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Abstract

We consider a particular respondent-driven sampling procedure governed by a graphon.
Using a specific clumping procedure of the sampled vertices, we construct a sequence
of sparse graphs. If the sequence of the vertex-sets is stationary, then the sequence of
sparse graphs converges to the governing graphon in the cut-metric. The tools used are a
concentration inequality for Markov chains and the Stein-Chen method.
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1 Introduction

Respondent-driven sampling (RDS), popularised by Heckathorn (1997), is a method
to sample from hard-to-reach populations, such as drug users, MSM and people with
HIV, and it is being routinely used in studies involving such populations. The basic
idea is to start with a convenience sample of participants, to ask the participants for
referrals among their peers and then to iterate this process. Intuitively, it is clear that
the sampling procedure is subject to various biases, one of which is a bias towards
individuals with higher degrees, as these are more likely to appear in the sample. In
order to avoid this bias, one of the key assumptions of Heckathorn (1997) is that each
individual in the network has the same degree.

How this bias affects the network as a whole has been described by Athreya and
Röllin (2016) in the context of dense graph limits. The model considered there is
defined in terms of a two-step procedure. First, vertices are sampled according to an
ergodic process (the important point to note is that the vertices need not be sampled
independently of each other). Second, edges between vertices are sampled independently
of each other, where the probability of an edge is determined via a graphon representing
the underlying network.

Dense graphs are at one extreme of graph sequences. These are graphs on n vertices
with the number of edges being of order n2, which is far more than what is observed in
real-world networks. At the opposite end are sequences of graphs — sometimes called
extremely sparse graphs — with bounded (average) degree and consequently having
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order n edges. These have a separate limiting theory which is not quite applicable
to many real-world networks. There is class of graph sequences between these two
extremes, called sparse graphs, for which the average degree grows in the number of
vertices, but only at sub-linear speed.

The purpose of this note is to extend the work of Athreya and Röllin (2016) to
sparse graphs, and to consider more realistic models of sampling. Since RDS data
typically comes in the form of trees, the actual graphs are those with average degrees
remaining bounded as the number of nodes n grows. We propose a model where “close
enough” participants are “clumped” together so that the average degree now grows
in n. Our main result is that the random sparse graph sequence obtained through a
specific respondent-driven sampling procedure converges almost surely to the graphon
underlying the network in the cut-metric, provided the sequence of the vertex sets is
stationary.

The method of proof in this article is entirely different from that of Athreya and Röllin
(2016). This is mainly due to the fact that, unlike in the dense case, subgraphs counts no
longer characterise graph convergence. We compare our random sparse graph sequence
with an “expected” (deterministic) sparse graph via a concentration inequality. We then
use the Stein-Chen method to compare this deterministic sparse graph to a sequence of
graphs which are close to the graphon of the underlying network.

The rest of the article is organised as follows. In Section 2, we provide a brief
introduction to sparse graph convergence. In Section 3, we describe our model and
state our main result (Theorem 3.1). We present the proof of the main result in Section 4.
We then conclude with some remarks in a final discussion section on respondent-driven
sampling and dense graph sequences.

2 Sparse graph convergence

This section is a very brief introduction to sparse graph convergence. The conver-
gence of sparse graphs was initiated by Bollobás and Riordan (2009), and the Lp theory
was subsequently established in Borgs, Chayes, Cohn and Zhao (2014a) and Borgs,
Chayes, Cohn and Zhao (2014b). We present the minimal amount of material necessary
to formulate and prove our main result. We first define weighted graphs, followed by
definition of graphon and conclude with a brief discussion on a convergence result.

