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ON THE MAXIMAL LENGTH OF TWO 
SEQUENCES OF CONSECUTIVE INTEGERS 

WITH THE SAME PRIME DIVISORS 

R. BALASUBRAMANIAN,  T. N. SHOREY (Bombay) and M. WALDSCHMIDT (Paris) 

w 1. Introduction 

The initial motivation of the present paper is the following problem of Erd6s 
and Woods, whose solution would be of interest in logic (see [3, 6, 11, 10, 16]): 

Does there exist an integer k >=2 with the following property : i f  x and y are positive 
integers such that for l<=i<=k, the two numbers x+ i  and y+i  have the same 
prime factors, then x=y.  

For each integer n->2, let us denote by Supp (n) the set of  prime factors of n. 
The only known examples of  positive integers (x,y, k )wi th  l<=x<y, k>=2 and 

(1.1) Supp (x+/)  = Supp (Y+0 for 1 <= i <- k 

are given by 
k = 2 ,  x = 2 h - 3 ,  y=2h(2h--2)- - l ,  h=>2 

and 
k = 2 ,  x = 7 4 ,  y = 1 2 1 4 .  

Under the assumption (1.1), we shall give an upper bound for k in terms of x: 

(1.2) log k <= cl (log x log log x) 1/2 for x _-> 3 

and lower bounds for y - x  either in terms of k: 

(1.3) y - x  > exp(c2k(logk)2/loglogk) for k => 3 

or in terms of k and y: 

(1.4) y - x  > (k loglog y)Cflcloglogy(logloglogy)-I for y >= 27. 

Here Cl, c2 and ca are effectively computable absolute positive constants. The ine- 
quality (1.4) with k =  1 is Theorem 4 of Erd/is and Shorey [4]; in fact this will be 
used in the proof of (1.4). 

We consider also some related problems, where the assumption (1.1) is replaced 
either by 
(1.5) P(x+i)  = P(y+i)  for 1 ~ i<- k 

where P(n) denotes the greatest prime factor of n and P(1)= 1, or by 

k k 
(1.6) Snpp ( / - / (x+ / ) )  = Supp( / - / (y+i ) ) .  

i=1 i=1 
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The arrangement of this paper is as follows. We, first, collect in Section 2 several 
auxiliary lemmas from different sources. The main tool is a lower bound for linear 
forms in logarithms of rational numbers, due to Baker [1]. The proofs are via esti- 
mates for the greatest square free factors of products of integers from a bloc of 
consecutive integers. 

In Section 3, we study the problem (1.5) related to the greatest prime divisors. 
In Section 4, we consider the problem (1.1) of Erd6s--Woods. In Section 5, we 
deal with the assumption (1.6). 

Throughout this paper, the letters n, x, y and k will denote positive integers 
with n_->2 and with x<y.  We denote by Q(n) the greatest square-free factor of 
n and we write re(n) for the number of distinct prime factors of n and a~(1)=l. 
As usual, we recall that re(n) is the number of primes less than or equal to n. 

w 2. Preliminary results 

In this section, we give several auxiliary lemmas which will be used in the next 
sections. 

L ~ A  2.1. Let n be a positive integer. 
a) There exists a prime p satisfying n<p<=2n. 
b) There exists an effectively computable absolute constant c4>0 such that for 

n > cA, there is a prime p satisfying 
n < p ~_ n+c4n 112+1121. 

Part a) is the well-known "postulat de Bertrand". Part b) is due to Iwaniec and 
Pintz [7]. 

COROLLARY 2.2. I f  P ( x + i ) = P ( y + i )  for l<=i<-k, then y>k.  If, further- 
more k>-c4, then k<c4y 2~/4~. 

PROOF OF COROLLARY 2.2. Assume y<-k. By Lemma 2.1, Part a), there exists 
an i with l<=i<=k such that y + i  is a prime number. Now P ( x + i ) = P ( y + i )  
implies that y+i  divides x+i,  which is impossible since y>x.  

Hence y>k.  Now if k>=c4, by Lemma 2.1, part b), there exists an i with 
l<-i<=c4y 23/42 such that y + i  is a prime number, and the same argument yields 
k< cay ~8/4z. 

LEMMA2.3. We put S = { x + l ,  . . . ,x+k}.  For every prime p<=k, we choose 
an f(p)E S such that p does not appear to a higher power in the factorisation of  any 
other element of  S: 

If(p)[; ~ -= max {[nl; ~, nES}. 

We denote by $1 the subset of  S obtained by deletingfrom S all f (p)  with p<=k. Then 

/-/ //[nl~ -1 divides k!. 
n 6 S 1 p ~ k  

On the other hand, it may be noticed that k! divides 

binomial coefficient ( x ~  k) is aninteger. 

