂ 2 f 3 
∂ x 4 ∂ x 2 

= − (1 − r) μ(μ + ψ) β

�(μ + ψ + l) 
, 

∂ 2 f 3
∂ x 4 ∂ x

∂ 2 f 3 
∂ x 1 ∂ x 4 

= 

(1 − r) lμβ

�(μ + ψ + l) 
, 

∂ 2 f 3 
∂ x 2 ∂ x 4 

= − (1 − r)(μ + ψ) μβ

�(μ + ψ + l) 
, 

∂ 2 f 3
∂ x 3 ∂ x

∂ 2 f 3 
∂ x 4 ∂ x 4 

= −2(μ + ψ + rl) μβ

�(μ + ψ + l) 
, 

∂ 2 f 3 
∂ x 6 ∂ x 4 

= − (μ + ψ + rl) μβ

�(μ + ψ + l) 
, 

∂ 2

∂ x 4

Now we calculate the coefficients a and b defined in Theorem 4.1

32] of CastilloChavez and Song as follow 

 = 

6 ∑ 

k,i, j=1 

v k w i w j 

∂ 2 f k (0 , β∗) 
∂ x i ∂ x j 

= v 3 w 4 

[ 
r((μ + ψ) w 2 − l(w 1 + w 3 + w 4 + w 6 )) (3.12) 

− (μ + ψ)(w 2 + w 3 + w 4 + w 6 ) + lw 1 

] 
βμ

�(μ + ψ + l) 

nd 

 = 

6 ∑ 

k,i =1 

v k w i 

∂ 2 f k (0 , 0) 

∂ x i ∂ β
= v 3 v 4 

(μ + ψ + rl) 

(μ + ψ + l) 
> 0 . (3.13) 

Since the coefficient b is always positive, system (2.1) undergoes

ackward bifurcation at R 0 = 1 , if a > 0, namely if 

 > 

(μ + ψ)(w 2 + w 3 + w 4 + w 6 ) − lw 1 

(μ + ψ) w 2 − l(w 1 + w 3 + w 4 + w 6 ) 
(3.14) 

We have established the following conclusion. 

heorem 3.3. System (2.1) undergoes a backward bifurcation at R 0 =
 whenever the inequality (3.14) holds. 

Furthermore, it should be noted that for the case when lock-

own susceptible individuals do not acquire infection during lock-

own period (i.e., r = 0 ), the bifurcation coefficient a becomes 

 = −v 3 w 4 

[ 
(μ + ψ)(w 2 + w 3 + w 4 + w 6 ) − lw 1 

] 
βμ

�(μ + ψ + l) 
< 0 .

hus, since a < 0 in this case, it follows from Theorem 4.1 of

32] that the model (2.1) will not exhibit backward bifurcation if 

 = 0 . In other words, this study shows that the backward bifur-

ation property of the model (2.1) arises due to the infection of

ockdown susceptible individuals in lockdown period. This result is

onsistent with Theorem (3.4) (where it was shown that the DFE

f the model (2.1) with r = 0 is globally-asymptotically stable).This

esult is associated with theorem (3.4) , where DFE of the model
−μ(μ + ψ + rl) β

�(μ + ψ + l) 
, 

− (μ + ψ + rl) μβ

�(μ + ψ + l) 
, 

= −μ(μ + ψ + rl) β

�(μ + ψ + l) 
, (3.11) 

2.1) with r = 0 has been shown to be globally-asymptotically sta-

le. 

Since a < 0 and b > 0 at β = β∗, therefore using the Remark 1 of

he Theorem 4.1 stated in [32] , a transcritical bifurcation occurs at

 0 = 1 whenever r = 0 (See the Fig. 3 ). Hence, the following result

s established. 

emma 3.2. The unique endemic equilibrium ε∗ at r = 0 is locally

symptotically stable if R 0 > 1 . 