Weighted graphs. Consider a graph G, given by its set of vertices V (G) and set of
edges E(G). A (edge-)weighted graph G is simply a graph which has, in addition, a
weight function β(G) = (βij(G))i,j∈V (G), where, for each {i, j} ∈ E(G), we interpret
the value βij(G) as the weight of that edge. By making the convention that βij(G) = 0

whenever there is no edge between vertices i and j, the information about E(G) is con-
tained in β(G), so that any weighted graph is determined by V (G) and β(G). Moreover,
any unweighted graph can be interpreted as a weighted graph by setting βij(G) = 1

whenever {i, j} ∈ E(G).
For any weighted graph G and any constant c ∈ R, we shall define cG to be the

weighted graph on the same set of vertices and edge weights βij(cG) = cβij(G).

Graphons. A graphon is any symmetric, integrable function κ : [0, 1]2 → R+; note that
we restrict ourselves to non-negative graphons, whereas Borgs et al. (2014a) allow for
more general graphons. For any graphon κ, the cut-norm of κ is defined as

‖κ‖� := sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

κ(x, y)dxdy

∣∣∣∣,
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where the supremum is taken over Lebesgue-measurable subsets of [0, 1]. The L1-norm
of κ is given by

‖κ‖1 :=

∫
[0,1]×[0,1]

|κ(x, y)|dxdy.

For any two graphons κ1 and κ2, we let

d�(κ1, κ2) := ‖κ1 − κ2‖�, d1(κ1, κ2) := ‖κ1 − κ2‖1. (2.1)

Since a Lebesgue measure preserving transformation of [0, 1] will not change the norm
of a graphon, it is customary to define the cut-metric δ� on graphons by

δ�(κ1, κ2) := inf
σ
d�(κσ1 , κ2), (2.2)

where the infimum ranges over all measure-preserving bijections σ : [0, 1]→ [0, 1], and
where the graphon κσ is defined as κσ(x, y) = κ(σ(x), σ(y)).

Every weighted graph G is naturally associated with a graphon κG in the following
way. First, divide the interval [0, 1] into intervals I1, . . . , I|V (G)| of lengths 1/|V (G)| for
each i ∈ V (G). The function κG is then given the constant value βij(G) on Ii × Ij for
every i, j ∈ V (G). It is easily verified that κG is indeed a graphon.

Thus, even if G and G′ have different set of vertices, we can define their cut-distance
through the cut-distance of their associated graphons; that is,

δ�(G,G′) := δ�(κG, κG′).

If two weighted graphs G and G′ have the same set of vertices V (G), then it is clear that
we can express their cut-distance as

d�(G,G′) = max
S,T⊆V (G)

∣∣∣∣ ∑
i∈S,j∈T

βij(G)− βij(G′)
∣∣∣∣.

Finally, if κ is a graphon and G is a weighted graph, then we define

d�(G, κ) := d�(κG, κ), δ�(G, κ) := δ�(κG, κ). (2.3)

Convergence to graphon. Let κ be a graphon with ‖κ‖1 > 0. Let ρn > 0 satisfy ρn → 0

and nρn →∞ as n→∞. Let the vertex set be given by [n] := {1, 2, . . . , n}. Let U1, . . . , Un
be i.i.d. chosen uniformly in [0, 1].

Define Gn ≡ G(n, κ, ρn) to be the graph defined by connecting i and j with probabil-
ity min{ρnκ(Ui, Uj), 1}. It is clear that Gn is a sparse graph sequence and in Borgs et al.
(2014a, Theorem 2.14 and Corollary 2.15) it is shown that, with probability 1,

d�
(
Gn/ρn, κ

)
→ 0 and δ�

(
Gn/‖Gn‖1, κ/‖κ‖1

)
→ 0

as n → ∞. In this article we generalise the above result when the vertex labels come
from a Markov Chain and the sparse graph is constructed after suitable clumping.

