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Abstract

We provide a methodology by which an epidemiologist may arrive at an
optimal design for a survey whose goal is to estimate the disease burden in a
population. For serosurveys with a given budget of C rupees, a specified set
of tests with costs, sensitivities, and specificities, we show the existence of
optimal designs in four different contexts, including the well known c-optimal
design. Usefulness of the results are illustrated via numerical examples. Our
results are applicable to a wide range of epidemiological surveys under the
assumptions that the estimate’s Fisher-information matrix satisfies a uniform
positive definite criterion.
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1 Introduction

Total disease burden at a given time is the fraction of the population
that were infected in the past or are currently having active infection of the
disease. This key indicator provides a snapshot of the state of the pandemic
at that time. An accurate estimate of total disease burden during a pan-
demic can enable evidence-based public health management, e.g., tracing,
testing, treatment and triage, non-pharmaceutical interventions, and vacci-
nation planning. One way to estimate the total disease burden and infer
the state of the pandemic is to conduct surveys. The surveys use multiple
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COVID-19: optimal design of serosurveys...

tests on participants to gather evidence of both past infection and active
infection. For example, the recently concluded first round of the Karnataka
state COVID-19 serosurvey (Babu et al., 2020) involved three kinds of tests
on participants: the serological test on serum of venous blood for detec-
tion of immunoglobulin G (IgG) antibodies, the rapid antigen detection test
(RAT), and the quantitative reverse transcription polymerase chain reac-
tion (RT-PCR) test for detection of viral RNA. The tests provide different
kinds of information, e.g. past infection or active infection. The tests have
remarkable variation in reliability, e.g., the RAT has sensitivity (i.e prob-
ability of a positive test given that the patient has the disease.) of about
50% while the RT-PCR test has a sensitivity of 95% or higher (assuming no
sample collection- or transportation-related issues); there is variation, albeit
less spectacular, in specificities (i.e probability of a negative test given that
the patient is well.). The test costs also vary, e.g., the RAT cost was Rs. 450
while the RT-PCR test cost was Rs. 1600 on 10 December 2020. Conducting
all three tests on each participant is ideal but can lead to high cost.

Suppose J denotes the set of tests and T = 2J\∅ denotes all the nonempty
subsets of tests. If a subset of tests t ∈ T is used on a participant, the cost ct
is the sum of the costs of the individual tests constituting t. A survey design
is defined as (wt, t ∈ T ), where wt ≥ 0 is the number of participants who are
administered the subset t of tests. We relax the integrality requirement1 on
wt and will assume wt ∈ R+. The cost of this design is obviously

∑
t∈T wtct.

The question of interest is:

Given a budget of C rupees, a set of tests, their costs, their sen-
sitivities, specificities, and the goal of estimating the disease bur-
den, what is a good survey design?

In this short note we address the above question for four specific opti-
misation criteria (c-optimal design, worst-case design, optimal design across
strata, and optimal design with additional information such as symptoms
observed). Motivated by the sero-survey discussed above we propose a spe-
cific model in Section 2 and present our main results for each of the four
criteria in Section 3. We discuss prior work and provide the context for our
work in Section 4. Our results are not limited to the assumed settings and
can be applied to more general epidemiological surveys as well, see Remark 1

1Integrality can be met if we randomise and constrain the expectation.
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in Section 4. We also present numerical examples2 illustrating the applica-
bility of the theorems, see in particular Table 3 in Section 5. In Section 6,
we provide the proofs of the main results.

2 Model

As discussed in the introduction, the primary motivation for this note
was to find optimal designs when one needs to use multiple tests to estimate
COVID-19 burden in a region. We shall formulate our results with the model
used in the Karnataka serosurvey, see Babu et al. (2020). As we will see in
Remark 1 our results have wider applicability to other models and surveys.

Each individual of the population will be assumed to be in one of four
states. Namely: (i) having active infection but no antibodies, (ii) having an-
tibodies but no evidence of active infection, (iii) having both antibodies and
active infection, and (iv) having neither active infection nor antibodies. The
state of the participant in a survey is inferred from the RAT, the RT-PCR,
and the antibody test outcomes, or a subset thereof. As the tests have known
sensitivities and specificities their outcomes are thus noisy observations of
the (unknown) disease state of the individual.

The main focus is on estimating the total disease burden, which is ℘ :=
p1 + p2 + p3, where pi are the probabilities of the various states and are
unknown to the epidemiologist (See Table 1). We will assume the parameter
space P to be a convex and compact subset of [0, 1]3. Let the indices j = 1, 2,
and 3 stand for RAT, RT-PCR and antibody tests, respectively. The last
three columns of Table 1 provide the nominal responses on the RAT, RT-
PCR and the antibody tests for each of the four states. Write M(s, j) for
the nominal test outcome for an individual in state s; M(s, j) = 1 indicates
a nominal positive outcome, and M(s, j) = 0 indicates a nominal negative
outcome.

As alluded to earlier, the actual test outcomes may differ from the nom-
inal outcomes. In Fig. 1, there are three channels for the three tests. Each
channel has a deterministic binary-output channel followed by a noisy bi-
nary asymmetric channel. The deterministic output is M(s, j) for test j on
input s. Let σ(0, j) denote the specificity of test j, and let σ(1, j) denote
the sensitivity of test j. The final output of test j is the output of the noisy
binary asymmetric channel with this sensitivity and specificity, see Fig. 1.