.4.1. Non-existence of backward bifurcation 

In this section we discussed in which the backward bifurca-

ion phenomenon of the model (2.1) can be lost. We consider

he model (2.1) with a perfect lockdown efficacy against infec-

ion (so that, r = 0 ). In this case, the coefficients A, B and C of

he quadratic Eq. (3.5) reduce to A = 0 , B > 0 and C ≥ 0 whenever

 

∗
0 

= R 0 | r=0 ≤ 1 . Thus, for this case, the quadratic Eq. (3.5) has one

olution ( λ∗
h 

= 

−C 
B ). Therefore, the model (2.1) with a perfect lock-

own has no positive endemic equilibrium whenever R 0 < 1. This

liminates the possibility of backward bifurcation in this case be-

ause backward bifurcation requires at least two endemic equilib-

iums whenever R ∗
0 

< 1 [21] . Also, it can be seen that in the case

here r = 0, the DFE ε0 of the model (2.1) is globally-asymptotically

table (GAS) under some certain conditions, as shown below. 

Setting r = 0 in the model (2.1) gives the following reduced

odel: 

dS 

dt 
= � + ψL − βSI 

N − J 
− (μ + l) S 

dL = lS − (μ + ψ) L, 
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Fig. 4. Model (2.1) fitting to newly daily notified COVID-19 cases in India, Mexico, South Africa and Argentina. Daily notified cases are depicted in black curve with circles 

and red curve is the solution of model (2.1) . Grey shaded region is the 95% confidence region. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 5. The short term predictions for India India, Mexico, South Africa and Argentina. Green dotted line indicates the starting day of lockdown and the red dotted line 

indicates the end of the lockdown period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Model (2.1) parameters with biological interpretations. 

Parameters Biological Meaning Value/Ranges Reference 

� Recruitment rate of human population Varies over different country - 

1/ μ Average life expectancy at birth Varies over different country [13] 

β Transmission rate of infected individuals (0 - 200) day −1 Estimated 

r Lockdown efficacy 0 - 1 Assumed 

1/ γ Incubation period for COVID-19 (1 - 14) days Estimated 

l Lockdown success rate 0–1 [16] 

η Rate at which Symptomatic infected become Hospitalized or Notified (0 - 1) day −1 Estimated 

δ Death rate of Hospitalized or Notified population Varies over different country [26] 

τ 1 Recovery rate for Symptomatic infected (0 - 1) day −1 Estimated 

1/ ψ Lockdown period Varies over different country [27] 

τ 2 Recovery rate for Hospitalized or Notified individuals Varies over different country [26] 

Table 2 

Estimated parameter values of the model (2.1) for the countries India, Mexico, 

South Africa and Argentina. All data are given in the format [ Mean(95% CI) ]. 

Country Estimated parameters Values (95% confidence interval) 

β 0.3904 (0.1973 - 0.6244) 

India γ 0.1555 (0.0833 - 0.2355) 

η 0.1632 (0.0395 - 0.2739) 

τ 1 0.0101 (0.0006 - 0.0108) 

β 0.9463 (0.8258 - 1.053) 

Mexico γ 0.7657 (0.7320 - 0.9702) 

η 0.0703 (0.0450 - 0.0710) 

τ 1 0.8101 (0.6976 - 0.9686) 

β 1.5025 (0.7539 - 2.0627) 

South Africa γ 0.0842 (0.0721 - 0.0864) 

η 0.1661 (0.1511 - 0.5323) 

τ 1 0.7221 (0.1250 - 0.7726) 

β 1.1080 (0.8324 - 1.2075) 

Argentina γ 0.1182 (0.1145 - 0.1952) 

η 0.0130 (0.0086 - 0.0162) 

τ 1 0.7006 (0.5621 - 0.8643) 

I  

r

R

T

T  

a

P

D

Table 4 

Model (2.1) parameters values for India, Mexico, South Africa and Ar- 

gentina. 

Country � μ δ τ 2 

India 4.878 × 10 4 3.8905 × 10 −5 0.0332 0.1649 

Mexico 4.183 × 10 3 3.6336 × 10 −5 0.1193 0.6102 

South Africa 2.170 × 10 3 4.2215 × 10 −5 0.0156 0.4744 

Argentina 1.257 × 10 3 3.5489 × 10 −5 0.0189 0.4145 

Table 5 

Estimated values of the basic reproduction number 

( R 0 ) for the countries India, Mexico, South Africa and 

Argentina. 