3 Model and main results

3.1 Constructing a random graph from RDS

We shall construct a sparse graph on [n] vertices based on respondent-driven sam-
pling. We will sample N individuals, labelled X1, . . . , XN , where Xi ∈ [0, 1]. We note
that the label space is chosen arbitrarily to be the unit interval only for the sake of
mathematical convenience. After sampling, the individuals are clumped into n equally
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spaced bins, which we represent by the intervals An,i = [(i− 1)/n, i/n), where 1 6 i 6 n

(it is understood that An,n also includes the right-most point 1). We connect i and j if
two successive individuals fall into bin Ai followed by bin Aj or vice-versa. We chose N
in such a way that the graph constructed is sparse and we establish an L1 limit for the
same. We begin with a precise definition of the sampling scheme via a Markov chain.

Markov chain representing RDS. Let κ be a graphon. Let (Ω,F ,P) be a probability
space, on which we define a Markov chain X = {Xk}k>0 with transition probabilities
given by

P[Xm+1 ∈ dy|Xm = x] =
κ(x, y)∫ 1

0
κ(z, x)dz

dy.

Since κ is symmetric, the Markov chain is time-reversible with stationary distribution

π(dx) =

∫ 1

0
κ(x, u)du∫ 1

0

∫ 1

0
κ(u, v)dudv

dx.

We shall assume that X0
D
= π, which means the chain is stationary. Then the probability

of seeing a transition from dx to dy is given by

P[Xm ∈ dx,Xm+1 ∈ dy] = π(dx)
κ(x, y)∫ 1

0
κ(x, z)dz

dy =
κ(x, y)∫ 1

0

∫ 1

0
κ(u, v)dudv

dxdy. (3.1)

Sparse random graph from RDS. Let κ be a graphon. Let n > 1 and N ≡ N(n). We
will now construct a random graph G(n,N,X, κ) via the following steps:

• Let the vertex set be [n] := {1, 2, . . . , n}.

• Let X1, . . . , XN be a realisation of the stationary Markov Chain defined in the previ-
ous section up to time N .

• Equi-partition the unit interval by the intervals An,1, . . . , An,n. For 1 6 i, j 6 n

with i 6= j, define

In(i, j) =


1

if there exists 0 6 m < N such that either Xm ∈ An,i
and Xm+1 ∈ An,j , or Xm ∈ An,j and Xm+1 ∈ An,i,

0 otherwise.

• For 1 6 i, j 6 n with i 6= j, connect i and j if In(i, j) = 1, and leave it unconnected
otherwise.

If we choose N(n) appropriately (for example, N(n) = o(n2)), then the above random
graph will be a sparse random graph sequence.

3.2 Main result

Let κ be a given graphon, and consider the sparse graph sequence Gn ≡ G(n,N,X, κ)

defined as in the previous paragraph. We shall make the following assumptions on κ

and N .

Assumption (K1). There are a constant δ > 0 and an integrable function ϕ : [0, 1]→
R+ such that

0 < δ 6
κ(x, y)∫ 1

0
κ(x, z)dz

6 ϕ(y), 0 6 x, y 6 1. (3.2)
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Assumption (N1). There are constants α and λ, where 0 < α 6 1 and λ > 0, such
that the sequence N ≡ N(n) satisfies

lim
n→∞

N

n1+α
= λ. (3.3)

We are now ready to state the main result.

Theorem 3.1. Under Assumption (K1) and Assumption (N1), and if 0 < α < 1,

lim
n→∞

d�

(
n2

N
Gn ,

κ

‖κ‖1

)
= 0

almost surely with respect to P.

4 Proof of Theorem 3.1

To prove our result we will need to define two (deterministic and intermediate)
weighted graphs. The first graph is an “averaged” version of Gn, which we shall denote
by EGn; it is the weighted graph on the vertices [n] with edge weights

βij(EGn) =
1

2
E In(i, j).

Denote by n2

N EGn be the weighted graph obtained by scaling the weights of EGn by n2

N

(as described in Section 2). The second graph, denoted by Hn, is the weighted graph on
the vertices [n] with edge weights

βij(Hn) =
n2

2N

(
1− exp

(
−2N

n2
µn(i, j)

))
, where µn(i, j) = n2

∫
An,i

∫
An,j

κ(x, y)

‖κ‖1
dxdy.