/ 7 / 1  Inl~ -1, since the 
nES p~_k 
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PROOF. This result is due to ErdSs [2], Lemma 3. For  the convenience of  the 
reader, we give here a proof. 

Let us write, for each n_->2, 
n =/17 p%(.) 

P 
so that 

[nip = p-%(~). 

For each integer j=>l, let us write 

uj = card {nES1, v,(n) = j }  
and 

vj = X ui = card {nES1, v,(n) >=j}. 
i>=j 

Therefore vj is the number of  nCSx which is divisible by pL Notice that 

Card {nES, vp(n) >-- j }  <= [ ~ ] +  l. 

{nES, vp(n)>=j} is not empty, then it contains f(p). Hence Further, if the set 

v.<-[ k ]  and 
S- tp~  1 

But 
Zb(n)= Z ju,  = Z v,, 

nES 1 1~1 j>~l 
and Lemma 2.3 follows. 

We derive from Lemma 2.3 the following result. See Erd6s and Turk [5]. 

COROLLARY 2.4. Denote by t the number of integers nES such that P(n)<=k. 
Then 

(2.5) t <= k l ogk  +•(k). 
log x 

PROOF. We consider the product of  the nES1 such that P(n)<=k. This product 
is at least x t-~(k), and divides k! by Lemma 2.3. Hence xt-~(k)~k k which implies 
(2.5). 

If  k does not exceed a power of  log x, inequality (2.5) can be strengthened as 
follows. 

LEMMA 2.6. Let 8>0.  Assume that x > e  k~ and k>=3. Let t be defined as in 
Corollary 2.4. Then 

t <_- csk(log k) -2 log log k 

where c5>0 is an effectively computable number depending only on 8. 

This is Theorem 2 of  [12]. The proof  of  Lemma 2.6 depends on the theory of  
linear forms in logarithms. As stated in Section 1, this theory is the main tool for 
our investigations. Now we state a lower bound for linear forms in logarithms. 
This is a special case of  [1] and [15] which is relevant here. 
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LEMMA 2.7. Let Pl . . . . .  p, be distinct prime numbers with n >=2 and let b 1 . . . .  , b n 
be rational integers which are not all zero. Define 

Then 

P = max pi and B = max Ib~l. 

pbl _b 1] > exp (-- (e 6 n)" (log P)" + 1 (log B +log log P)) i " " / a n "  - -  

with c8=2 2a. 
The following result of Stormer is well-known, but we give a proof via Lemma 

2.7 to illustrate the way we shall use Lemma 2.7. 

COROLLARY 2.8. When m~oo, P(m(m+ 1)) tends to infinity effectively. 

In particular for each x_>l, there are only finitely many y > x  such that 

P ( x + l )  = P ( y + l )  and P(x+2)  =_P(y+2) 

and these y can be effectively determined. It follows that for each x0>=l, it is a 
finite problem to determine all x and y with x<-xo and y > x  such that 

Supp (x-t-l) = Supp ( y + l )  and Supp (x+2) = Supp (y+2).  

Lehmer [91 applied Stormer's method on Pellian equations to investigate thisproblem. 

PROOF OF COROLLARY 2.8. We decompose m and m + 1 in prime factors and we 
write 

1 m + l  
- - - - - m  m 1 = (,~_/f~ p b ' ) -  1 

where P=P(m(m+l ) ) ,  2bp<--m+l. We apply Lemma 2.7 with B=3 logm (for 
m>=2) and n<=~z(P). We conclude that for each e>0  

P ( m ( m +  1)) > ( l - e )  log log m for m > too(e) 

where m0 (e) is an effectively computable number depending only on ~. 
We shall need the following refinement of Corollary 2.8. 

LEMMA 2.9. Let A>0.  Let f ( X )  be a polynomial with integer coefficients and 
with at least two distinct roots. Then there exists an effectively computable number 
c7>0 depending only on f and A such that for every integer Y=>27 with f ( Y ) # O ,  
the inequality 

log P([f(Y)I) <= (log log y)a  
implies that 

log log Y 
co(]f(Y)l) >= c, ]o-g-lo-~ogY" 

This is Theorem 2 of [13]. For an account and refinements of the results of this 
section, see Chapter 7 of the book by T. N. Shorey and R. Tijdeman: Exponential 
Diophantine Equations, Cambridge Tracts in Mathematics, 87 (1986). 
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w 3. Sequences of consecutive integers with the same greatest prime factor 

(3.3) 
and 

In this section, we denote by x, y and k three positive integers satisfying x<y,  
k_->l and 
(3.1) P(x+O = P(y+i)  for 1 _<- i ~  k. 

