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Abstract: The macrobending loss of propagating waves in optical fibers is studied here by
employing simple toroidal coordinates (r, θ, ϕ) for the governing Maxwell equations of
electromagnetism, the solution for which is expressed by the central axial component Πφ of
the Hertz vector Π. The refractive indices of the core and its cladding are supposed uniform
all along the length of the cable. Effects of coating, Jacketing and the effect of elastic strain in
the fiber are not considered. Knowing that the bending losses are of different nature when the
radius of curvature R exceeds or is less than a certain critical value Rc, the study is accordingly
divided in to two parts. Firstly, when R> Rc wave guide action holds, and it is shown through an
example that it is small, varying linearly with the bending angle ϕ of the cable and practically
independent of R. On the other hand, when R< Rc, leaking waves are propagated and the problem
is remodeled by a leaking ring source of EM waves in a medium consisting of the cladding only.
The analysis of the model results in a bending loss formula that varies as ϕ3 and depends on R by
a factor of the form e−αR/R.
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1. Introduction

It is well known in practice that when a fiber-optic cable is coiled or even bent, loss of power
transmission takes place due to a curvature of the cable. This may lead to adverse effect on the
performance of transmission of information through it. The physical effects of bending on signal
propagation through the core is generally divided in to two categories: Microbending effects
in which irregular small cracks may be formed and changes in the temperature of the core, and
Macrobending effects due to change in the reflection pattern inside the bent core (Qiu et al. [1],
Zendehnam et al. [2], Martins et al. [3]). In the latter case usually the radius of curvature of
the bend is considered to be much greater than the radius of the core of the cable. This paper
endeavors to address theoretically the problem from a new perspective. It is particularly well
known that macrobending can significantly increase losses in fibers when a certain critical radius
Rc of the curvature is reached. The value of Rc is often tens of centimeters for single mode fibers
with large mode areas, compared to the small mode ones (Paschotta [4]). A theoretical formula
by Marcuse [5] is often quoted for the bending loss when the radius of curvature is less than
Rc; while it is assumed that the losses are small when the radius exceeds Rc. The formula is
based on cylindrical radiation leak, as in a bent slab, detailed in the author’s book [6]; where
as the domain of the cable should be considered as a torus rather than a slab. Later Marcuse
[7] has developed another theory of mode coupling for microbending losses. As alternative
to these theories, numerical methods such as the beam propagation method in dielectric wave
guides have also been proposed in combination with conformal mapping (Scarmozzino et al.
[8], Heiblum and Harris [9], Scermer and Cole [10]). Other noteworthy treatments are those by
Wang et. a. [11] and Wang et al. [12]. The above quoted papers report reasonable agreement
with experimental results. Kaufman et al. [13] present an integral method to incorporate higher
modes for multimode fibers.

#473789 https://doi.org/10.1364/OPTCON.473789
Journal © 2022 Received 23 Aug 2022; revised 29 Sep 2022; accepted 4 Oct 2022; published 29 Nov 2022

https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OPTCON.473789&amp;domain=pdf&amp;date_stamp=2022-11-29


Research Article Vol. 1, No. 12 / 15 Dec 2022 / Optics Continuum 2522

In this paper the macrobending problem is analyzed by assuming the bent cable as a circular
tore employing simple toroidal coordinate system (r, θ, ϕ) (cf. Eq. (1)). Firstly, if it is assumed
that the radius R of the tore is sufficiently large (R>Rc) such that the principle of total internal
reflection in the core of the cable is not violated. As the core is assumed to be of single index
principal mode wave guide, the solution of the Maxwell equations (Stratton [14], pp. 28–32)
employed to express the associated electromagnetic field in terms of the single component Πφ of
the Hertz vector Π along the circular central axis of the tore. In order to check the effect of finite
R, the solution for Πφ is considered to be of the order of a/R, where a (<<R) is the radius of the
core of the cable. By application of the boundary conditions at the interface with the cladding
at r = a, it is found that the dispersion equation of propagation remains substantially the same
as in the case of a straight cable so that the dispersion equation remains as given in Bose [15].
Next using a techmique described in Stratton [14], pp. 542–544, a comparison of the energy flow
in the axial ϕ and the radial r direction, leads to the attenuation coefficient of the propagating
waves in the arc of the tore. A computation shows that the attenuation coefficient is practically
proportional to ϕ, and of small amount independent of a/R. However, if there are a number of
turns in a coiled cable, left in an installation, there will be multifold loss in transmission. In
the other case of R<Rc, as there is leakage in the optical transmission from the cable in to its
cladding, a model radiating ring of the cable is considered. By elaborate analysis as in the case
of R>Rc, a formula for the attenuation coefficient is found, which has some similarity with that
propounded by Marcuse [6]. The present formula for bend loss has a cubic dependence on ϕ.
The formula has however limited applicability because of the coating and jacketing employed to
protect the cable.