(4.1)
For x, y ∈ [0, 1], let in and jn be such that x ∈ An,in and y ∈ An,jn for all n > 1.
Observe that by the Lebesgue density theorem, κ(x, y)/‖κ‖1 = limn→∞ γn(in, jn) almost
everywhere on [0, 1]2.

Our strategy will be to show that, for large n, n
2

N Gn is close to n2

N EGn, followed by

the fact that n2

N EGn is close to Hn, and finally that Hn is close to κ/‖κ‖1.

We start with the first lemma, which shows that the distance between n2

N Gn and
n2

N EGn goes to 0 almost surely with respect to P. The key ingredient of the proof is a
concentration inequality of Paulin (2015).

Lemma 4.1. We have

lim
n→∞

d�

(
n2

N
Gn,

n2

N
EGn

)
= 0 almost surely w.r.t. P . (4.2)

Proof. Note that

d�

(
n2

N
Gn,

n2

N
EGn

)
= sup
S=

⋃k
m=1 An,im ,

T=
⋃l

m=1 An,jm

∣∣∣∣ ∑
i:i/n∈S

∑
j:j/n∈T

n2

2N

(
In(i, j)− E In(i, j)

)
Vol(An,i) Vol(An,j)

∣∣∣∣
= sup
S=

⋃k
m=1 An,im ,

T=
⋃l

m=1 An,jm

∣∣∣∣fS,T (X)− E fS,T (X)

∣∣∣∣,
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where fS,T (X) = fS,T (X0, . . . , XN ) = 1
2N

∑
i:i/n∈S

∑
j:j/n∈T In(i, j). As X is Harris recur-

rent by Assumption (K1), we obtain from Meyn and Tweedie (2009, Theorem 16.0.2)
that the Markov chain has finite mixing time tmix. Let ε > 0 be given. Now, changing
one point in f(X) will change f by at most 2 edges; that is, f is 1/N -Hamming-Lipschitz.
Therefore, by Paulin (2015, Corollary 2.10),

P
[
|fS,T (X)− E fS,T (X)| > ε

]
6 2 exp

(
−NCε2

)
,

where C is a constant that only depends on tmix. Using the union bound,

P

[
sup

S=
⋃k
m=1 An,im

,

T=
⋃l
m=1 An,jm

|fS,T (X)− E fS,T (X)| > ε

]
6 22n+1 exp

(
−NCε2

)
= exp

(
−NCε2 + (2n+ 1) log 2

)
.

By (3.3) and Borel-Cantelli, the claim follows.

Our second lemma shows that the distance between n2

N EGn and Hn goes to 0. The
key ingredient of the proof is an application of the Stein-Chen method.

Lemma 4.2. We have

lim
n→∞

d�

(
n2

N
EGn, Hn

)
= 0. (4.3)

Proof. Let

En(i, j) =

N∑
m=1

Im,

where Im = I[(Xm−1, Xm) ∈ {An,ij , An,ji}] with An,ij = An,i ×An,j , and note that

EEn(i, j) = 2N

∫
An,i

∫
An,j

κ(x, y)

‖κ‖1
dxdy =

2N

n2
µn(i, j).

Clearly, In(i, j) = I[En(i, j) > 0]. Now,

d�

(n2

N
EGn, Hn

)
6 d1

(n2

N
EGn, Hn

)
=

n∑
i=1

n∑
j=1

n2

2N
Vol(An,i) Vol(An,j)

∣∣E In(i, j)−
(
1− exp(−EEn(i, j))

)∣∣
=

1

2N

n∑
i=1

n∑
j=1

∣∣E In(i, j)− (1− exp
(
−EEn(i, j)

)
)
∣∣

=
1

2N

n∑
i=1

n∑
j=1

|P[En(i, j) = 0]− P[Zn(i, j) = 0]|,

(4.4)

where Zn(i, j)
D
= Poisson

(
2N
n2 µn(i, j)