It has been checked on a computer that (3.1) has no solution with y<5000 and 
k=>3. It follows from a result of Tijdeman [14] that (3.l) implies that 

y - x  >= lO-61oglogx. 

Our aim is to prove the bounds 

y -  x > k k/2 and y -  x > (log log y)k/2 

for k sufficiently large. Our actual result is sharper: the exponent k/2 is replaced by 
k(1 - e )  and we can even improve the ~. 

PROPOSITION 3.2. There exist effectively computable absolute positive constants 
c s and c a such that for k=>3, we have 

f log log k.) 
y -  x > kk exP l -  csk 

log k ) \ 

,ik(1 -- ca(log k) - a log log k) 

PROOF OF (3.3). We choose a sufficiently large absolute constant cs>0. If  
(log k)Z-< ca log log k, then the right hand side of(3.3) is less than one, while y-x>=1. 
Therefore we may assume that k is sufficiently large. From Corollary 2.2, we derive 
y>k9/5. 

Denote by tl the number of i with l<=i<-k and P(y+i)<=k. We apply Cor- 
ollary 2.4 with x replaced by y to conclude that 

5 5 2k 3 
-<Z - - ] l ~ .  h < ~ lc+~(k)  <=-~k~ logk - 5 

Consequently, there are at least [2k/5]+1 integers i with 1 <=i<=k and P ( y + i ) > k .  
By (3.1), we see that for distinct integers dl . . . . .  d~ with l<=d,<-k (l~s=<v) and 
P(y+d, )>k  (1 =<s=<v), 
(3.5) P(y + dl)...P(y + d~)l(y- x). 

Since v > 5 k ,  we get y - x > k  2k/5, which implies that k< logy .  We now apply 

Lemma 2.6 to conclude that 

(3.6) tl <= clok (log k) -2 log log k 

where q0>0  is an effectively computable absolute constant. Now in (3.5) we have 
v ~ k - q ,  hence 
(3.7) k k-~l < y - x .  

We combine (3.7) and 0.6) to complete the proof of (3.3). 
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PROOF OF (3.4). It is easy to check that the assumption (3.1) with k_->3 implies 
3 

that y >  100. Therefore log log y > ~ -  and this enables us to assume that (log k)2> 

:> c9 log log k. Thus we may assume that k is sufficiently large. 
3 

If  log logy<=-)-k, then (3.3) implies (3.4). Therefore we may assume that 

< 2 that ( 2 y]~," for other- k _~ l~176  Finally, we may assume y - x < l . ~ l o g l o g _  

wise (3.4) is clear. 

We fix an integer i, 1 : t = k ,  and we use Lemma 2.7 for 

with 

y-__.__~x = 1 -  x +___._~/ 
y+i y+i 

5 
n <_- ~ P (log p) - l ,  B <_- (log y)/log 2 

where P=P(x+i)=P(y+i). We use the upper bound 

y - - X  /" 2 ~(218) loglogy 
y - < log log y )  : 1  < 

2 
and we get P - > ~ l o g  logy.  Then we see from (3.5) with v>-_k-q: 

2 y_x>(_~loglogy) k q. 

Combining this estimate with (3,6), we obtain (3.4). 

REMARK. The assumption (3.1) implies that 

(3.8) o~(y-x) > k-clok(log k) -2 log log k. 

Indeed, (3.3) shows that k< log  y; and we apply (3.6) with 

~o(y - x)>= 

to complete the proof of (3.8). 

1 >=k-t1 
P(y + i) > k 

w 4. Sequences of consecutive integers with the same prime factors 

Throughout this section, we assume that x, y, k are integers satisfying 0 < x < y ,  
k ~ l  and 

(4:1) Supp(x+ i )  = Supp(y+ i )  for 1 -<_ i <- k. 

Let e>0.  From Section 3, we deduce that for k~ko=ko(e) 
(4.2) k log k < (1 +e) log (y-x)  
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and 
(4.3) k log log log y < (1 +e) log (y -x) .  

We sharpen (4.2) and (4.3) as follows. 

PROPOSITION 4.4. There exists an effectively computable absolute constant cla>0 
such that 
(4.5) y--x  >- (k log log y) c11k(l~176 (logloglogy)-I 

for y=>27. 

Further, we prove 

PROPOSITION 4.6. There exists an effectively computable absolute constant c1~ > 0  
such that 
0.7)  log x > c~2 (log k)~/log log k 
for k>=3. 

By (4.5) and (4.2), we obtain 

y - x  > exp (clak(logk)2(loglogk) -~) for k -> 3. 

