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S.L.L.N. and C.L.T. for Random Walks in I.I.D.

Random Environment on Cayley Trees

Siva Athreya∗ Antar Bandyopadhyay† Amites Dasgupta‡ Neeraja Sahasrabudhe§

Abstract

We consider the random walk in an independent and identically distributed (i.i.d.) random
environment on a Cayley graph of a finite free product of copies of Z and Z2. Such a Cayley
graph is readily seen to be a regular tree. Under a uniform elipticity assumption on the i.i.d.
environment we show that the walk has positive speed and establish the annealed central limit
theorem for the graph distance of the walker from the starting point.

Keywords: Random walk on free group, random walk in random environment, trees, transience,
Central Limit Theorem, Positive Speed

1 Introduction

In this article, we consider a random walk in random environment (RWRE) model on a regular
tree, which was introduced in [ABD14]. Like in any other (static) RWRE model, in our model
also, we first choose an environment by some random mechanism and keep it fixed throughout the
time evolution. A walker then moves randomly on the vertex set of a regular tree in such a way
that given the environment, its position forms a time homogeneous Markov chain whose transition
probabilities depend only on the environment. RWRE model on the one dimensional integer lattice
Z was first introduced by Solomon in [Sol75] where he gave explicit criteria for the recurrence and
transience of the walk for independent and identically distributed (i.i.d.) environment distribution.
Perhaps the earliest known results for RWRE on trees is by Pemantle and Lyons [LP92], where
they consider a model on rooted tress, which later got to known as random conductance model.
In their model, the random conductances along each path from vertices to the root are assumed
to be independent and identically distributed. The random walk is then shown to be recurrent
or transient depending on how large is the value of the average conductance. Motivated by these,
[ABD14], considered a RWRE model on a regular tree, where the environment (or rather the
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transition laws) at each vertex are independent and also “identically” distributed. However, unlike
in the usual RWRE models on integer lattices, such as on Z as introduced by [Sol75], or the random
conductance models on trees [LP92], it is not entirely obvious how to make the random transition
laws on the vertices of a tree “identically” distributed. To make this notion of i.i.d.-ness of the
environment rigorous in [ABD14] defined the model on a the finite free product of copies of Z and
Z2 and then transfers it back to an appropriate degree regular tree which is essentially same as
a Cayley graph associated with the group. A more detailed description is given in the following
subsection. A similar model was also considered in [Roz01].

In both [Roz01, ABD14] under differing mild non-degeneracy assumptions the authors proved
that the RWRE is transient with probability one. In this work, we extend their result and prove
that under uniform ellipticity assumption on the i.i.d. environment (which is stronger assumption
than the one made in [ABD14]), the walk has a positive drift away from the starting point and
admits an annealed Central Limit Theorem under linear centring and square-root scaling. Our
proofs are motivated by the work [ABD14].

1.1 Model and Main Results

Even though our framework is same as in [ABD14], but for sake of completeness, we begin by
providing a detailed description of the model below.

Group structure: Following [ABD14] we will also consider a group G which is a free product
of finitely many groups, say, G1, G2, · · · , Gk and H1,H2, · · · ,Hr, where each Gi ∼= Z and each
Hj
∼= Z2. Let d = 2k + r.

Cayley graph: Let G be a group defined above. Suppose Gi = 〈ai〉 for 1 ≤ i ≤ k and Hj = 〈bj〉
where b2j = e for 1 ≤ j ≤ r. Here by 〈a〉 we mean the group generated by a single element a. Let

S := {a1, a2, . . . , ak}∪
{

a−11 , a−12 , . . . , a−1k
}

∪{b1, b2, . . . , br} be a generating set for G. We note that
S is a symmetric set, that is, s ∈ S ⇐⇒ s−1 ∈ S.