)
. Now, let Esn(i, j) be a random variable having the

size-bias distribution of En(i, j). Then, the Stein-Chen method (see, for example, Barbour,
Holst and Janson (1992, Theorem 1.B)) yields

dTV

(
L (En(i, j)),Poisson

(
2N
n2 µn(i, j)

))
6 E

∣∣En(i, j)− (Esn(i, j)− 1)
∣∣,

where dTV denotes the total variation distance. Note that E Im = p(i, j) for all 0 6 m 6 n,
hence E Im = E Im′ for all 1 6 m,m′ 6 n. Thus, we can use the standard way to
construct the size-bias distribution (see for example Goldstein and Rinott (1996)). To
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this end, let M be a uniformly chosen index from 1 to N , independent of all else. It is
not difficult to show that L (En(i, j)|IM = 1) is the size-bias distribution of En(i, j). We
now construct Esn(i, j) on the same probability space as En(i, j) in the following way.
Consider M as given, and consider a process X ′ = (X ′0, . . . , X

′
N ) with law

L (X ′) = L (X |IM = 1) = L
(
X
∣∣(XM−1, XM ) ∈ An,ij ∪An,ji

)
.

Let I ′m = I[(X ′m−1, X
′
m) ∈ An,ij ∪An,ji], and observe that

L ((I ′m)06m6n) = L ((Im)06m6n|IM = 1).

Thus,

Esn(i, j) =

N∑
m=1

I ′m

has the size-bias distribution of En(i, j). If IM = 1, we can couple the two processes X
and X ′ perfectly. If IM = 0, we couple the two processes as follows. Condition (3.2)
implies that X is Harris-recurrent; that is,

P[Xm+1 ∈ dy|Xm = x] > δdy.

Thus, it is possible to couple X and X ′ such that

P[X ′M+k 6= XM+k|IM = 0]

=

∫ 1

0

∫ 1

0

P[X ′M+k 6= XM+k |XM−1 = x,XM = y]

× P[XM−1 ∈ dx,XM ∈ dy|IM = 0]

6 (1− δ)k,

and, similarly,
P[X ′M−1−k 6= XM−1−k|IM = 0] 6 (1− δ)k.

We can easily extend the processes Xm and X ′m so that Im and I ′m are defined for
all m ∈ Z. Now, let G1 and G2 be geometric random variables with success probability δ
dominating the coupling time forward and backward in time from M and M − 1 respec-
tively. Note that we can construct G1 and G2 such that (G1, G2) ⊥⊥ X and (G1, G2) ⊥⊥ X ′
(note, however that (G1, G2) 6⊥⊥ (X,X ′)). Then,

E
∣∣En(i, j)− (Esn(i, j)− 1)

∣∣
6 E IM + E

{
(1− IM )

∑
m6=M

|Im − I ′m|
}

6 E IM + E

G1∑
m=1

(IM−m + I ′M−m) + E

G2∑
m=1

(IM+m + I ′M+m)

6 E IM + E

∞∑
m=1

I[G1 > m](IM−m + I ′M−m) + E

∞∑
m=1

I[G2 > m](IM+m + I ′M+m)

6 p(i, j) +
2p(i, j)

δ
+

∞∑
m=1

P[IM−m = 1|IM = 1](1− δ)m−1

+

∞∑
m=1

P[IM+m = 1|IM = 1](1− δ)m−1

6 p(i, j)
(

1 +
2

δ

)
+

∞∑
m=1

(
P[I−m = 1|I0 = 1] + P[Im = 1|I0 = 1]

)
(1− δ)m−1 (4.5)
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Now,

P[Im = 1|I0 = 1] = P[(Xm−1, Xm) ∈ An,ij ∪An,ji|I0 = 1]

6 P[Xm ∈ An,i ∪An,j |I0 = 1]

=

∫
x∈[0,1]

∫
y∈An,i∪An,j

κ(x, y)dy∫ 1

0
κ(z, x)dz

P[Xm−1 ∈ dx|I0 = 1]

6
∫
x∈[0,1]

∫
y∈An,i∪An,j

ϕ(y)dyP[Xm−1 ∈ dx|I0 = 1]

=

∫
y∈An,i∪An,j

ϕ(y)dy 6
∫
y∈An,i

ϕ(y)dy +

∫
y∈An,j

ϕ(y)dy.