Country Basic Reproduction Number ( R 0 ) 

India 2.2519 

Mexico 1.0748 

South Africa 1.6907 

Argentina 1.5518 

D

S  

n  

f  
dE 

dt 
= 

βSI 

N − J 
− (γ + μ) E, 

dI 

dt 
= γ E − (η + τ1 + μ) I, (3.15) 

dJ 

dt 
= ηI − (τ2 + δ + μ) J, 

dR 

dt 
= τ1 I + τ2 J − μR. 

t can be shown that the reproduction number associated with the

educed model (3.15) , is given by 

 

∗
0 = R 0 | r=0 = 

βγ (μ + ψ) 

(μ + γ )(η + τ1 + μ)(μ + ψ + l) 

he model (3.15) has a DFE ε 01 = (S 1 , L 1 , 0 , 0 , 0 , 0) . 

heorem 3.4. The DFE ( ε01 ) of the reduced model (3.15) , is globally

symptotically stable in 	 whenever R ∗
0 

≤ θ < 1 , where θ = 

μ+ ψ 

μ+ ψ+ l . 

roof. Consider the following Lyapunov function 

 = 

(
γ k 2 

θk 3 (k 2 + l) 

)
E + 

(
k 2 

θ (k 2 + l) 

)
I 
Table 3 

Estimated initial values of the model (2.1) for the count

data are given in the format [ Mean(95% CI) ]. 

Country S(0) 

India 1228552474(1218445699 − 129410245

Mexico 115109620(1150 0 0170 − 115162299) 

South Africa 51403188(45208819 − 54881645) 

Argentina 35414537(35053817 −41633824) 
We take the Lyapunov derivative with respect to t , 

˙ 
 = 

(
γ k 2 

θk 3 (k 2 + l) 

)
˙ E + 

(
k 2 

θ (k 2 + l) 

)
˙ I 

= 

γ k 2 
θk 3 (k 2 + l) 

[ 
βSI 

N − J 
− k 3 E 

] 
+ 

k 2 
θ (k 2 + l) 

[ γ E − k 4 I] 

= 

βγ k 2 
θk 3 (k 2 + l) 

SI 

N − J 
− γ k 2 

θ (k 2 + l) 
E + 

k 2 γ

θ(k 2 + l) 
E − k 2 k 4 

θ (k 2 + l) 
I 

≤ βγ k 2 
θk 3 (k 2 + l) 

I − k 2 k 4 
θ (k 2 + l) 

I (Since S ≤ N − J in 	) 

= 

βγ k 2 
θk 3 k 4 (k 2 + l) 

k 4 I − k 4 I 

= k 4 

(
βγ k 2 

θk 3 k 4 (k 2 + l) 
− 1 

)
I 

= k 4 

(
R 

∗
0 

θ
− 1 

)
I ≤ 0 , whenever R 

∗
0 ≤ θ < 1 . 

ince all the variables and parameters of the model (2.1) are non-

egative, it follows that ˙ D ≤ 0 for R 0 ≤ θ with 

˙ D = 0 in diseases

ree equilibrium. Hence, D is a Lyapunov function on 	. Therefore,
ries India, Mexico, South Africa and Argentina. All 

E(0) I(0) 

9) 1566(1485 − 8297) 20(1 − 23) 

9398(7126 − 9577) 4859(2046 − 4736) 

224(26 − 1506) 1748(14 − 1770) 

1709(155 − 5501) 4601(62 − 4 94 9) 
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Table 6 

Normalized sensitivity indices of R 0 with respect to the model parameters for India, Mexico, 

South Africa and Argentina. 

Country β γ η τ 1 l r 

India 1.0000 2.55 × 10 −4 −0.9415 −0.0583 −0.3418 0.6094 

Mexico 1.0000 4.74 × 10 −5 −0.0790 −0.9201 −0.2360 0.7362 

South Africa 1.0000 5.01 × 10 −4 −0.1870 −0.8130 −0.3631 0.5827 

Argentina 1.0000 3.01 × 10 −4 −0.0182 −0.9817 −0.1795 0.8010 

Fig. 6. Effect of lockdown success rate l on basic reproduction number R 0 for India. 

 

S  

s

f

T

J

S

J

T

J

H

followed by LaSalles Invariance Principle [33] , that 

(E(t) , I(t)) → (0 , 0) as t → ∞ (3.16)
 t

Fig. 7. Normalized sensitivity indices of R 0 with respect to parameters of the model (2

values are taken from Tables 2 and 4 . 
ince lim 

t→∞ 

supI(t) = 0 (from (3.16) ), it follows that, for sufficiently

mall ε > 0, there exist constants M > 0 such that lim 

t→∞ 

supI(t) ≤ ε

or all t > M . 