2The source code (in R and Python) that was used to generate the results corresponding
to Theorems 1 and 2 in Table 3 can be found at the following URL: https://github.com/
cni-iisc/optimal-sero-survey-design
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Table 1: Table of states and nominal test responses M(s, j)

State s Probability State RAT RT-PCR Antibody
description j=1 j=2 j=3

s=1 p1 Active infection but no
antibodies

1 1 0

s=2 p2 Antibodies present but
no evidence of active in-
fection

0 0 1

s=3 p3 Simultaneous presence
of active infection and
antibodies

1 1 1

s=4 1−
3∑

i=1

pi Neither active infection
nor antibodies

0 0 0

We can thus view each test outcome (RAT or RT-PCR or antibody) as the
output of two channels in tandem, with the disease state as input.

The specificities and sensitivities used for the estimations3 are in Table 2.
Let t = (t1, t2, t3) represent the subset of tests carried out, or a test pattern.
If tj = 1, then test j was conducted; if tj = 0, then test j was not conducted.
Let y = (y1, y2, y3), where yj ∈ {0, 1,NA}, denoting a negative outcome, a
positive outcome, or test not conducted, respectively. Let Yt denote the set
of possible outcomes for the subset of tests t.

We assume that the test outcomes of an individual are conditionally
independent given the disease state of the individual. The assumption of
conditional independence is a strong one. Indeed it is possible that a symp-
tomatic person can get tested earlier and during the infectious state, leading
to a higher predictive value for the test. For simplicity, we do not model
these complications. Then for an individual in state s with test pattern
t = (t1, t2, t3), the conditional probability of test outcome y = (y1, y2, y3) is
given by

q(y|s, t) =
∏

j:tj=1

[σ(M(s, j), j)]1{M(s,j)=yj} · [1− σ(M(s, j), j))]1−1{M(s,j)=yj}

(2.1)
whereM and σ are given in Tables 1 and 2, respectively, and 1{M(s, j) = yj}
is the indicator function that takes the value 1 when yj equals the nominal

3The reliability indicators for the antibody test were measured on the same lot and batch
used for the Karnataka sero-survey (Babu et al., 2020) and those for the other tests are
the same as those used therein.
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Figure 1: Noise model for the RAT, RT-PCR, and antibody test outcomes. The
left-most subfigure is for RAT, j = 1. The middle subfigure is for the RT-PCR test,
j = 2. The right-most figure is for the antibody test, j = 3. In each subfigure, the
first connection is a “noiseless” channel indicated by M(s, j). In each subfigure,
the second channel is a noisy binary asymmetric channel whose correct outcome
probabilities are given by the specificity σ(0, j) and sensitivity σ(1, j). The values
are indicated in Table 2. The cross-over probabilities are 1 minus these

response M(s, j) and 0 otherwise. Note that in Eq. 2.1 if the test pattern
t = 0 = (0, 0, 0), we have an empty product which by convention is set to 1.
In all other cases, when t �= 0, Eq. 2.1 gives the conditional probability of the
outcome y given the tests in the test pattern t. If one of the test outcomes
is inconclusive, we reject the test, set the corresponding tj = 0, and it does
not enter into the product in Eq. 2.1. Note that the individual effect does
enter into the conditional probability calculation through the state of the
individual s.

This leads to a parametric model for the probabilities of test outcomes
(observations) given the disease-state probabilities (parameters of the model)
denoted p = (p1, p2, p3). Then total burden will be a linear combination
uT p (i.e. u = (1, 1, 1)T ). While our focus is on the total disease burden,
p1+ p2+ p3, we will continue to use the notation uT p instead of p1+ p2+ p3
because our results apply for more general u; see Remark 1.

The Fisher information matrix, denoted It(p), captures information on
the reliability of the outcomes when a subset t of tests is conducted on the

Table 2: The sensitivities and specificities
σ(m, j) RAT RT-PCR test Antibody test

j = 1 j = 2 j = 3

Specificities (m = 0) 0.975 0.97 0.977
Sensitivities (m = 1) 0.5 0.95 0.921
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participant. For i = 1, 2, 3 and j = 1, 2, 3, the (i, j)th entry of It(p) for the
above model can be expressed as

Ep

[
∂ logPp(y|t)

∂pi

∂ logPp(y|t)
∂pj

∣
∣
∣
∣t

]

=
∑

y∈Yt

(q(y|i, t)− q(y|4, t))(q(y|j, t)− q(y|4, t))
∑3

s=1 psq(y|s, t) + (1− p1 − p2 − p3)q(y|4, t)
, (2.2)

where Ep[·|t] and Pp(·|t) are expectation and probability, respectively, on
the responses for a test pattern t ∈ T at parameter p. This will play an
important role in the definition of the optimality criteria.

For a given survey design (wt, t ∈ T ), using the above likelihood func-
tion, the maximum likelihood estimate (MLE) p̂ can be obtained by solving
the so-called likelihood equation, see Poor(1994, eqn. (IV.D.3)). Standard
results (e.g. (Poor, 1994, Chapter 4)) then will assert the consistency and
asymptotic normality of the MLE, p̂, as the number of samples goes to in-
finity while keeping the survey design proportion fixed. We will now state
our main results in the next section.

3 Main Results

We will consider four designs and present results for each. In Theorem 1,
we establish the existence of a c-optimal design. We then consider a worst-
case design in Theorem 2, optimal design of surveys conducted across dif-
ferent strata in Theorem 3, and optimal design when additional information
about the participants, such as symptoms observed, in Theorem 4.