Applying this bound to (4.5), we have, for each i and j,

E
∣∣En(i, j)− (Esn(i, j)− 1)

∣∣ 6 (1 +
2

δ

)
p(i, j) +

1

δ

∫
y∈An,i

ϕ(y)dy +
1

δ

∫
y∈An,j

ϕ(y)dy.

In conjunction with (4.4) and interchanging summation with integration, we arrive at

d�

(
n2

N
EGn, Hn

)
6

1

2N

n∑
i=1

n∑
j=1

((
1 +

2

δ

)
p(i, j) +

1

δ

∫
y∈An,i

ϕ(y)dy +
1

δ

∫
y∈An,j

ϕ(y)dy

)

=
(1 + 2δ)n

2N
+

n

δN

∫ 1

0

ϕ(x)dx.

Using (3.3), the claim follows.

Our third lemma shows that the distance between Hn and κ/‖κ‖1 goes to 0. The
proof is a basic exercise in real analysis.

Lemma 4.3. We have

lim
n→∞

d�

(
Hn,

κ

‖κ‖1

)
= 0. (4.6)

Proof. To simplify writing, we introduce the notation κ̄ := κ/‖κ‖1. Recall that Hn is the
weighted graph on the vertices [n] with edge weights as in (4.1). Define the graphon κ̂n
by

κ̂n(x, y) = n2

∫
An,i

∫
An,j

κ̄(u, v)dudv for x, y ∈ An,i ×An,j . (4.7)

Let gn be the graphon associated with the graph Hn, which is given by

gn(x, y) =
n2

2N

(
1− exp

(
−2N

n2
κ̂n(x, y)

))
.

Now,
d�
(
Hn, κ̄

)
6 d1

(
Hn, κ̄

)
= ‖gn − κ̄‖1 6 ‖gn − κ̂n‖1 + ‖κ̂n − κ̄‖1. (4.8)

By Borgs et al. (2014b, Lemma 5.6),

‖κ̂n − κ̄‖1 → 0. (4.9)

Note that, by Taylor’s approximation, 0 6 x− (1− e−x) 6 min{x, x2} for x > 0. Hence,
we have for any x, y ∈ R that
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|gn(x, y)− κ̂n(x, y)| = n2

2N

∣∣∣(1− exp
(
−2N

n2
κ̂n(x, y)

))
− 2N

n2
κ̂n(x, y)

∣∣∣
6

n2

2N
min

{
2N

n2
κ̂n(x, y),

(2N

n2
κ̂n(x, y)

)2
}

= min

{
1,

2N

n2
κ̂n(x, y)

}
κ̂n(x, y).

Let τ > 0 (to be chosen later). For any graphon h, let h ∧ τ be the graphon defined
as (h ∧ τ)(x, y) := h(x, y) ∧ τ and let the graphon (h)n be defined analogously to (4.7).
Now,

‖gn − κ̂n‖1 6
∫ 1

0

∫ 1

0

min

{
1,

2N

n2
κ̂n(x, y)

}
κ̂n(x, y)dxdy

6
∫ 1

0

∫ 1

0

min

{
1,

2N

n2
κ̂n(x, y)

}
(κ̂ ∧ τ)n(x, y)dxdy + ‖κ̂n − (κ̂ ∧ τ)n‖1.