Hence, it follows that, 

dJ 

dt 
≤ ηε − k 5 J 

herefore using comparison theorem [29] 

 

∞ = lim 

t→∞ 

supJ(t) ≤ ηε

k 5 

o as ε → 0, J ∞ = lim 

t→∞ 

supJ(t) ≤ 0 

Similarly by using lim 

t→∞ 

in f I(t) = 0 , it can be shown that 

 ∞ 

= lim 

t→∞ 

in f J(t) ≥ 0 

hus, it follows from above two relations 

 ∞ 

≥ 0 ≥ J ∞ 

ence lim 

t→∞ 

J(t) = 0 

Similarly, it can be shown that 

lim 

→∞ 

R (t) = 0 , lim 

t→∞ 

S(t) = 

�(μ + ψ) 

μ(μ + ψ + l) 
, lim 

t→∞ 

L (t) = 

�l 

μ(μ + ψ + l) 
, 
.1) for India(IND), Mexico(MEX), South Africa(SA) and Argentina(ARG). Parameter 
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Fig. 8. Contour plots of R 0 versus (a) lockdown period and transmission rate, (b) lockdown period and lockdown efficacy, (c) lockdown efficacy and lockdown success rate, 

(d) lockdown efficacy and the number of days spent in the infectious period until hospitalized for India. All parameter values are given in Tables 1 and 2 . 
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herefore by combining all above equations, it follows that each

olution of the model Eq. (2.1) , with initial conditions ∈ 	, ap-

roaches ε0 as t → ∞ for R ∗
0 

≤ θ < 1 . �

The above result shows that, for the case when the lockdown

fficacy in preventing infection is perfect (i.e., r = 0 ), the disease

an be eliminated from the community if the associated reproduc-

ion number of the model is less than unity. Furthermore, this re-

ult clearly shows that the backward bifurcation property of the

odel (2.1) is caused by the imperfect nature of the lockdown ef-

cacy to prevent infection. 

. Model calibration and COVID-19 data source 

Daily COVID-19 reported cases India for the time period March,

4 th 2020 to April, 19 th 2020, Mexico for the time period March,

6 th 2020 to July, 9 th 2020, South Africa for the time period

arch, 17 th 2020 to July, 9 th 2020 and Argentina for the time

eriod March, 14 th 2020 to July, 9 th 2020 are considered for our

tudy. Daily COVID-19 notified cases were collected from [26] for

ndia and from [13] for Mexico, South Africa and Argentina. We fit

he model (2.1) to daily new hospitalized cases of COVID for these

our countries. The notified cases are hospitalized immediately due

o the high transmissibility, and thus it is convenient to fit the hos-

italized cases to the reported data. We have mentioned the key

arameters of the model (2.1) that are estimated from the data in

able 1 . We estimate four unknown model parameters such as: (a)

he transmission rate of infected individuals ( β), (b) incubation pe-

iod ( 1 γ ), (c) rate at which symptomatic infected become hospital-

zed or notified ( η) and (d) recovery rate for symptomatic infected
 τ 1 ) by fitting the model to the newly daily reported cases. Some

nknown initial conditions of the model (2.1) also be emitimated

rom the data. During the specified time period, nonlinear least

quare solver fmincon is used to fit simulated newly daily data in

ATLAB reported by COVID-19 for India, Mexico, South Africa and

rgentina. We used Delayed Rejection Adaptive Metropolis algo-

ithm [34] to generate the 95% confidence region. An explanation

f this technique for model fitting is given in [35] . The estimated

arameters are given in Table 2 the estimated values of unknown

nitial conditions are given by Table 3 . The fitting of the daily

ew hospitalized COVID cases of this four country are displayed

n Fig. 4 . Using these estimated parameters from Table 2 and the

xed parameters from Table 4 , we calculate the basic reproduction

umbers given in Table 5 . 