3.1. The c-optimal Design By the asymptotic optimality property, the
estimated total burden uT p̂ is approximately Gaussian with mean uT p and
variance uT

(∑
t∈T wtIt(p)

)−1
u. This suggests the use of the so-called local

c-optimal design criterion. The adjective ‘local’ refers to local optimality at
p and the criterion is called c-optimal because the variance of cT p̂ was min-
imised, for a vector c, in Pronzato and Pázman (2013, Chapter 5). Accuracy
of the estimate is generally a combination of precision (narrow confidence in-
tervals) and unbiasedness. Broadly speaking, given a budget, the c-optimal
design attempts to resolve the tension between the accuracy of the estimate
and cost efficiency. We shall refer to a survey design (w∗

t , t ∈ T ) as c-optimal
if it minimizes the variance

uT

(
∑

t∈T
wtIt(p)

)−1

u

given the budget C. Our first result is on the c-optimal design.
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Theorem 1. Let the budget C > 0, let the parameter p be fixed. Then
the c-optimal survey design (w∗

t , t ∈ T ) is given by

w∗
t = v∗tC/ct, t ∈ T, (3.1)

where v∗ is a solution to the optimisation problem:

minimise a(v; p) := uT

(
∑

t∈T
vtIt(p)/ct

)−1

u (3.2)

subject to
∑

t∈T
vt = 1, vt ≥ 0, t ∈ T.

Furthermore, the minimum variance is given by a(v∗; p)/C.

In other words, for c-optimality, we must allocate v∗t fraction of the bud-
get C to the subset of tests t; the number of participants w∗

t that should be
administered the subset t of tests is therefore given by Eq. 3.1. Note that v∗

is independent of the budget C. A subset t may be highly informative, i.e.,
uT It(p)

−1u may be small, yet t may not be attractive when relativised by
its cost ct because what ultimately matters is uT (It(p)/ct)

−1u; see Eq. 3.2.
Section 6 contains the proof with additional structural results on the support
of the solution. The last statement of the theorem gives, assuming that the
bias is negligible, the level of accuracy (asymptotic variance of the re-scaled
estimate) that the budget can buy: accuracy is inversely proportional to the
budget. It also suggests how to solve a related problem: what is the required
budget to meet a certain margin of error target with confidence 1− α? The
answer to this question is to find the C that lowers Φ−1(α/2)

√
a(v∗; p)/C

below the target margin of error, where Φ is the normal cumulative distri-
bution function.

3.2. Worst-Case Design Theorem 1 is a locally optimal design at pa-
rameter p, and the optimal design v∗ may depend on p in general. Whenever
we want to highlight this dependence, we will write v∗(p). In practice, we
often design for a guessed p; for e.g., the Karnataka serosurvey (Babu et
al., 2020) assumed a seroprevalence of 10% to arrive at the required number
of antibody tests. One could also use a prior for p and extend Theorem 1
straightforwardly. Our next result, however, is a design for the worst case,
i.e., a design (wt, t ∈ T ) that minimises

max
p∈P

uT

(
∑

t∈T
wtIt(p)

)−1

u,
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where P is a convex and compact uncertainty region for the parameter,
subject to the budget constraint C. In our setting, p being a sub-probability
vector, the uncertainty region is a bounded set. Often the uncertainty region
is a convex and compact confidence region obtained from a previous survey,
see for example (Babu et al., 2020). If it is not convex or closed, taking
convex hull and closure yields a relaxed uncertainty region P that is convex
and compact.

As optimal designs for the worst case usually go, our solution will involve
the Nash equilibria of a two-player zero-sum game G defined as follows: The
pay-off of the game G is

uT

(
∑

t∈T
vtIt(p)/ct

)−1

u

with the minimising player chooses v from the probability simplex on T ; the
maximising player simultaneously chooses p from a convex and compact P.
The design for the worst case is as follows.

Theorem 2. Any design w∗ for the worst case is of the form w∗
t =

v∗tC/ct, t ∈ T , where v∗ is a Nash equilibrium strategy for the minimising
player in the game G.

As we shall see, the strategy sets are convex and compact, the pay-off
function is concave in p for a fixed v, convex in v for a fixed p, and by Glicks-
berg’s theorem (1952) there exists a Nash equilibrium. While the equilibrium
may not be unique, it is well-known that this is not an issue for two-player
zero-sum games. The minimising player may pick any Nash equilibrium and
play his part of the equilibrium, i.e., there is no “communication problem”
in a two-player zero-sum game.

3.3. Allocation Across Strata Surveys are also conducted across differ-
ent strata or districts with differing disease burdens. For example, con-
sider D districts, with p(d) being the disease spread parameter in district
d, d ∈ [D] = {1, . . . , D}. If the population fraction of district d is nd, with∑

d∈[D] nd = 1, then the weighted overall disease burden in the D districts is
∑

d∈[D] nd(u
T p̂(d)) where p̂(d) is the MLE for district d when the true param-

eter is p(d). The next result indicates how the total budget must be allocated
across the D districts to minimise the variance of

∑
d∈[D] nd(u

T p̂(d)), subject
to a total budget of C.

Theorem 3. Let the parameters for the districts be p(d) and let the pop-
ulation fractions be nd, d = 1, . . . , D. The (local) c-optimal design for the
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weighted estimate
∑

d∈[D] nd(u
T p̂(d)) is as follows. The optimal budget allo-

cation Cd for district d is proportional to

nd

√
a(v∗(p(d)); p(d)),

i.e.,

Cd = C · nd

√
a(v∗(p(d)); pd)

∑
d′∈[D] nd′

√
a(v∗(p(d′)); p(d′))

, d = 1, . . . , D,

where v∗(p(d)) solves Eq. 3.2 for district d. The optimal design in each
district is given by w∗

t (d) = v∗t (p(d))Cd/ct for each t and d.