(4.10)

By the contraction property,

‖κ̂n − (κ̂ ∧ τ)n‖1 = ‖(κ̂− κ̂ ∧ τ)n‖1 6 ‖κ̄− κ̄ ∧ τ‖1. (4.11)

Let ε > 0. Then there exists τ > 0 such that

‖κ̄− κ̄ ∧ τ‖1 < ε. (4.12)

For this choice of τ , as min
{

1, 2N
n2 κ̂n(x, y)

}
(κ̂ ∧ τ)n(x, y) converges to zero pointwise and

is bounded by τ , we can use dominated convergence to conclude that there exists n0 > 0

such that ∫ 1

0

∫ 1

0

min

{
1,

2N

n2
κ̂n(x, y)

}
(κ̂ ∧ τ)n(x, y)dxdy < ε (4.13)

for all n > n0. Therefore, applying (4.11)–(4.13) to (4.10), we have that

‖gn − κ̂n‖ < 2ε for all n > n0.

As ε > 0 was arbitrary, we conclude that

‖gn − κ̂n‖1 → 0. (4.14)

From (4.8), (4.9), and (4.14) the claim now follows.

We are now ready to prove the main result. It follows immediately from the triangle
inequality and the above three lemmas.

Proof of Theorem 3.1. As indicated above using the triangle inequality, we have

d�

(
n2

N
Gn,

κ

‖κ‖1

)
6 d�

(
n2

N
Gn,

n2

N
EGn

)
+ d�

(
n2

N
EGn, Hn

)
+ d�

(
Hn,

κ

‖κ‖1

)
.

Application of Lemma 4.1, Lemma 4.2 and Lemma 4.3 completes the proof.

5 Discussion

We conclude this note, with some remarks on dense graph sequences and respondent-
driven sampling.
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Dense graph sequence. We have chosen 0 < α < 1 so as to ensure that the graph
sequence is sparse. If α = 1, then we obtain a dense graph sequence. In this case as well,
the convergence in the cut-metric would hold but to a “Poissonised” κ in the following
sense.

Proposition 5.1. Under Assumption (K1) and Assumption (N1), and if α = 1,

lim
n→∞

d�

(
n2

N
Gn, κ̂

)
= 0

almost surely with respect to P, where the graphon κ̂ is given by

κ̂(x, y) = λ−1
(
1− e−λκ̄(x,y)

)
.

Proof. The proof follows the same way as the proof of Theorem 3.1, so we only provide a
sketch. Lemma 4.1 and Lemma 4.2 hold for α = 1 case as well. Instead of Lemma 4.3,
we have to show

lim
n→∞

d�(Hn, κ̂) = 0.

Define the graphon fn as fn(x, y) = λ−1
(
1− e−λκ̂n(x,y)

)
. Now,

d1

(
Hn, κ̂

)
= ‖gn − κ̂‖1 6 ‖gn − fn‖1 + ‖fn − κ̂‖1. (5.1)

Recall that |e−z − e−w| 6 |z − w| for all z, w > 0. So, for any x, y ∈ [0, 1],

|fn(x, y)− κ̂(x, y)| = |e−λκ̂n(x,y) − e−λκ̄(x,y)| 6 λ|κ̂n(x, y)− κ̄(x, y)|.

By Borgs et al. (2014b, Lemma 5.6), ‖κ̂n − κ̄‖1 → 0. Hence, using the above this readily
implies

‖fn − κ̂‖1 → 0. (5.2)

Note that for b > 0 and x > 0,

|xe−b/x − ye−b/y| 6 |x− y|.

So, for any x, y ∈ R, we have

∣∣gn(x, y)− fn(x, y)
∣∣ =

∣∣∣∣ n2

2N

(
1− exp

(
−2N

n2
κ̂n(x, y)

))
− 1

λ

(
1− exp

(
−λκ̂n(x, y)

))∣∣∣∣
6

∣∣∣∣ n2

2N
− 1

λ

∣∣∣∣+

∣∣∣∣ n2

2N
exp
(
−2N

n2
κ̂n(x, y)

)
− 1

λ
exp
(
−λκ̂n(x, y)