. Short-term prediction of COVID-19 cases 

The short-term prediction of the model (2.1) is discussed in this

ection. We simulate the newly hospitalized cases of COVID-19 for

he period March 14, 2020 to May 21, 2020 for India using es-

imated parameters from Table 2 . All other fixed parameters are

aken from Table 4 . The prediction for India in the short term is

hown in Fig. 5 . The official lockdown period is declared by In-

ia Government is from March 25, 2020 to May 3, 2020. For that

e have predicted our model for the time period from March 14,

020 to March 24, 2020 without lockdown. After that we predict

ur model for the time period March 25, 2020 to May 3, 2020

ith lockdown and finally we predict our model for the time pe-

iod May 4, 2020 to May 21, 2020 without lockdown. We have
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Fig. 9. Contour plots of R 0 versus (a) lockdown period and transmission rate, (b) lockdown period and lockdown efficacy, (c) lockdown efficacy and lockdown success rate, 

(d) lockdown efficacy and the number of days spent in the infectious period until hospitalized for Mexico. All parameter values are given in Tables 1 and 2 . 
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seen that our prediction is to be pretty good for actual data till

now. From the prediction, we find that the COVID-19 cases are go-

ing to decrease at the end of the lockdown period. But when the

lockdown ends, cases again grow rapidly after few days. Also we

have predict our model for the time period from March 26, 2020

to July 19, 2020 for Mexico, from March 17, 2020 to July 19, 2020

for South Africa and from March 14, 2020 to July 19, 2020 for Ar-

gentina in the lockdown period and post lockdown period. In this

case our prediction is to be pretty good for actual data. For Mex-

ico and Argentina, cases increase very rapidly in the lockdown and

post-lockdown period. In South Africa, the lockdown period is only

35 days and cases increase slowly during the lockdown period. But

after the lockdown time, cases massively increase. So lockdown is

not much effective in Mexico and Argentina while effective lock-

down is very important to reduce disease burden in South Africa. 

6. Effect of lockdown and control strategies 

In this section, the impact of lockdown is measured qualita-

tively on the disease transmission dynamics. A threshold study of

the parameters correlated with the lockdown of susceptible indi-

viduals l is performed by measuring the partial derivatives of the

basic reproduction number R 0 with respect to this parameters. We

observe that 

∂R 0 

∂ l 
= − (1 − r) βγ (μ + ψ) 

(γ + μ)(η + τ1 + μ)(μ + ψ + l) 2 
(6.1)

so that 
∂R 0 

∂ l 
< 0 for all 0 < r < 1 . 

From this analysis, we have seen that the lockdown efficacy have

always positive population-level impact. That means, for every
alue of lockdown efficacy ( r ), the lockdown of susceptible indi-

iduals results in a reduction of the basic reproduction number R 0 
nd therefore reduction of the disease burden. The result is sum-

arized in the following lemma: 

emma 6.1. For the model (2.1) , the impact of lockdown of suscep-

ible individuals will have always positive population-level impact for

very 0 < r < 1 . 

The basic reproduction number R 0 is a decreasing function with

espect to the lockdown success rate l irrespective of the value of

 . We simulate the model for India, Mexico, South Africa and Ar-

entina, in which the results are compatible with the empirical

ndings discussed above which is displayed in Fig. 6 for India (see

he Fig. 13 in Appendix A for Mexico(MEX), South Africa(SA) and

rgentina(ARG)). 

From Fig. 6 (and Fig. 13 in Appendix A ), it is clear that lock-

own success rate l has always positive population-level impact

hat means R 0 decreases by increasing the value of l for differ-

nt value of r . We have seen that whenever r = 1, the basic repro-

uction number become constant and for 0 < r < 1, the population-

evel impact is always positive. This result indicate that lockdown

rograms always should run effectivly. 

We perform the sensitivity of model parameters with respect to

he significant response variable and analyze different control pa-

ameters to limit COVID cases for the four countries. In order to get

n overview of most influential parameters, we compute the nor-

alized forward sensitivity indices of the model parameters with

espect to basic reproduction number R 0 . We have chosen param-

ters transmission rate between human population β , rate of tran-

ition from exposed to infected class γ , the rate at which symp-
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Fig. 10. Contour plots of R 0 versus (a) lockdown period and transmission rate, (b) lockdown period and lockdown efficacy, (c) lockdown efficacy and lockdown success rate, 