2. Formulation of the problem

The bent optical fiber is assumed to be a circular arc of central radius R, the core radius being a.
The geometry of the problem is suggestive of the use of a simple toroidal system of coordinates
(r, θ, ϕ), where (r, θ) are the polar coordinates of a field point P in a plane section of the
cable and ϕ is is the angular sweep of circular arc of its length s through the point P so that
s = (R + r cos θ) ϕ. Suppose that the plane of the tore is taken as the x, y-plane with the center of
the tore as the origin, and the coordinate z in the perpendicular direction, then one gets

x = (R + r cos θ) cos ϕ,
y = (R + r cos θ) sin ϕ, z = r sin θ

(1)

In the toroidal system the metric element ds of the fiber length is given by the expressions

hr = 1, hθ = r, hφ = R + r cos θ (2)

Let the refractive indices of the fiber and its cladding be respectively n1 and n2 (<n1). A
digitally coded optical pulse transmitted through the cable then travels as a totally reflected
guided wave that can be decomposed in to a number of modes of propagating waves (Born and
Wolf [15], p. 19). As higher order mode waves undergo rapid attenuation, the fundamental least
frequency mode is often employed with advantage. The attenuation of such waves due to a bend
in the fiber cable is studied here. Optical wave propagation is governed by Maxwell equations of
electromagnetism in terms of electric and magnetic intensities E and H respectively. Alternately,
an electromagnetic field can be expressed as a single vector field Π called the Hertz vector, such
that

E = ∇ × ∇ × Π, H = ϵ1
∂

∂t
(∇ × Π) (3)
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(Stratton [14], p.32) taking into account the dielectric property of the glass core. The vector Π,
following the Maxwell equations is shown there to satisfy the equation

∇ × ∇ × Π − ∇(∇ · Π) + µ1ϵ1
∂2Π
∂t2
= 0 (4)

where ϵ1 and µ1 are respectively the electric permittivity and the magnetic permeability of the
glass material. As the propagation of waves along the axis of the cable is under study, the
vector Π is considered to be aligned in that direction , so that it can be expressed as Π = Πφiφ
where (ir, iθ , iφ) are unit vectors in the directions of r, θ and ϕ at the field point P. Accordingly,
following Stratton [14], pp.49–50, using Eq. (3), to a first order in r/R, which is quite small for a
fiber, the components of the vectors E and H in the core are respectively

E(1)
r =

1
R + r cos θ

∂2Πφ

∂ϕ∂r
,

E(1)
θ =

1
r(R + r cos θ)

∂2Πφ

∂ϕ∂θ
,

E(1)
φ = −

[︂ ∂2Πφ

∂r2 +
R

R + r cos θ
1
r
∂Πφ

∂r

+
1
r2

∂2Πφ

∂θ2

]︂
(5)

H(1)
r =

ϵ1
r
∂

∂t

(︂ ∂Πφ

∂θ

)︂
,

H(1)
θ = −ϵ1

∂

∂t

(︂ ∂Πφ

∂r

)︂
, H(1)

φ = 0
(6)

in which the component Πφ of the vector Π satisfying Eq. (4), is governed by the toroidal wave
equation having variable coefficients:

∂2Πφ

∂r2 +
R

R + r cos θ
1
r
∂Πφ

∂r
+

1
r2

∂2Πφ

∂θ2

+
1

(R + r cos θ)2
∂2Πφ

∂ϕ2 =
1
c2

1

∂2Πφ

∂t2

(7)

where c1 = 1/√µ1ϵ1 is the velocity of light for the glass medium core of the fiber. c1 is related to
the refractive index n1 by the relation c1 = c/n1 where c is the velocity of light in vacuum. For
simplicity in the present analysis, Eq. (7) is simplified in to the form

∂2Πφ

∂r2 +
1
r
∂Πφ

∂r
+

1
r2

∂2Πφ

∂θ2 +
∂2Πφ

∂s2

=
1
c2

1

∂2Πφ

∂t2

(8)

as r<<R. Equation (8) is a standard form cylindrical wave equation in (r, θ, s) coordinates.
In the cladding region of the cable, the electric and magnetic intensities E(2)

r , E(2)
θ , E(2)

φ , H(2)
r ,

H(2)
θ , H(2)

φ are similarly given by the expressions appearing in Eqs. (5) and (6) subject to Eq. (7),
with ϵ1, µ1, c1 replaced by ϵ2, µ2, and c2 = 1/√µ2ϵ2 = c/n2 for the permittivity, permeability
and light propagation velocity of the cladding material. As little penetration of energy takes
place in to the cladding, its thickness can be taken infinite; so that its domain can be extended to
r ≥ 0. As n1>n2, c1<c2.
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3. Solution to the first order in a/R (Case R>Rc)

In the core region of the cable r ≤ a whose solution for the fundamental mode of propagation is

Πφ = A J0(ξ) ei(ks−ωt) (9)

where J0(ξ), ξ = ur/a is the Bessel function of order zero and u/a =
√︂
ω2/c2

1 = k2, k and ω
being the toroidal wave number and the angular frequency respectively. A is a constant. The
phase velocity of the wave represented by Eq. (9) is cp = ω/k. For guided waves c1<cp<c2,
and so u is a real quantity. Using the solution (9) in Eqs. (5) and (6), the electric and magnetic
intensities in the core of the fiber cable (0 ≤ r ≤ a) to first order in a/R (as that leads to finite
order terms), turn out as

E(1)
r =

iku
a

[︂
−A J1(ξ)

+
a

uR

{︂
(1 + iks)A J0(ξ)

}︂
× cos θ

]︂
ei(ks−ωt)

(10)

E(1)
θ = −

ik
R
(1 + iks)A J0(ξ) sin θ ei(ks−ωt) (11)

E(1)
φ =

u2

a2

[︂
A J0(ξ) −

a
uR

{︂
(1 − 2iks)A J1(ξ)

}︂
× cos θ

]︂
ei(ks−ωt)

(12)

H(1)
r =iωϵ1

a
uR

[︂
iksξ A J0(ξ)

]︂
sin θ ei(ks−ωt) (13)

H(1)
θ =iωϵ1

u
a

[︂
−A J1(ξ) +

a
uR

{︂
iks A J0(ξ)

}︂
× cos θ

]︂
ei(ks−ωt)

(14)

and H(1)
φ = 0. The magnetic intensities in Eqs. (13), (14) however are expressed in terms of the

electric permittivity ϵ1. In order to express the expressions in terms of the magnetic permeability
µ1, let k1 be the wave number of a plane wave solution travelling in the s direction of Eq. (8);
then k2

1 = ω
2/c2

1 = µ1ϵ1ω
2, so that the factor ωϵ1 can be replaced by k2

1/µ1ω in the two Eqs. (13)
and (14).