PROOF OF PROPOSITION 4.4. Denote by c~,, c~ and c16 effectively computable 
absolute positive constants. In view of a result of  ErdSs and Shorey [4] mentioned 
in Section 1, we may assume that k>-c~ with c~4 sutiicienfly large. Then we see 
from (4.2) that 
(4.8) k < log y. 

Further, we observe from (4.1) that 

(4.9) Q((y+ 1)... (y +k))l(y-x). 
Suppose that there are d~, ..., d~ integers between 1 and k such that v=[k/8]+l 

and 
P(y-Fd~) ~ exp((loglogy)l~176 1 =<j-< v. 

In view of (4.8), observe that the right hand side of  the above inequality exceeds k. 
Therefore, by (4.9), we see that 

t,(y + dO... e(y  + d )l(y-x) 
and hence, 

y - - x  --> exp log log y)10o 

which, together with (4.8), implies (4.5). 
Thus we may assume that there are at least [7k/8] integers i with l<=i<=k and 

P(y +/)  < exp ((log log y)lOo). 

Consequently, there are at least [k/4] integers i with 1 <_- i<  k and 

P((y+ i)(y+ i+ i)) < exp ((log log 3;)10o). 
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(4.10) 
Further 

Now we apply Lemma 2.9 with A = 101, f (X)=X(X+ 1) and Y=y+i  to conclude 
that 

R :=  ~ og(y+i) >= c15klol; gl~ y 
i = 1  log log y "  

p-<k t p  / 

which, together with (4.10) and (4.8), implies that 

~o((y+l)...(y+k)) > cask loglogy 
2 log log log y" 

Now we multiply the prime factors of ( y + l ) . . . ( y + k )  to derive (4.5) from (4.9). 
This completes the proof of Proposition 4.4. 

Now we turn to the proof of Proposition 4.6. We shall derive Proposition 4.6 
from the following result. 

Pgoeosn'ION4.11. There exists an effectively computable absolute constant 
c1~>0 such that 

log log y 
(4.12) logx > e17 log k 

log log log y 
for y=>27 and k>-2. 

PROOF OF PgoPosmor~ 4.11. Denote by c18, c19, ..., c2~ effectively computable 
absolute positive constants. Suppose that x = l .  Then (4.1) with k->2 implies 
y + l  is a power of 2 and y + 2  is a power of 3. Then it is well-known that y = 7  
which is a contradiction, since y=>27. Thus we may assume that x > l .  Further 
we see from Corollary 2.2 that y>k. Therefore we may assume that y>c18 with 
c18 sufficiently large. Then we see from (4.2) that (4.8) is valid. Let 0 < e l <  1. We 
assume that 

, _ log log y 
(4.13) log x < el log ~ log log log y 

and we shall arrive at a contradiction for a suitable value of el. 
For an integer i with l<-i<=k, we denote by co'(y+i) the number of prime 

divisors of y+i which are greater than k. For l<-i<-_k, we see from (4.1) and 
(4.13) that 

log log y 
(4.14) oY (y + i) <= el logloglogy q-1 

and 

(4.15) log P(y+ i) ~ 2 log k ~ log log y . 
log log log y 

Now, as pointed out to us by K. Alladi, we observe that 

A:= Zco(y+i)~= Z +1 + X a / ( y + i )  
i = l  p~=k i=1 
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which, together with (4.14), implies that 
log log y 

(4.16) A ~ c79 k log log k + el k log log log y" 

By (4.15) and (4.8), 

log P(y + i) < (log log y)~, 1 <_- i <_- k. 

Now we apply Lemma 2.9 with A =3, f (X )=X(X+ I) and Y=y+i  to conclude 
that 

log log y ! <_-- i < k. co((y + 0 ( y +  i +  1)) > = c20 log log log y' ' 
Consequently, we have 

. log log y 

(4.17) A => c~lg Iog log-]-ogy" 

Let e~ =(2c~1) -1. We combine (4.17) and (4.16) to conclude that 

log log y 
c~1 log log log y -<= 2c~9 log log k 

which, together with (4.8), implies that Y<--c22. This is not possible if qs>c~2. 
This completes the proof of Proposition 4.11. 

PROOF OF PROPOSITION 4.6. Since k=>3, it is easy to see that (4.1) implies that 
x >  1. Then we may assume that k exceeds a sufficiently large effectively computable 
absolute constant. Then we derive (4.8) from (4.2). In particular, y>=27. Now (4.7) 
follows immediately from (4.12) and (4.8). This completes the proof of Proposi- 
tion 4.6. 