(d) lockdown efficacy and the number of days spent in the infectious period until hospitalized for South Africa. All parameter values are given in Tables 1 and 2 . 
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l  
omatic infected become hospitalized or notified η, recovery rate

or symptomatic infected τ 1 , lockdown success rate l and lockdown

fficacy r for sensitivity analysis. We use the estimated parame-

ers from Table 2 for the baseline values. The rest of the parameter

alues are the same as in Table 4 . The bar diagram of the nor-

alized forward sensitivity values of R 0 against these parameters

s depicted in Fig. 7 . However, the mathematical definition of the

ormalized forward sensitivity index of a variable m with respect

o a parameter τ (where m depends explicitly on the parameter τ )

s given as: 

 

τ
m 

= 

∂m 

∂τ
× τ

m 

. 

he normalized forward sensitivity indices of R 0 with respect to

he parameters β , η, l and r for India are found to be 

 

β
R 0 

= 1 , X 

η
R 0 

= −0 . 9415 , X 

l 
R 0 

= −0 . 3418 , X 

r 
R 0 

= 0 . 6094 . 

The fact that X 
β
R 0 

= 1 , means that if we increase 1% in β , keep-

ng other parameters be fixed, will produce 1% increase in R 0 . Sim-

larly, X 
η
R 0 

= −0 . 9415 means increasing the parameter η by 1%, the

alue of R 0 will be decrease by 0.9415% keeping the value of other

arameters be fixed. Therefore, the transmission rate between sus-

eptible humans and lockdown efficacy is positively correlated. On

he other hand rate at which symptomatic infected become hos-

italized or notified and lockdown success rate is negatively cor-

elated with respect to basic reproduction number. The sensitivity

ndices of R 0 with respect to the parameters β , η, l and r for Mex-

co, South Africa and Argentina are given in the Table 6 . We have

een that the transmission rate between susceptible humans and
ockdown efficacy is positively correlated and the recovery rate of

ymptomatic infected and lockdown success rate is negatively cor-

elated with respect to basic reproduction number. 

In addition, we draw the contour plots of R 0 with respect to the

ifferent parameters for the model (2.1) to investigate the effect of

he control parameters on basic reproduction number R 0 . We have

een a similar patteren for this four countries. 

In cases India, the contour plots in Fig. 8 show the dependence

f R 0 on different parameters. In Fig. 8 (a) and (b), the contours

how that increasing the lockdown period reduces the amount of

asic reproduction number and, therefore, COVID cases, but in-

reasing the transmission rate and lockdown efficacy increases the

asic reproduction number R 0 . Furthermore in Fig. 8 (c) and (d),

e have seen that increasing the lockdown efficacy ( r ) increases

he basic reproduction number. Further increasing the lockdown

uccess rate decreases the basic reproduction number and increas-

ng the number of infectious days increases the basic reproduction

umber R 0 . 

For Mexico, South Africa and Argentina, we have seen a simi-

ar patteren as India. The contour plots in Figs. 9–11 show the de-

endence of R 0 on different parameters for this three countries.

n Figs. 9 (a), 10 (a), 11 (a) and Figs. 9 (b), 10 (b), 11 (b), the contours

how that increasing the lockdown period reduces the amount of

asic reproduction number but increasing the transmission rate

nd lockdown efficacy increases the basic reproduction number R 0 
espectively. In Figs. 9 (c), 10 (c), 11 (c) and Figs. 9 (d), 10 (d), 11 (d),

e have seen that increasing the lockdown efficacy ( r ) increases

he basic reproduction number respectively. Further increasing the

ockdown success rate decreases the basic reproduction number



12 S.S. Nadim and J. Chattopadhyay / Chaos, Solitons and Fractals 140 (2020) 110163 

Fig. 11. Contour plots of R 0 versus (a) lockdown period and transmission rate, (b) lockdown period and lockdown efficacy, (c) lockdown efficacy and lockdown success rate, 

(d) lockdown efficacy and the number of days spent in the infectious period until hospitalized for Argrntina. All parameter values are given in Tables 1 and 2 . 

Fig. 12. Effect of lockdown on the prevalence of new COVID-19 cases for different lockdown success rate l . 
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Fig. 13. Effect of lockdown success rate l on basic reproduction number R 0 . 
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nd increasing the number of infectious days increases the basic

eproduction number R 0 . 