In the cladding material, modeled as an infinite medium r ≥ a, the Hertz vector Πφ satisfies a
toroidal wave equation with c1 replaced by c2 = 1/√µ2ϵ2, ϵ2, µ2 being the electric permittivity
and the magnetic permeability of the cladding material respectively. The model domain of the
cladding domain can sustain only diverging waves from the axis of the cable. Hence, the solution
for Πφ is like that of Eq. (9) except that the Hankel functions of the first kind H(1)

0 (wr/a) and

H(1)
1 (wr/a) appear in place of J0(ur/a) and J1(ur/a), where w/a =

√︂
ω2/c2

2 − k2 which is an
imaginary quantity as cp = ω/k<c2. Writing w = iv, the two Hankel functions of imaginary
argument can be written in terms of the modified Bessel functions of the second kind K0(vr/a)
and K1(vr/a) (Abramowitz and Stegun [17], section 9.6.1, p. 374). Thus as in the case of
derivation of Eq. (9), the solution for the Hertz vector Πφ in the cladding domain takes the form

Πφ = C K0(η) ei(ks−ωt) (15)

in which η = vr/a. The electric and magnetic intensity components in the cladding domain can
be written down using Eqs. (5) and (6). The tangential components of these vectors in the present
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study are E(2)
φ and H(2)

θ given by the expressions

E(2)
φ = −

v2

a2

[︂
C K0(η) +

a
Rv

{︂
(1 − 2iks)

× C K1(η)
}︂

cos θ
]︂

ei(ks−ωt)
(16)

and

H(2)
θ =

ik2
2

µ2ω

v
a

[︂
−C K1(η)

+
a
Rv

{︂
iks C K0(η)

}︂
cos θ

]︂
ei(ks−ωt)

(17)

where k2
2 = ω

2/c2
2 = µ2ϵ2ω

2. Also H(2)
φ = 0, and

E(2)
θ = −

ik
R
(1 + iks)C sin θ K0(η) ei(ks−ωt) (18)

4. Boundary conditions

At the interface of the core and the cable, the tangential components of the electric and magnetic
intensity must equal, that is, E(1)

φ = E(2)
φ , and H(1)

θ = H(2)
θ at r = a, or ξ = u and v = η. In satisfying

these conditions, great deal of simplification occurs in the expressions since the properties of
the core and the cladding hardly differ so that one may assume µ2 ≈ µ1, k2 ≈ k1. In this way,
Eqs. (12), (16), and (14). Equation (17) yields the pair of equations

u2J0(u)A + v2K0(v)C = 0 (19)

uJ1(u)A − vK1(v)C = 0 (20)

Equations (19) and (29) on elimination of A and C results in the dispersion equation of
propagation

1
u

J1(u)
J0(u)

+
1
v

K1(v)
K0(v)

= 0 (21)

a result obtained in Bose [15] for a straight fiber-optic cable without any bend. It may be noted
that there are two other boundary conditions at r = a, viz. E(1)

θ = E(2)
θ and H(1)

φ = H(2)
φ . While

the latter condition is satisfied exactly, the two sides being zero, the condition on the transversal
component of the electric intensity is satisfied only approximately, the two sides of the equation
being infinitesimally small for large values of R. The dispersion equation is approximate in that
sense.

5. Bend attenuation

The flow of electromagnetic energy per unit area per unit time in space is represented by the
Poynting vector S = E × H. For a monochromatic field, the time average of this vector becomes
S̄ = 1

2 E × H∗, in which the asterisk denotes complex conjugation (Born and Wolf [16], p. 34).
The real part of S̄ actually represents the physical time averaged energy flow vector. The average
energy in the core per unit area along the length of the cable is thus

S̄φ =
1
2

[︂
E(1)

r H(1)∗
θ − E(1)

θ H(1)∗
r

]︂
(22)

where the elecromagnetic field components in the above equation are given by the Eqs. (10), (11)
and (13), (14). Substitution of the expressions given in these four equations leads to its real part
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as
Re(S̄φ) =

1
2
ωkϵ1 A2 u2

a2

[︂
J2

1(ξ)

−
a

uR
J1(ξ) J0(ξ) +

a
uR

k2ϕ2ξ J2
0(ξ)

sin2 θ

r

]︂ (23)

Therefore the total energy flow across a section of the core of the fiber is

W̄φ =

∫ a

0

∫ 2π

0
Re(S̄φ) r dθ dr

= ωkϵ1π A2
∫ u

0

[︂
J2

1(ξ) −
a

uR
J0(ξ)J1(ξ)

+
1
2

k2a2

u2 ϕ2 J2
0(ξ)