Thus a larger fraction of the total budget should be allocated to districts
with a larger population, and to districts with a greater uncertainty in the
estimate as measured by the standard error. The precise mathematical re-
lation is the content of the above theorem. If there is no basis for a guess
of p(d) in each district, then the worst-case design could be employed in
each district. Theorem 3 then implies that the budget allocation is in the
proportion of the population. Theorem 3 is also applicable to other kinds
of stratification, for e.g., sex, age groups, risk categorisation, pre-existing
health conditions, etc., so long as the fraction in each component of the
stratification under consideration is known. For example, if we know that
the prevalence is different among males and among females in a population,
one should consider an additional sex-based stratification, and replace nd in
Theorem 3 by the appropriate fractions that sum up to nd.

3.4. Enabling On-the-Ground Decisions Often the surveyors have ac-
cess to additional information about the participants that might affect the
quality of the test outcomes. Let us consider the example of participants
presenting with or without symptoms. This is useful information that can
inform what tests should be employed. The Karnataka serosurvey found that
the RAT is more sensitive on participants with symptoms than on partici-
pants without symptoms (68% and 47%, respectively, see Babu et al. (2020)).
Let s be the symptom-related observable with s = 0 denoting the absence
of symptoms and s = 1 denoting the presence of symptoms. Let rs, s = 0, 1
denote the asymptomatic and the symptomatic fractions of the population.
Let p(s) be the model parameter for substratum s, s = 0, 1. The goal is to
estimate the total burden

∑
s=0,1 rs(u

T p(s)). Assuming MLE in each sub-
stratum, the objective continues to be the minimisation of the variance of∑

s=0,1 rs(u
T p̂(s)).

Since the tests’ reliability depend on whether a participant is symp-
tomatic or asymptomatic, let Ist (p(s)) be the Fisher information matrix
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associated with the group s, when the subset of tests employed is t and
the group s parameter is p(s). Let v∗(p(s)) denote the optimum allocation
of the budget4, given to group s, across the subsets of tests. Further, let
as(v

∗(p(s)); p(s)) denote the value of Eq. 3.2 for group s, when the parame-
ter is p(s) and the Fisher information matrices are Ist (p(s)), t ∈ T . The next
result is the following.

Theorem 4. The optimal budget allocation Cs for group s is in propor-
tion to

rs
√
as(v∗(p(s)); p(s)),

i.e.,

Cs = C
rs
√
as(v∗(p(s)); p(s))

∑

s′=0,1

rs′
√
as′(v∗(p(s′)); p(s′))

, s = 0, 1,

where v∗(p(s)) solves (3.2) for group s. The optimal design for each group
s is given by w∗

t (s) = v∗t (p(s))Cs/ct for each t and s.

Note that the optimal allocation in Theorem 4 is similar to that in The-
orem 3, with the difference being as(v

∗(p(s)); p(s)) depending on the group
s in Theorem 4. The optimal budget for C0 and C1 suggests how many
asymptomatics and symptomatics must be tested. Furthermore, the test
prescription adapts to the presence or absence of symptoms presented by the
participant. Finally, Theorem 4 is also applicable to other settings where
information about participants’ variables and factors are observable, and are
known to affect the quality of testing, e.g., severity of the symptoms and the
possible high viral load leading to better sensitivity of viral RNA detection
tests.

4 Prior Work and Context for our Findings

The locally c-optimal design criterion is well-known (Pronzato and Pázman,
2013, Chapter 5). Elfving’s seminal work (1952) shows that, for a linear re-
gression model, the c-optimal design is a convex combination of the extreme
points in the design space. Dette and Holland-Letz (2009) extended the
characterisation of the c-optimal design to nonlinear regression models with
unequal noise variances. Our Theorem 1 could be recovered from the results
of Dette and Holland-Letz (2009) with some additional work to characterise

4Note that a more proper notation would have been v∗(p(s); s) at the expense of cumber-
some notation. We will omit the dependence of v∗ on s for notational convenience.
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the solution. Chernoff (1953) considered the closely related criterion of min-
imising the trace of (

∑
t∈T wtIt(p))

−1 and obtained a convex-combination-
of-extreme-points characterisation. This criterion is also called A-optimal
design and is useful in our setting if the surveyor is interested in estimating
the individual p1, p2, and p3 with good accuracies, not just their sum, and
gives equal importance to the three variances. Other design criteria include
an optimality criterion that takes into account the probability of observing a
desired outcome in generalised linear models (McGree and Eccleston, 2008),
variance minimisation for linear models but with non-Gaussian noise (Gao
and Zhou, 2014), maximisation of the determinant of the information ma-
trix (D-optimal design), etc. Since our interest is in estimating uT p, a linear
combination of the vector p, c-optimality is the natural criterion.

While the above works deal with locally optimal designs, we also con-
sider the worst-case design problem, weighted design, and design for on-
the-ground decisions in Theorems 2, 3, and 4, respectively. The worst-case
design problem was considered in Pronzato and Pázman (2013, Chapter 8)
where a necessary and sufficient condition for optimality is given. In prin-
ciple it should be possible to derive Theorem 2 from that starting point.
Our game-theoretic characterisation was more appealing. To the best of our
knowledge, Theorem 4 and applications of Theorems 1–4 to COVID-19 sur-
vey design are new. We hope that other survey designers will make use of
our findings at this critical juncture of the pandemic, so that immunisation
plans can be better optimised.