REMARKS (i). Let x > l  and k_->2. If 

co ( y -  x) < 2 log log (y-- x), 

then k/log x is bounded by an effectively computable absolute constant. 

PROOF. We may assume that k exceeds a sufficiently large effectively computable 
absolute constant. Then we see from (4.1), (4.8) and Lemma 2.6 with x replaced 
by y that 

co ( y -  x) >= Z 1 >= k/2. 
l~=iNk 

P(y + i) ~ k 

Hence k < 4  log Iog y. Now the assertion follows from Proposition 4.11. 
(ii) Woods proved that Hall's conjecture (see [8]) implies that k=<20 under the 

assumption (4.1). It is remarked in [8] that Hall's conjecture would follow from a 
very sharp refinement of Lemma 2.7. (See M. Langevin, C. R. Acad. Sc. Paris, 281 
(1975), 491--493). 
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w 5. Two sequences of products of k consecutive integers with the same prime factors 

Throughout this section, we assume that x, y and k are positive integers satis- 
fying y-x>=k and 

(5. I) Supp ( / / ( x  +/)) = Supp ( 1-/(Y +/)). 
i=1  i = I  

We prove 

PROPOSITION 5.2. There exists an effectively computable absolute constant c~z>0 
such that 
(5.3) x > C~3 k 6114~. 

PROOF OF PROPOSITION 5.2. Denote by c24, ..., c27 effectively computable ab- 
solute positive constants. We may assume that k>=c24 with c24 sufficiently large, 
otherwise (5.3) follows immediately. Since y - x>-k ,  we see from (5.1) that none 
of y + l ,  ..., y + k  is a prime number. Consequently, we derive from Lemma 2.1 that 

(5.4) k < c~5 y~Zl~. 

Denote by t~ the number of integers i with l<-i<-k and P(y+i)<-k. Then we see 
from Corollary 2.4 and (5.4) that 

tz <= (23/42)k +c~src(k). 

Therefore the number of  distinct prime factors > k  of  (y+l ) . . . (y+k)  is at least 
(19/42)k-cz67r(k). Consequently, by (5.1), the number of distinct prime factors 
> k  of (x+ 1)...(x+k) is at least (19/42)k-c2nTr(k). Hence 

(5.5) 
On the other hand, 

(5.6) 

(Xqkk) > C~27 k(19/42)k" 

We combine (5.5) and (5.6) to obtain (5.3). 
Finally we give an upper bound for y in terms of x, assuming k->2. For small 

values of k the next result is sharper than (4.12) and (5.3). 

PROPOSITION 5.7. There exists an effectively computable absolute constant c~8 
such that 

log x > c~8 log log y 
for x>-2 and k>=2. 

PROOF OF PROPOSITION 5.7. Denote by c29, ..., cse effectively computable ab- 
solute constants. We may assume that y:>c29 with c29 sufficiently large, otherwise 
the assertion follows immediately. 

Let us assume that 
(5.8) log x < log log y. 
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By (5.1) we have for l<-i<=k 

k k 

P(y+ i) <- P( I I  (Y+J)) = P( I I  (x +j)) <- x + k, 
j = l  .]=1 

and from (5.3) and (5.8) we deduce 

log P(y+ i) <= (log log y)L 

Now we apply Lemma 2.9 with A =3, f (X)=X(X+ 1) and 
that 

co(&+/)(y+ i+  1)) :> Cso log log y/log log log y 

Consequently, if we define 
k 

:= Z co(y+/), 
i = 1  

we have 
(5.9) 

For an integer 

lr=y+i to conclude 

(1 <_- i<k) .  

A -> c31 k log log y/log log log y. 

n>0  we denote by co'(n) the number of prime divisors of n 
which are greater than k. By (5.1) we have 

k k k 

2 co'(y+i) = co'( I f  (y+i)) <= co( 17 (x+i)). 
i = l  i=J.  i = l  

For all integers n->3 we have 

09 (n) <_- c32 log n/log log n, 

k 

co ( /~  (x + 0) < c3s k log x/log log x. 
i=J.  

hence (5.3) yields 

Therefore 

A <- +1 + Zco ' (y+ i )<=  
_ i = 1  

<-- cs~ k log log k + ca3 k log x/log log x <-- cs5 k log x/log log x, 

by (5.3). Therefore, we conclude from (5.9) 

log log y/log log log y < can log x/log log x, 

which completes the proof of Proposition 5.7. 

RBMARI(S. The restriction (5.1) can be relaxed to 

k k 

Supp ( H (x + O) _-__ Supp (i__/]1 (y + 0) 
i = l  

in Propositions 5.2 and 5.7. 
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