]︂
ξ dξ

(24)

Next, consider the average energyflow S̄r per unit area in the outward radial direction at the
boundary of the core. This quantity is given by the simple expression

S̄r = −
1
2

E(1)
φ H(1)∗

θ (25)

as H(1)∗
φ = 0. In the left hand side of the above equation, the full form of E(1)

φ given by

E(1)
φ =

u2

a2

[︂
A J0(ξ)

(︂
1 +

k2a2

u2 ϕ2
)︂

−
a

uR
A J1(ξ)(1 − 2iks) cos θ

+
ika2

u2R2 ϕA J0(ξ) cos3 θ
]︂

ei(ks−ωt)

(26)

is used. Equation (26) reduces to Eq. (12) when ϕ is approximated as s/R and terms of the order
of 1/R2 are neglected. The corresponding expression for H(1)

θ is given in Eq. (14). Using these
expressions in Eq. (25), the real part of S̄r is given by

Re(S̄r) = ωkϵ1
u2

2a2 ϕA2
[︂
2J2

1(ξ) cos θ

+ J1(ξ)
a

uR
J0(ξ) cos3 θ + J0(ξ) cos θ

×

{︂
J0(ξ)

(︂
1 +

k2a2

u2 ϕ2
)︂
−

a
uR

J1(ξ) cos θ
}︂]︂ (27)

Now, due to total internal reflection towards the axis of the fiber, the quantity of interest is the
energy flow towards the central axis, which per unit length of the fiber is given by the expression

W̄r = −

∫ π/2

−π/2
Re(S̄r)

|︁|︁|︁
r=a

a dθ

+

∫ 3π/2

π/2
Re(S̄r)

|︁|︁|︁
r=a

a dθ
(28)

where r = a means that ξ = u. Using Eq. (37) in (38), one obtains

W̄r = −
2u2

a2 ωkϵ1a ϕA2
[︂(︂

1 +
k2a2

u2 ϕ2
)︂

× J2
0(u) + 2J2

1(u) +
2
3

a
uR

J0(u)J1(u)
]︂ (29)

The negativity of W̄r implies that the energy flows radially outwards.
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The attenuation coefficient due to the bend is now estimated from the expressions for W̄φ and
W̄r given in Eqs. (24) and (29) following an argument given in Stratton [14], pp. 543–544. The
two expressions are derived on the premise that the wave number k of the waves propagating in
the s-direction is lossless. However, since damping is present due to the bend in the cable, the
quantity k is complex with an imaginary part say k′, which is an attenuation measure. Thus the
right hand sides of the expressions for S̄φ and S̄r and their real parts Re(S̄φ) and Re(S̄r) would
contain the factor exp(−2k′s). The rate at which W̄φ decreases along the length s is therefore

dW̄φ

ds
= −2k′ W̄φ = W̄r (30)

by radial out flow of energy. Hence,

k′ = −
1
2

W̄r

W̄φ

(31)

Thus, using the Eqs. (24) and (29), the nondimensional attenuation coefficient due to the bend
of the cable is given by the formula

k′

k
=

ϕ

π ka
(1 + k2a2

u2 ϕ2)J2
0(u) + 2J2

1(u) +
2
3

a
uR J0(u)J1(u)∫ 1

0 [J
2
1(uz)+ 1

2
k2a2

u2 ϕ2J2
0(uz)− a

uRJ0(uz)J1(uz)]zdz
(32)

where the change of variable ξ = uz is made in the integral appearing in Eq. (24).
As a representative numerical example, a fiber radius of a = 0.2 mm and a bend radius of

R = 30 mm are chosen, with refractive indices of n1 = 1.5 and n2 = 1.48515 respectively for the
fiber glass and its cladding respectively. The wave length of the transmitted light is taken near
to that of the infrared portion of the spectrum viz. 2π/k = 1.5 µm so that ka = 837.758. For
calculating u for the above stated data, it is noted that u = ka

√︂
c2

p/c2
1 − 1 and v = ka

√︂
1 − c2

p/c2
2,

where cp = ω/k is the phase velocity of propagation in the fiber core. Eliminating cp from the
preceding two equations and using the relation c2