Remark 1. Our focus in this note has been optimal design of serosurveys
for disease burden estimation. However our results hold for more general
epidemiological surveys. The dimensionality of the parameter p can be any
natural number k, and the u defining the estimate uT p can be any vector
in R

k. In any such model, our results in Theorems 1, 3, and 4 will hold as
long as the MLE exists and the corresponding Fisher information matrix,
It(p) for the parameter p, satisfies the assumption (A1) stated below, and
our result in Theorem 2 will hold as long as assumption (A2), also stated
below, holds, see Remark 2 in the next section.

For t ∈ T and p ∈ P, let λp(t) denote the smallest eigenvalue of It(p).
We now make precise the assumptions.

(A1) For a given p ∈ P, there exists t∗ ∈ T such that the matrix It∗(p) is
positive definite.

(A2) There exists t∗ ∈ T such that infp∈P λp(t
∗) > 0.
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5 Numerical Examples

In this section we shall discuss several numerical examples illustrating the
applications of our main results. An optimal design calculator is available
at Athreya et al. (2020).

We begin with some examples connected to Theorem 1. Consider a local
c-optimal design at p = (0.10, 0.30, 0.01), the fractions of those with active
infection alone, those with antibodies alone, and those that show both active
infection and antibodies. Suppose that the budget is Rs. 1,00,00,000 = Rs. 1
Crore. Let us fix the RAT and antibody test costs at Rs. 450 and Rs. 300,
respectively. In the first row of Table 3, the RT-PCR test costs Rs. 1,600.
The optimal allocation is to run antibody tests alone on 521 participants
(t = (0, 0, 1)) and the RAT and antibody tests on 13,125 participants (t =
(1, 0, 1)). In particular, no RT-PCR tests are done. In the second row of
Table 3, the RT-PCR test cost comes down to Rs. 1000. Then the optimal
allocation is to run antibody tests (t = (0, 0, 1)) on a larger number of
participants, namely 8,000, and the RT-PCR and antibody tests on 5,846
participants (t = (0, 1, 1)). In particular, RT-PCR is sufficiently competitive
that no RAT tests are done. In the third row of Table 3, the RT-PCR test
costs only5 Rs. 100. The optimal allocation is to run exactly one test pattern,
the RT-PCR and the antibody tests (t = (0, 1, 1)), on 25,000 participants.
The corresponding variances per rupee are given on the last column. The
improved accuracy is remarkable for the third case when we rely more on
RT-PCR tests.

Our next set of example is with regard to Theorem 2. Consider the
numerical example in the fourth row of Table 3 where the RT-PCR test cost is
only Rs. 100. The range for p2 comes from the Karnataka’s serosurvey (Babu
et al., 2020) where the districts’ total burden varied from 8.7% to 45.6%.
The ranges for p1 and p3 also come from Babu et al. (2020). The worst-case
(obtained via a grid search with 0.01 increments) is near p = (0.06, 0.45, 0.0).
The optimal design is to spend 2.5% of the budget on antibody tests alone,
and 97.5% of the budget on the combination of RT-PCR and antibody tests.
For the indicated costs, this comes to 838 participants getting only antibody
tests and 24,371 participants getting the RT-PCR and antibody tests, see
the fourth row of Table 3.

Since an overwhelming part of the budget is for the test pattern (0, 1, 1),
for logistical reasons, all participants will be administered RT-PCR and an-
tibody tests in the second serosurvey for Karnataka (January 2021). Calcu-
lations (that we do not present here) indicate that the worst-case variance

5This big reduction in cost may come from pooled testing strategies.
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increases by a factor 1.0023, and so the number of samples must be increased
by this factor to achieve the same margin of error and confidence. But the
logistical simplicity is well worth extra cost, considering the magnitude and
decentralised nature of the survey.

We now discuss an insightful numerical example related to Theorem 4.
Consider a setting where the RAT costs Rs. 450, the RT-PCR costs Rs. 1,600
and the antibody test costs Rs. 300. Let us go back to the local c-optimal
design criterion for p = (0.1, 0.3, 0.01). Additionally, let 10% of the popula-
tion be symptomatic (r1 = 0.1). The optimal allocations under Theorem 4
indicate that roughly 91.2% of the budget must be spent on the asymp-
tomatic population and 8.8% on the symptomatic population. The reduc-
tion for the symptomatic population is because the estimate is more reliable
(given the better sensitivity of the RAT). As expected, the RT-PCR test
is too expensive and is completely skipped. More interestingly, all asymp-
tomatic participants should be administered the RAT and the antibody tests
whereas among the symptomatic participants, a sizable fraction should be
administered the antibody test alone. In other words, a smaller fraction of
the symptomatic fraction get the RAT. This might be paradoxical at first
glance, for one might expect an increased use of RAT on participants where
it is more effective. There is however an insightful resolution to this para-
dox: given that the active infection fraction estimate is likely to be better in
the symptomatic population than in the asymptomatic population, we must
invest a portion of the budget for the symptomatic population on antibody
tests alone to improve the estimation of the fraction with past infection. In
the last row in Table 3, we have indicated the numbers to be tested according
to the optimal design.