We now define a graph Ḡ with vertex set G and edge set E :=
{

{x, y}
∣

∣

∣ yx−1 ∈ S
}

. We will

say x ∼ y whenever {x, y} ∈ E. Such a graph Ḡ is called a (left) Cayley Graph of G with respect
to the generating set S. Since G is a free product of groups which are isomorphic to either Z or Z2,
it is easy to see that Ḡ is a graph with no cycles and is regular with degree d, thus it is isomorphic
to the d-regular infinite tree which we will denote by Td. We will abuse the terminology a bit and
will write Td for the Cayley graph of the group G. This way we essentially endow the d-regular
tree, Td a group structure, which we will make use to define an i.i.d. environment.

Note that for the d-dimensional Euclidean lattice, such a group structure is automatic, which
is the product of d copies of the abelian free group Z. In our case, all the difference appears due to
the fact that on Td, a group can only be obtained through free product of several copies of Z and
also with possible free product of groups generated by torsion elements.

We will consider the identity element e of G as the root of Td. We will write N (x) :=
{

y ∈ G
∣

∣

∣
yx−1 ∈ S

}

for the set of all neighbors of a vertex x ∈ Td.

Observe that from definition N (e) = S.
For x ∈ G, define the mapping θx : G → G by θx (y) = yx, then θx is an automorphism of Td.

We will call θx the translation by x. For a vertex x ∈ Td and x 6= e, we denote by |x|, the length
of the unique path from the root e to x and |e| = 0. Further, if x ∈ Td and x 6= e then we define
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←−x as the parent of x, that is, the penultimate vertex on the unique path from e to x.

Random Environment: Let S := Se be a collection of probability measures on the d elements of
N (e) = S. To simplify the presentation and avoid various measurability issues, we assume that S
is a Polish space (including the possibilities that S is finite or countably infinite). For each x ∈ Td,
Sx is the the push-forward of the space S under the translation θx, that is, Sx := S ◦ θ−1x . Note
that the probabilities on Sx have support on N (x). That is to say, an element ω(x, ·) of Sx, is a
probability measure satisfying ω (x, y) ≥ 0 ∀ y ∈ Td and

∑

y∈N(x)

ω (x, y) = 1.

Let BSx denote the Borel σ-algebra on Sx. The environment space is defined as the measurable
space (Ω,F) where

Ω :=
∏

x∈Td

Sx and

F :=
⊗

x∈Td

BSx .

An element ω ∈ Ω will be written as
{

ω (x, ·)
∣

∣

∣
x ∈ Td

}

. An environment distribution is a

probability P on (Ω,F). We will denote by E the expectation taken with respect to the probability
measure P.

Random Walk: Given an environment ω ∈ Ω, a random walk (Xn)n≥0 is a time homogeneous
Markov chain taking values in Td with transition probabilities given by (ω (x, y))x,y∈Td . Let N0 :=

N∪{0}. For each ω ∈ Ω, we denote by Px
ω the law induced by (Xn)n≥0 on

(

(Td)
N0 ,G

)

, where G is

the σ-algebra generated by the cylinder sets, such that Px
ω (X0 = x) = 1. The probability measure

Px
ω is called the quenched law of the random walk (Xn)n≥0, starting at x. We will use the notation

Ex
ω for the expectation under the quenched measure Px

ω.
Following Zeitouni [Zei04], we note that for every B ∈ G, the function ω 7→ Px

ω (B) is F -
measurable. Hence, we may define the measure P

x on
(

Ω× (Td)
N0 ,F ⊗ G

)

by the relation

P
x (A×B) =

∫

A
Px
ω (B)P (dω) , ∀ A ∈ F , B ∈ G.

With a slight abuse of notation, we also denote the marginal of Px on (Td)
N0 by P

x, whenever
no confusion occurs. This probability distribution is called the annealed law of the random walk
(Xn)n≥0, starting at x. We will use the notation E

x for the expectation under the annealed measure
P
x

Assumptions: Throughout this paper we will assume the following hold,

(E1) P is a product measure on (Ω,F) with “identical” marginals, that is, under P the random

probability laws
{

ω (x, ·)
∣

∣

∣
x ∈ Td

}

are independent and “identically” distributed in the sense

that
P ◦ θ−1x = P, (1)

for all x ∈ G.