1/c
2
2 = n2

2/n
2
1, one has

v = ka

⌜⎷
1 −

n2
2

n2
1

(︂
1 +

u2

k2a2

)︂
(33)

Now using Eq. (33) in the dispersion Eq. (21), an equation for u is obtained that can be
numerically solved by the bisection method. The root of the equation for which cp is closest to
c1, the value of u is obtained as u = 3.79939. For these data, k′/k given by Eq. (32) computed by
using the approximation formulae for the Bessel functions given in Abramowitz and Stegun [16]
is plotted against ϕ in Fig. 1, for a complete loop of the cable. It is noteworthy that the plot is
practically linear with a slope of 0.15178 × 10−2. For a 90o bend ϕ = π/2, the nondimensional
loss is 0.23842 × 10−2, and that for a turn around ϕ = π, its value is 0.47676 × 10−2. For a
complete coil ϕ = 2π, for which the value is 0.95370 × 10−2. In decibels, the bending loss are
respectively 0.43373 × 105, 0.86732 × 105 and 0.17350 × 106. The dB values are obtained by
multiplying the k′ values by the factor 4.343.

The linearity of the plot in Fig. 1 is due to the fact that the coefficients of the ϕ2 term in both the
numerator and denominator of Eq. (32) are of the same order k2a2/u2 which is large. Evidently
this linearity of attenuation would prevail for other fiber specifications also because of largeness
of the value of the parameter ka for the spectra used in general.
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Fig. 1. Attenuation versus bend angle for R>Rc.

6. High curvature bend loss (Case R<Rc)

When the radius of curvature R is less than a certain critical value Rc, the phenomenon of total
internal reflection in the core of the cable breaks down and part of the energy is leaked through
the cladding material (Que et al. [1]). For such leaking mode of propagation, consider a complete
ring of the optical fiber in the x, y-plane given by Eq. (1), where 0 ≤ ϕ ≤ 2π. The energy flowing
along the axis of the fiber W̄φ by total internal reflection is given by Eq. (24), as argued in the
preceding sections. But, for leaked energy in case of high curvature of the fiber, one may view the
fiber ring as a source of radiating energy outwards in an infinite space composed of the cladding
material. Thus, one can employ Eq. (8) for the Hertz vector in the medium with the modification
that

∂2Πφ

∂r2 +
1
r
∂Πφ

∂r
+

1
r2

∂2Πφ

∂θ2 +
∂2Πφ

∂s2

−
1
c2

2

∂2Πφ

∂ϕ2 = C′ δ(x − R) δ(z)
(34)

where s = (R+ r cos θ) ϕ and C′ is the strength of the source with δ(·) as the Dirac delta function
representing its distribution. In order to find a suitable particular solution of Eq. (34), let
Πφ = ψ ei(ks−ωt) and consider the transformation x = R + r cos θ, z = r sin θ. This leads to the
equation

∂2ψ

∂x2 +
∂2ψ

∂z2 −
v2

a2 ψ = C′ δ(x − R) δ(z) (35)

where v/a =
√︂

k2 − ω2/c2
2 = k

√︂
1 − c2

p/c2
2 = k

√︂
1 − 1/n2

2 is a real quantity as n2>1. Introducing
the double cosine Fourier transform

ψ̄ =

∫ ∞

0

∫ ∞

0
ψ(x, z) cos ξx cos ζz dx dz;

ψ =
4
π2

∫ ∞

0

∫ ∞

0
ψ̄(ξ ζ) cos xξ cos zζ dξ dζ

(36)
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Equation (45) yields

−

(︂
ξ2 + ζ2 +

v2

a2

)︂
ψ̄

= C′

∫ ∞

0

∫ ∞

0
δ(x − R)δ(z)cos ξxcos ζz dx dz

=
C′

2
cos ξR

(37)

Hence,
ψ=−

2C′

π2

∫ ∞

0

∫ ∞

0

cos ξR cos xξ cos zζdξ dζ
ξ2 + ζ2 + v2/a2 (38)