The above examples provide interpretations of our designs. We now give
one example to show the superiority of the our design methodology. The
Karnataka COVID-19 serosurvey round 1 design (Babu et al., 2020), arrived
at using only antibody-test considerations at 10% antibody prevalence, had
288 participants with test pattern (1, 1, 1) (all three tests) and 144 with
test pattern (0, 1, 1) (no RAT). Assume RAT cost of Rs. 450, a subsidised
RT-PCR cost of Rs. 100, and antibody test cost of Rs. 300. The total bud-
get then comes to Rs. 3,02,400. One of the unit’s estimated parameters
was p = (0.050, 0.149, 0.007) (BBMP Yelahanka, see [2, Supplementary Ap-
pendix A]). We now compare the confidence intervals of the above design and
the optimal design. For the above design, the variance can be evaluated and
is 6.25× 10−4. The optimal design for the same cost has 50 participants un-
dergoing the test pattern (0, 1, 0) (only RT-PCR test) and 743 participants
undergoing test pattern (0, 1, 1) (no RAT). In particular, the optimal design

485



S. Athreya et al.

does not use the RAT but increases the number of RT-PCR and antibody
tests. The reduced variance is 3.01× 10−4, which is a 50.4% reduction.

6 Proof of Theorems

Recall that C > 0 is the total budget, T is all the nonempty subsets of
tests, ct is the sum of the costs of the individual tests constituting t ∈ T ,
and the survey design is denoted by (wt, t ∈ T ), where wt ≥ 0 is the number
of participants (relaxed to a real-value) who are administered the subset t
of tests, wt ∈ R+. The cost of this design is

∑
t∈T wtct.

We begin with a specific observation with regard to our model.

Remark 2. Let t∗ = (1, 1, 1). When the specificities and sensitivities are
as given by Table 2, it is easy to verify (A1) and (A2) hold. Indeed, from
Eq. 2.2, defining

v(y, t∗) := (q(y|1, t∗)− q(y|4, t∗), q(y|2, t∗)− q(y|4, t∗), q(y|3, t∗)− q(y|4, t∗))T ,

and the probability

P (y|t∗) :=
3∑

s=1

psq(y|s, t∗) + (1− p1 − p2 − p3)q(y|4, t∗),

we have for any nonzero x ∈ R
3

xT It∗(p)x = xT

⎛

⎝
∑

y∈Yt∗

1

P (y|t∗)v(y, t
∗)v(y, t∗)T

⎞

⎠x

=
∑

y∈Yt∗

1

P (y|t∗)
∣
∣xT v(y, t∗)

∣
∣2

≥
∑

y∈Yt∗

∣
∣xT v(y, t∗)

∣
∣2

> 0,

where the last strict inequality holds because {v(y, t∗), y ∈ Yt∗} is linearly
independent, a fact that can verified for the given sensitivities and the speci-
ficities. This not only verifies assumption (A1) for our example, but also
assumption (A2).

We shall use the fact the model satisfies assumption (A1) or (A2) in the
proofs below.

Proof of Theorem 1. Let vt = wtct/C, t ∈ T . Recall a(v; p) from
Eq. 3.2. It is immediate that a minimiser of Eq. 3.2 will yield a c-optimal
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design given by Eq. 3.1. To find a minimiser, first consider the following
optimisation problem

minimise a(v; p) (6.1)

subject to
∑

t∈T
vt ≤ 1, vt ≥ 0, t ∈ T. (6.2)

By Assumption (A1), there exists a v(0) such that a(v(0); p) < ∞, and hence
the minimisation can be restricted to the set C = {(vt, t ∈ T ) : a(v; p) ≤
a(v(0); p), vt ≥ 0, t ∈ T,

∑
t∈T vt ≤ 1}. With this restriction on the con-

straint set, the above problem is a convex optimisation problem. Indeed,
the objective function is convex on C; for any λ ∈ (0, 1) and any two designs

v(a) and v(b) in C, the matrix

λ

(∑
t∈T

v
(a)
t It(p)

ct

)−1

+ (1− λ)

(∑
t∈T

v
(b)
t It(p)

ct

)−1

−
(∑

t∈T

(λv
(a)
t + (1− λ)v

(b)
t )It(p)

ct

)−1

is positive semidefinite, and the constraint set C is a convex subset of R|T |.
Moreover C is also compact: for any sequence {v(n), n ≥ 1} in C, being
a sequence in the compact set (6.2), we can extract a subsequence that
converges to an element ṽ of Eq. 6.2; from the definition of C, we must
have a(ṽ; p) ≤ a(v(0); p) which implies that ṽ ∈ C. Hence there exists a v∗ =
(v∗t , t ∈ T ) that solves the above problem, see Boyd and Vandenberghe (2004,
Section 4.2.2). If

∑
t∈T v∗t < 1, then we may scale up the v∗ by a factor to

use the full budget, satisfy the sum-constraint with equality, and strictly
reduce the objective function by the same factor, which is a contradiction
to v∗’s optimality. Hence

∑
t∈T v∗t = 1. Hence w∗

t = v∗tC/ct is the desired
c-optimal design and the minimum variance is given by a(v∗; p)/C. This
completes the proof.

For information on the structure of an optimal solution, consider the
Lagrangian

L(v, λ, μ) = uT

(
∑

t∈T
vtIt(p)/ct

)−1

u−
∑

t∈T
λtvt + μ

(
∑

t∈T
vt − 1

)

.