From the above finding it follows that lockdown success rate

nd lockdown efficacy is very important to control the diseases.

his control can be obtained by an extension of the lockdown pe-

iod during the outbreak. 

For different lockdown success rates, we investigated the im-

act of lockdown on the prevalence of new COVID-19 cases. The

revalence here is a fraction of individuals in a given particular

lass. For example, the prevalence of J means “J/Total population”.

umerical simulations show that increasing the success rate for

ockdowns ( l ), the prevalence of new COVID cases decreases as the

ower value of l increases the prevalence quickly and decreases
aster than the higher value of l for India and South Africa(See the

ig. 12 ). This means that although it is a slow process, the lock-

own is very effective in reducing the risk of disease burden. But

he numerical simulations revealed that increasing the success rate

or lockdowns ( l ), the prevalence of new COVID cases decreases

lowly for Mexico and Argentina. In that case we have seen that

n the lower value of l and in higher value of l , the prevalence

ecreases after a certain time point which is very slow(See the

ig. 12 ). That means extension of lockdown for these two countries

s not too much effective. 

. Discussion and conclusion 

This paper provides a deterministic model for the transmission

ynamics of COVID-19 outbreak. The model, which adopts stan-

ard incidence functions in a realistic way, allows COVID-19 to be

ransmitted by unnotified individuals. On COVID-19 transmission,

e consider the mathematical model with the imperfect lockdown

ffect. To gain insight into its dynamic features, the model was rig-

rously analyzed. The findings obtained are as follows. The basic

eproduction number for the proposed model is calculated using

he next-generation matrix method. The model has a locally-stable

isease-free equilibrium whenever the basic reproduction number

s less than unity. A detailed study of the model, based on the use

f center manifold theory, reveals the existence of the backward

ifurcation phenomenon, where two stable equilibria, namely the

isease-free equilibrium and an endemic equilibrium coexist when

he corresponding basic number of reproduction is less than unity.

his backward bifurcation phenomena of this study is very impor-

ant, and this occurs only under imperfect lockdown individuals.

his is basically telling us even if the basic reproduction number

s less than one, but the disease will persists which is against clas-

ical epidemiological theory. In such a situation, the policy makers

ay stop surveillance, and the results will be disaster. Our model

xhibits the non-existence of backward bifurcation when the lock-

own is perfect ( r = 0 ). We have seen that the disease-free equi-

ibrium is globally asymptotically stable whenever the associated

asic reproduction number is less than unity for the perfect lock-

own model. This result indicates that the backward bifurcation

roperty of the model (2.1) is caused by the imperfect nature of

he lockdown efficacy to prevent infection. However this backward

ifurcation phenomenon is not new in the epidemic model as this

henomenon studied in many previous epidemic models. Further-

ore, we calibrated the proposed model to fit India’s daily data

uring the time period of March 14 th , 2020 to April 19 th , 2020.

e also calibrated the model parameters to daily data of Mex-

co, South Africa and Argentina for a certain time period. We pro-

ided a short-term prediction for India, Mexico, South Africa and

rgentina of future cases of COVID-19 using the estimated param-

ters. We have seen that our prediction is to be pretty good for

ctual data till now. From the prediction, we find that the COVID-

9 cases in India are going to decrease at the end of the lockdown

eriod. But when the lockdown ends, cases again grow rapidly af-

er few days. From this finding it follows that lockdown is not suf-

cient for the given time period as the cases increases after the

ockdown ends. Also from the prediction, we find that the COVID-

9 cases in Mexico and South Africa are also going to increase at

he end of the lockdown period and post lockdown period as the

ockdown period is very small in Mexico and South Africa. Though

he lockdown period is 101 days in Argentina but the cases in-

rease in both lockdown and post lockdown period. From this find-

ng it follows that lockdown is not sufficient for the given time pe-

iod as the cases increases after the lockdown ends. We calculate

he basic reproduction numbers for the mentioned four countries

sing the estimated parameter. We study the impact of lockdown

n different scenario. From the Fig. 6 it is observed that increasing
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the lockdown success rate reduces the basic reproduction number