The double integral of Eq. (38) can be evaluated exactly by first evaluating the ζ-integral and
then the ξ-integral by the use of formulae 3.732, p. 406 and 3.961 (2), p. 498 given in Gradshteyn
and Ryzhik [18]. In this way one gets

ψ = −
C′

π

[︂
K0

{︂ v
a
√︁
(R + x)2 + z2

}︂
+ K0

{︂ v
a
√︁
(R − x)2 + z2

}︂]︂ (39)

or,
ψ = −

C′

π

×

[︂
K0

{︂ v
a

√︂
(2R + r cos θ)2 + r2 sin2 θ

}︂
+ K0

(︂ v
a

r
)︂]︂ (40)

In the above Eq. (40), it is recognized that the second term K0(vr/a) is a solution obtained
earlier in Eq. (15) and so comparing coefficients of the two terms it follows that

C′ = −π C (41)

This particular term being independent of R is not important for the present discussion, and so
the particular solution represented by the first term of the equation leads to the consideration of
the particular solution

ψ = C K0

{︂ v
a

√︁
4R2 + r2 + 4 Rr cos θ

}︂
(42)

or, as K0(x) =
πi
2

H(1)
0 (ix), i =

√
−1, H(1)

0 (·) being the Hankel function of the first kind,

ψ = C
πi
2

H(1)
0

{︂iv
a

√︁
4R2 + r2 + 4 Rr cos θ

}︂
= C

∞∑︂
n=−∞

Kn

(︂2Rv
a

)︂
Jn

(︂ ivr
a

)︂
, for R>r

(43)

by Graf’s addition theorem of Bessel functions (Abramowitz and Stegun [17] formula 9.1.79,
p.363). Now for large E, one has the asymptotic expansion (Gradshteyn and Ryzhik [18] formula
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8.451 (6), p.963)

Kn

(︂2R v
a

)︂
∼

√︃
πa
4Rv

e−2Rv/a (44)

while (Abramowitz and Stegun [17] formula 9.1.46, p.361)
∞∑︂

n=−∞
Jn

(︂ ivr
a

)︂
= 1 (45)

Insertion of Eqs. (44) and (45) in Eq. (43), thus leads to the particular solution

Πφ = C
√︃

πa
4Rv

e−2Rv/a ei(ks−ωt) (46)

The component of the electromagnetic field, for calculating the bend loss due to radiation leak
are therefore after simple calculation that

E(2)
φ = −

[︂ ∂2Πφ

∂r2 +
1
r
∂Πφ

∂r
+

1
r2

∂2Πφ

∂θ2

]︂
= C

√︃
πa
4Rv

e−2Rv/a k2 ϕ2 ei(ks−ωt)
(47)

H(2)
θ = −ϵ2

∂

∂t

(︂ ∂Πφ

∂r

)︂
= −ωϵ2kC

√︃
πa
4Rv

e−2Rv/acos θ ϕ ei(ks−ωt)
(48)

where the relation s = (R + r cos θ) ϕ is used. Hence, as in Eq. (25), the average energy flow in
the radial direction of the cable is

S(2)r = −
1
2

E(2)
φ H(2)∗

θ

= C2 πa
8Rv

e−4Rv/a ωϵ2k3 ϕ3 cos θ
(49)

and so as in the development of Eq. (28), the inward energy flow towards the axis of the core per
unit length of the fiber is

W̄r = −C2 πa
4Rv

e−4Rv/a aωϵ2k3 ϕ3 (50)

The internal axial flow in the bent cable however remains the same as due to total internal
reflection. As such the total energy flow across a section of the fiber is again given by Eq. (34),
with the provision that the term of the order of a/R is dropped as has been done in this section.
Hence this energy flux is expressed as

W̄φ = ωkϵ1 πA2
∫ u

0

[︂
J2

1(ξ)

+
1
2

a2k2

u2 ϕ2 J2
0(ξ)

]︂
ξ dξ

(51)

Hence, following the arguments of the preceding section 5, the attenuation coefficient k′ is
estimated as

k′/k = −
W̄r

W̄φ

=
e−4Rv/a

4Rv/a
aku2 J2

0(u) ϕ
3

v4 K2
0 (v)