For each t ∈ T ,

∂vtL(w, λ, μ) = −uT

(
∑

t′∈T
vt′It′(p)/ct′

)−1
It(p)

ct

(
∑

t′∈T
vt′It′(p)/ct′

)−1

u

−λt + μ.
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By the Karush–Kuhn–Tucker conditions (Boyd and Vandenberghe, 2004,
Chapter 5), there exist non-negative numbers (λ∗

t , t ∈ T ) and μ∗ such that

− uT

(
∑

t′∈T
v∗t′It′(p)/ct′

)−1
It(p)

ct

(
∑

t′∈T
v∗t′It′(p)/ct′

)−1

u− λ∗
t + μ∗=0, t ∈ T, (6.3)

λ∗
t v

∗
t = 0, t ∈ T, (6.4)

μ∗
(
∑

t∈T
v∗t − 1

)

= 0. (6.5)

Clearly v∗ �≡ 0 and μ∗ > 0, otherwise Eq. 6.3 is violated. Conditions (6.3)
and (6.4) together with the fact that w∗

t = v∗tC/ct imply that whenever
w∗
t > 0 for some t ∈ T , we must have

uT

(
∑

t∈T
v∗t It(p)/ct

)−1
It(p)

ct

(
∑

t∈T
v∗t It(p)/ct

)−1

u = μ∗.

We can compute μ∗ easily: multiplying by v∗t , summing over t, and using∑
t∈T v∗t = 1, we see that

μ∗ = uT

(
∑

t∈T
v∗t It(p)/ct

)−1

u = a(v∗; p).

The proof of Theorem 2 requires a preliminary lemma. Fix K ≥ 3 and
let v1, . . . , vK ∈ R

3. For a ∈ R
K such that

∑K
i=1 ai = 1, define

I(a) =
K∑

i=1

1

ai
viv

T
i .

We first prove the following lemma. A similar concavity property holds
in the context of parallel sum of positive definite matrices; see (Bhatia,
2007, Theorem 4.1.1). Let R

K
++ denote the set of K-vectors whose entries

are strictly positive.

Lemma 1. Assume I(a) is invertible for all a ∈ R
K
++. The mapping

a 	→ uT I(a)−1u is concave on R
K
++.

Proof. Let f(a) = uT I(a)−1u. We have, for i = 1, 2, . . . ,K,

∂aiI(a)
−1 = −I(a)−1(∂aiI(a))I(a)

−1
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=
1

a2i
I(a)−1viv

T
i I(a)

−1.

We also have, for i, j = 1, 2, . . . ,K,

∂2
aiajI(a)

−1 =
I(a)−1viv

T
i I(a)

−1vjv
T
j I(a)

−1 + I(a)−1vjv
T
j I(a)

−1viv
T
i I(a)

−1

a2i a
2
j

+δi=j

(
−2

a3i

)

I(a)−1viv
T
i I(a)

−1.

Hence

1

2
∂2
aiajf(a) =

uT I(a)−1vi × vTi I(a)
−1vj × uT I(a)−1vj

a2i a
2
j

−δi=j
1

a3i
(uT I(a)−1vi)

2.

Let βi = uT I(a)−1vi and let Bi,j = vTi I(a)
−1vj . Then

1

2
∂2
aiajf(a) =

βiBi,jβj
a2i a

2
j

− δi=j
1

a3i
β2
i .

For positive semidefiniteness of the Hessian of f , it suffices to show that

K∑

i,j=1

xiβiBi,jβjxj
a2i a

2
j

−
K∑

i=1

x2iβ
2
i

a3i
≤ 0

for all x ∈ R
K . With αi =

xiβi

ai
√
ai
, the above condition becomes

K∑

i,j=1

αi
Bi,j√
aiaj

αj −
K∑

i=1

α2
i ≤ 0,

which is the same as asking for the largest eigenvalue of the matrix with
entries (

Bi,j√
aiaj

)

i,j=1,2,...,K

to be at most 1. Note that

Bi,j√
aiaj

=
1√
ai
vTi I(a)

−1vj
1

√
aj
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=

(
vi√
ai

)T

I(a)−1

(
vj√
aj

)

=

(
vi√
ai

)T
(
∑

i′

(
vi′√
ai′

)(
vi′√
ai′

)T
)−1(

vj√
aj

)

.

Let ṽi =
vi√
ai

and Ṽ = [ṽ1, . . . , ṽK ]. Then the above entry is the (i, j) entry

of the matrix Ṽ T (Ṽ Ṽ T )−1Ṽ . It therefore suffices to show that, in positive
semidefinite ordering,

Ṽ T (Ṽ Ṽ T )−1Ṽ ≤ IK ,

that is, for each z ∈ R
K , we must have

(Ṽ z)T (Ṽ Ṽ T )−1Ṽ z ≤ ‖z‖2.
Let Ṽ have the singular value decomposition UΣV T , where U and V are
unitary matrices of appropriate sizes. Since I(a) is invertible, it follows that
(Ṽ Ṽ T )−1 = UΛ−1UT where Λ = ΣΣT . Also ΣT (ΣΣT )−1Σ is a block diag-
onal matrix with I3 and OK−3 (all zero matrix square matrix of dimension
K − 3) on the diagonal. Therefore, the left-hand side of the above display
becomes

zTV ΣTUTUΛ−1UTUΣV T z = zTV ΣT (ΣΣT )−1ΣV T z

= zTV

[
I3 O3,K−3

OK−3,3 OK−3

]

V T z

where Om,n is the all zero matrix of dimensions m×n. Since V is orthonor-
mal, the lemma follows.

Proof of Theorem 2. Consider the zero-sum game G. By Assump-
tion (A2), there exists a design v(0) such that supp∈P a(v(0); p) < ∞; hence,
we may restrict the set of designs to

C :=
{

(vt, t ∈ T ) : vt ≥ 0, t ∈ T,
∑

t∈T
vt=1, a(v; p) ≤ sup

p′∈P
a(v(0); p′) for all p

}

.