(E2) There exists ǫ > 0 such that

P (ω (e, si) > ǫ ∀ 1 ≤ i ≤ d) = 1. (2)

3



We are now ready to state our main results. We begin with a law of large numbers result for
| Xn | which also establishes that the speed of walk is positive.

Theorem 1.1. Assume (E1) and (E2). Then there exists v > 0, such that,

lim
n→∞

|Xn|
n

= v, (3)

almost surely with respect to P
e

In [ABD14], it was pointed out that under (E1), (E2), lim infn→∞
|Xn|
n > 0, if ǫ > 1

2(d−1) . The
above result not only establishes that the walk on Td has a positive speed, but also shows that the
corresponding limit exits almost surely. Our next result is an annealed central limit theorem for
| Xn |.
Theorem 1.2. Assume (E1)and (E2). Then there exists σ2 > 0 such that, under P

e,

√
n

( |Xn|
n
− v
)

d→ Z, (4)

with Z Normal(0, σ2).

We note here that although we define the walk starting at X0 = e, the root, results hold for
starting at any vertex x of Td. This is because the environment is invariant under the translation
by the group G. Indeed it will be evident from the proofs that the constants v and σ2 are also inde-
pendent of the starting position. Thus the Theorems 1.1 and 1.2 hold for any initial distribution
of X0 on the vertex set of Td.

The basic framework of proof is inspired by the arguments laid out in [CS11]. Formally speaking
we begin by defining regeneration times as first time the walk reaches a new level and never visits
it again. We then prove moment bounds for these regeneration times and followed established
techniques laid out in the RWRE literature to obtain our results. However, we note that the nature
of i.i.d in the environment (assumption (E1)) in this paper is derived from the group structure of
the graph and is a different from that of the environment in [CS11]. So, even though the basic
framework was available we needed different techniques for executing the same.

2 Regeneration Times

In this section we shall introduce a sequence of regeneration times and provide moment bounds for
them. We begin with some notation. For any x, y ∈ Td, recall that [x, y] = {{xi}ni=0 | x0 = x, xn =
y, x−1i xi−1 ∈ S, 1 ≤ i ≤ n}. Let Td(y) be the sub-tree rooted at y, i.e {x ∈ Td : y ∈ [e, x]} and
T
n
d = {x ∈ Td :| x |= n}. The type of x ∈ Td, x 6= e is s ∈ S if ←−x −1x = s and we shall denote it by

sx.

T (y) := inf{n ≥ 0: Xn = y} (5)

and
R(y) := inf{n ≥ 1: Xn−1 ∈ Td(y), Xn = y}, (6)

be the hitting time of y and the return time to y, respectively. We also define,

Tn := inf{k ≥ 0: Xk ∈ T
n
d} (7)
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and
R := inf{n ≥ 1: Xn = X0}, (8)

to be the hitting time of level n and return time of the walk to its starting point, respectively.
The first regeneration level is then defined as l1 := inf{k ≥ 1 : R(XTk) = ∞}, and the

n − th regeneration level for n ≥ 2 is defined recursively as ln := inf{k ≥ ln−1 : R(XTk) = ∞}.
Regeneration times for n ≥ 1, are defined by

τn :=







Tln if ln <∞;

∞ otherwise.
(9)

2.1 Tail bounds for the first regeneration time

We begin by proving tail bounds for first regeneration level, followed by moment bounds on number
of visits of the walk to the root and number of distinct vertices visited before first regeneration. We
conclude this section with the required moment bounds on the regeneration times defined above
(See Proposition 2.4).

Let {hn(x, y)|n ≥ 1, x, y ∈ Td, and x ∼ y} be i.i.d Exponential random variables with mean 1.