∫ 1
0 [J2

1(uz) + 1
2

k2a2

u2 ϕ2 J2
0(uz)] z dz

(52)

where it is taken that ϵ1 ≈ ϵ2 and the value of C/A is obtained from Eq. (21). The bending loss
formula (52) differs substantially from that of Marcuse [5], principally in respect of dependence
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on R and dependence on the angle ϕ - the angle subtended by the bent circular cable at the center
of the circle. There is no dependence on ϕ in the Marcuse formula. Comparing Eq. (52) with
Eq. (32) it is noticed that the bending loss varies faster as ϕ3 when there is leakage compared to
linear variation with ϕ when there is none.

For a numerical study of the bending loss (52), the data used in the preceding section 5 is
again used, with n1 = 1.5 and n2 = 1.48515 with nondimensional wave number 837.758, and
u = 3.79939. The corresponding value of v from Eq. (33) is v = 117.53080. As v is large, one
can use the asymptotic approximation K0(v) =

√︁
π/2v e−v, so that Eq. (52) becomes

e−2v k′

k
=

1
2π

e−4Rv/a

Rv/a
ka u2 J2

0(u) ϕ
3

v3
∫ 1
0 [J2

1(uz) + 1
2

k2a2

u2 ϕ2 J2
0(uz)] z dz

(53)

The computed values of the bending attenuation is presented in Fig. 2, for ϕ = π/2, π, 2π, the
last value being that for a full ring of the cable. The scaling of both the abscissa and the ordinate
is done for computationally presentable results. The curves are similar to those of Marcuse
[5], showing steep fall in the attenuation with increasing values of R. However, in the Marcuse
formula the dependence of k′/k is of the form e−βR/

√
R where β is independent of R. Evidently,

for other specifications of the core radius and spectrum value, the attenuation property will be of
similar nature.
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Fig. 2. Bend loss versus Rv/a for R<Rc.

7. Conclusion

The energy and power loss in a bent fiber-optic cable is theoretically studied in this paper. The
bend of the cable is assumed to be of circular shape as in the existing literature. Moreover, only
macrobending effects are only considered affecting total internal reflection through the core
covered by a slightly lower refractive index. The effects of coating and jacketing of the cable,
nor the small effect of strain on the refractive indices considered in the analysis. It is known
in the literature that when the radius of curvature of the bent cable R is greater than a critical
value Rc, the loss in total internal reflection is significantly small, but when R<Rc, significant
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loss due to leaked propagation takes place. Marcuse [5] has developed a formula for the loss
from models different from the ones presented here.. Modeling a bent cable as a tore of radius R,
generated by revolving a circle of radius a about an in-plane axis of revolution, simple toroidal
coordinates (r, θ, ϕ) are employed in the analysis of the Maxwell equations of electromagnetism
for the optical propagation. Working in terms of the Hertz vector Π, only the component Πφ is
required for the axial propagation along the axis of the cable. In a detailed analysis to be reported
elsewhere it is shown that the approximation of Eq. (7) to Eq. (8) to a first order in r/R does
not change the final results presented here. Treating first the case of R>Rc when no leakage
occurs, the analysis is carried out to a first order in a/R. Involving the energy of propagation in
the axial ϕ direction and the perpendicular radial r direction a formula for the bend attenuation k′
is obtained as given in Eq. (32). The formula shows that the attenuation is small and practically
varies as ϕ, with the implication that if the cable is coiled a number of times, then the loss will
be that many fold. Next, the case R<Rc is treated, where in leakage of energy takes place in
the radial direction. Modeling the leaking optical tore as a ring of radiation in a medium of the
cladding material, an elaborate analysis leads to a formula for the attenuation coefficient k′ as
in the first case. The bend loss formula Eq. (53) is akin to the formula of Marcuse [5] but with
significant differences in the functional dependence on R and independence from ϕ. But for the
fact that the affects of the coating and jacketing of the cable are not included, an estimate of Rc is
not possible from the present results by means of comparing the two formulas (32) and (53).
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