irrespective of the value of lockdown efficacy r . It is clear that lock-

down success rate l has always positive population-level impact

( R 0 decreases with an increase in l ). This result indicates that lock-

down programs always should run effectively to control the out-

break. Sensitivity analysis shows that the rate of transmission and

lockdown efficacy is positively correlated and the rate at which

symptomatic infected individuals are hospitalized or notified, re-

covery rate of symptomatic infected and the rate of lockdown suc-

cess rate is negatively correlated with the basic reproduction num-

ber. The contour plots in Figs. 8–11 show that increasing the lock-

down period decreases the basic reproduction number and thus

COVID cases. Further we should reduce the lockdown efficacy ( r )

to control the disease outbreak. We have also found that increasing

the lockdown success rate decreases the basic reproduction num-

ber and increasing the number of infectious days increases the ba-

sic reproduction number R 0 . We have also investigated the impact

of lockdown on the prevalence of new COVID-19 cases for differ-

ent lockdown success rate. This finding suggests that for India and

South Africa, the lockdown is very effective in reducing the risk of

disease burden although it is a slow process. But lockdown is not

effective in Mexico and Argentina as the lower and higher value of

l , the prevalence decreases after a certain time which is very slow.

From the above finding suggest that in between lockdown period,

lockdown success rate ( l ) and lockdown efficacy ( r ) is very impor-

tant to control the disease outbreak. 

Declaration of Competing Interest 

The authors declare that they have no conflicts of interest. 

CRediT authorship contribution statement 

Sk Shahid Nadim: Conceptualization, Data curation, Formal

analysis, Investigation, Methodology, Software, Supervision, Valida-

tion, Writing - original draft, Writing - review & editing. Joydev

Chattopadhyay: Supervision, Writing - original draft, Writing - re-

view & editing. 

Acknowledgments 

The authors are grateful to the anonymous referees for their

careful reading, valuable comments and helpful suggestions, which

helped to improve the standard of this work. Sk Shahid Nadim

receives funding from Council of Scientific & Industrial Research

as senior research fellowship (Grant No. 09/093(0172)/2016/EMR-I),

Government of India, New Delhi. The authors would like to thanks

Dr Tridip Sardar for his valuable suggestions. 

Appendix A 

The center manifold theory [32,36] is used to determine the

existence of the backward bifurcation phenomenon of the model

(2.1) theoretically. 

Theorem A.1. Let us consider the following general system of ordi-

nary differential equations with a parameter φ

dx 

dt 
= f (x, φ) , f : R 

n × R → R 

n , f ∈ C 2 (R 

n × R ) (A-1)

Without loss of generality, it is assumed that x = 0 is an equilibrium

for system (A-1) for all values of the parameter φ. 

Assume that (1) A = D x f (0 , 0) is the linearized matrix of system

(A-1) around the equilibrium x = 0 with φ evaluated at 0. Zero is a

simple eigenvalues of A and all other eigenvalue of A have negative

real parts; 
(2) Matrix A has a nonnegative right eigenvector w and a left

igenvector v corresponding to the zero eigenvalue. Let f k be the kth

omponent of f and 

 = 

n ∑ 

k,i, j=1 

v k w i w j 

∂ 2 f k 
∂x i ∂x j 

(0 , 0) 

b = 

n ∑ 

k,i =1 

v k w i 

∂ 2 f k 
∂ x i ∂ β

(0 , 0) 

hen, the local dynamics of system (A-1) around 0 are totally deter-

ined by the sign of a and b. 

( i ) a > 0, b > 0 . When φ < 0 with | φ| � 1, x = 0 is locally asymp-

otically stable and there exists a positive unstable equilibrium; when

 < φ � 1, x = 0 is unstable and there exists a negative and locally

symptotically equilibrium; 

( ii ) a < 0, b < 0 . When φ < 0, with | φ| � 1, x = 0 is unstable; when

 < φ � 1, x = 0 is locally asymptotically stable and there exists a neg-

tive unstable equilibrium; 

( iii ) a > 0, b < 0 . When φ < 0, with | φ| � 1, x = 0 is unstable and

here exists a locally asymptotically stable negative equilibrium; when

 < φ � 1, x = 0 is stable and a positive unstable equilibrium appears;

( iv ) a < 0, b > 0 . When φ changes from negative to positive, x = 0

hanges its stability from stable to unstable. Correspondingly, a nega-

ive unstable equilibrium becomes positive and locally asymptotically

table. 

In particular, if a > 0, b > 0 then a backward bifurcation occurs at

= 0 . 
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