)∣∣∣∣
6 2
∣∣∣ n2

2N
− 1

λ

∣∣∣,
As
∣∣n2/(2N)− 1/λ

∣∣→ 0, dominated convergence implies

‖gn − fn‖1 → 0. (5.3)

From this the result follows as in the proof of Theorem 3.1

We note that the Stein-Chen method plays a critical role in proof of Lemma 4.2
when α = 1, as N

n2 → λ > 0; that is, the mean of the Poisson random variable does not
converge to 0, so that moment bounds would not suffice to prove Lemma 4.2.
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Respondent-driven sampling. One common approach in RDS to correct for bias
towards high degrees is to ask participants of the study to estimate their own degree and
then to weigh the participants by the inverse of their reported degree. This procedure is
known as multiplicity sampling and was first used in the context of RDS by Rothbart,
Fine and Sudman (1982). What Theorem 3.1 implies in essence is that one could also
clump participants together according to general characteristics (such as age, gender,
etc.). If the degree of the participants is captured by these characteristics, the bias
towards participants with high degrees would disappear.

It was argued by Heckathorn (2007) that multiplicity sampling cannot in general cor-
rect for the bias towards nodes with high degree due to possible differential recruitment,
which means that some groups of participants are systematically able to recruit more
people than others. Other methods of estimations, including the original estimators
of Heckathorn (1997) as well as the clumping procedure proposed in this article, are
equally susceptible to differential recruitment bias.

The mathematical reason behind this bias is that the stationary distribution of a
one-referral Markov process on a set of types, which is the commonly used mathematical
tool to derive RDS estimators, can be different from the stationary distribution of
a multi-type branching process with the same transition probabilities if the average
number of offspring depends on the types. This was described precisely by Athreya
and Röllin (2016), where the two models, a one-referral Markov chain and Poisson-
offspring branching process, show substantially different over-sampling of high-degree
vertices in the network. In the one-referral Markov chain case, the over-sampling is
exactly proportional to the degree, but in the case of a Poisson number of referrals, it
is proportional to a quantity that is harder to calculate (the eigenfunction of the mean
replacement measure of the branching process). In practice, differential recruitment
bias is typically reduced by limiting the number of referrals, traditionally to no more
than three.

Heckathorn (2007) also proposes a method called estimation through dual-compo
nents, which is supposed to take differential recruitment into account. This is the default
method used in the widely-used statistical software RDSAT (see Volz et al. (2012)). The
basic idea is to estimate the transition probabilities governing the referrals, calculate
the proportion of different types one would expect to see under absence of both bias due
to different degrees and bias due to differential recruitment, compare with the actual
observed proportions, and then to work backwards to find the true proportions in the
population. However, the theoretical justifications in Heckathorn (2007) for the details
of the procedure are somewhat opaque.

Open problems. We conclude the article with a couple of questions that can be
explored.

(1) In Athreya and Röllin (2016) a rigorous framework was set up to handle convergence
in dense graph limits. For dense graphs, the theory of graphons (whose range
is [0, 1]) was used to establish the convergence. Graphons in dense graph setting
characterise the limit via convergence of subgraph counts. This aspect applies under
several equivalent metrics. One should be able to establish the RDS models used in
Athreya and Röllin (2016) to prove convergence in the L1 metric as in this article.
The approach could be one as laid out in proof of Borgs et al. (2014a, Theorem 2.14).

(2) As already mentioned before, in practice, an RDS sample comes typically in the form
of a tree, rather than a single chain, and hence, a multi-type branching process,
where the types could represent characteristics such as gender, age etc., would
constitute a more realistic mathematical model. The stationary distribution of such
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a branching process is difficult to solve analytically in general, but under additional
assumptions, such as considering only finitely many types, a numerical approach
would definitely be feasible. In this light, it seems that a statistical theory based on
branching process theory, rather than Markov chain theory, could put the framework
of dual-components from Heckathorn (2007) onto solid ground or even improve on it.
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