Recall that, for a given pair of strategies (v, p), the pay-off of the max-
imising player is a(v; p) = uT

(∑
t∈T vtIt(p)/ct

)
u. For each p ∈ P, as argued

in the proof of Theorem 1, the mapping v 	→ a(v; p) is convex on C, and C is
a convex and compact subset of the design space. Recall q from Eq. 2.1 and
the Fisher information matrix from Eq. 2.2. The mapping

p 	→
3∑

s=1

psq(y|s, t) + (1− p1 − p2 − p3)q(y|4, t), ∀y ∈ Yt, ∀t ∈ T
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is linear. So by Lemma 1, for each fixed v ∈ C, the mapping p 	→ a(v; p)
is concave. Also, P is convex and compact. Hence by Glicksberg’s fixed
point theorem (Glicksberg, 1952) there exists a Nash equilibrium for the
game G. The result now follows from Theorem 1 and the interchangeability
property of Nash equilibria in two-player zero-sum games (see (Tijs, 2003,
Theorem 3.1)).

Proof of Theorem 3. A local c-optimal design that minimises the
variance of the estimator

∑
d∈[D] nd(u

T p̂(d)) is obtained by finding a solution
v∗t,d, t ∈ T, d = 1, . . . , D, to the following optimisation problem:

minimise
D∑

d=1

n2
du

T

(
∑

t∈T
vt,dIt(p(d))/ct

)−1

u (6.6)

subject to
∑

t∈T

D∑

d=1

vt,d ≤ 1, vt,d ≥ 0, t ∈ T, d = 1, . . . , D.

With additional variables (md, d = 1, . . . , D) which can be interpreted as the
budget fractions given to each district, the value of the above optimisation
problem is equal to the value of the following problem:

minimise

D∑

d=1

n2
d × uT

(
∑

t∈T
vt,dIt(p(d))/ct

)−1

u (6.7)

subject to
∑

t∈T
vt,d ≤ md, d = 1, . . . , D,

vt,d ≥ 0, t ∈ T, d = 1, . . . , D,

D∑

d=1

md ≤ 1,

md ≥ 0, d = 1, . . . , D.

For a given (md, d = 1, . . . D), the optimisation in Eq. 6.7 over the vari-
ables (vt,d, t ∈ T, d = 1, . . . , D) can be performed separately for each d.
As argued in the proof of Theorem 1, using Assumption (A1) for each
p(d), d = 1, . . . , D, there exists a solution to the problem (3.2) with p(d)
in place of p; we denote it by v∗(p(d)) and the corresponding value by
a(v∗(p(d)); p(d)). Hence the above problem reduces to

minimise
D∑

d=1

n2
d

md
a(v∗(p(d)); p(d)) (6.8)
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subject to
D∑

d=1

md ≤ 1,

md ≥ 0, d = 1, . . . , D.

Note that Eq. 6.8 is a convex problem in the variables (md, d = 1, . . . , D); in-

deed the mapping (md, d = 1, . . . , D) 	→
∑

d∈[D]
n2
d

md
a(v∗(p(d)); p(d)) is lower-

semicontinuous, convex and the constraint set is a compact and convex sub-
set of RD

+ . Hence, there exists a solution (m∗
d, d = 1, . . . , D) to the above

problem. Consider the Lagrangian

L(m,λ, μ) =

D∑

d=1

n2
d

md
a(v∗(p(d)); p(d))−

d∑

d=1

λdmd + μ

(
D∑

d=1

md − 1

)

.

By the Karush-Kuhn-Tucker conditions (Boyd and Vandenberghe, 2004,
Chapter 5), there exist non-negative numbers (λ∗

d, d = 1, . . . , D) and μ∗

such that the following conditions hold:

− n2
da(v

∗(p(d)); p(d))

(m∗
d)

2
− λ∗

d + μ∗ = 0, d = 1, . . . , D, (6.9)

λ∗
dm

∗
d = 0, d = 1, . . . , D, (6.10)

μ∗
(

D∑

d=1

m∗
d − 1

)

= 0. (6.11)

If μ∗ = 0, then Eq. 6.9 is violated for all d; hence μ∗ > 0 and by Eq. 6.11,∑
d∈[D]m

∗
d = 1. Whenever m∗

d > 0, we must have λ∗
d = 0, and by Eq. 6.9,

m∗
d = nd

√
μ∗a(v∗(p(d)); p(d)). Using

∑D
d=1m

∗
d = 1, we can solve for μ∗ to

get

m∗
d =

nd

√
a(v∗(p(d)); p(d))

∑D
d′=1 nd′

√
a(v∗(p(d′)); p(d′))

. (6.12)

This solves problem Eq. 6.8. By setting

v∗t,d = v∗t (p(d))m
∗
d, t ∈ T, d = 1, . . . , D

where m∗
d is as given in Eq. 6.12, we also solve problem Eq. 6.7. By the

equivalence of the problems Eq. 6.6 and Eq. 6.7, we have a solution to
problem Eq. 6.6, which can be described as follows: Allocate Cd = Cm∗

d to
district d, and by Theorem 1, allocate w∗

t (d) = v∗t (p(d))Cd/ct for test pattern
t in district d. This completes the proof.

Proof of Theorem 4. The proof is straightforward and follows the
same arguments used in the proof of Theorem 3; we only have to use s in
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place of d and recognise that the Fisher information matrices may depend
on s.
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