Suppose X0 = x, it is easy to verify that Xn+1 = argmin
y∼Xn

hn+1(Xn, y)

ω(Xn, y)
. Fix a finite sub-tree C of Td

with x ∈ C. Let {Y Cn }n≥0 be such that Y C0 = x and Y Cn+1 = argmin
y∼Y C

n ,y∈C

hn+1(Y C
n ,y)

ω(Y C
n ,y)

. It is easy to see

that {Y Cn }n≥0 is a Markov chain on C. We shall construct a coupling with the walk {Xn : n ≥ 1} so
that Y C has the same law as X whenever it visits the sub-tree C. Define λ1 = inf{n ≥ 0 : Xn /∈ C},
and recursively for i ≥ 1,

µi = inf{n ≥ λi : Xn ∈ C} followed by λi+1 = inf{n ≥ µi : Xn /∈ C}.

Define for each k ≥ 1,

Wk =

{

Xk if k ≤ λ1 − 1;

Xµj+k if µj < k ≤ λj − 1, for some j ≥ 1.

Note that as Td is a tree, for all i ≥ 1, Xλi−1 = Xµi ∈ C. Further Xµj+k ∈ C if µj < k ≤ λj − 1
for some j ≥ 1. It is easy to see that {Wn}n≥0 is a Markov chain on C and has the same law as
{Y Cn }n≥0.
Colouring scheme : We begin by colouring the root e as red. Let k ≥ 1 and ψ ≥ 1. A vertex
y ∈ T

kψ
d is coloured red if and only if

• its ancestor at level (k − 1)ψ, say x, is coloured red, and

• {Y [x,y]
n }n≥0, started at x, hits y before returning to x.

For each ψ ≥ 1 and k ≥ 1, s ∈ S let Zψ(k, s) be the number of red vertices at level kψ of type s.
Let Zψ(0) = {e} and for k ≥ 1, define

Zψ(k) := {Zψ(k, s) : s ∈ S}.

5



Under the annealed measure, {Zψ} is a multi-type Branching process with expected offspring matrix
M = (mSue)s∈S,u∈S is given by

msu = E







∑

xψ∈T
ψ

d





ψ−1
∑

m=1

m
∏

j=1

ω(xj , xj−1)

ω(xj , xj+1)





−1





,

where s, u ∈ S and sx1 = s, and sxψ = u.

Proposition 2.1. Assume (E1) and (E2). There exists ψ ≥ 1 such that the Zψ is supercritical.

Proof. We will show that the largest eigenvalue, ρ, of the offspring matrix M is larger than 1. We
observe that for 1 ≤ i ≤ n− 1

Pω(Y
[x,y]
n = xi−1 | Y [x,y] = xi) =

ω(xi, xi−1)

ω(xi, xi+1) + ω(xi, xi−1)

and

Pω(Y
[x,y]
n = xi+1 | Y [x,y] = xi) =

ω(xi, xi+1)

ω(xi, xi+1) + ω(xi, xi−1)
.

Using a standard gambler’s ruin chain argument we can conclude

Pω(Y
[x,y] hits y before returning to x ) =





n−1
∑

m=0

m
∏

j=0

ω(xj , xj−1)

ω(xj , xj+1)





−1

.

From the arguments in proof of Theorem 1 in [ABD14], it is easy to see that, for 1 < c1 < d − 1,
there exists n ≥ 1, such that,

1

d(d − 1)n−1
#







σn ∈ T
n
d :





n−1
∑

m=1

m
∏

j=1

ω(xj , xj−1)

ω(xj , xj+1)





−1

≥ c−(n−1)1







≥ 1

2
a.s. P.

Therefore, for all s ∈ S, and large enough ψ

∑

u∈S

msu = E







∑

xψ∈T
ψ
d





ψ−1
∑

m=1

m
∏

j=1

ω(xj, xj−1)

ω(xj, xj+1)





−1





≥ d(d− 1)ψ−1

2
c
−(ψ−1)
1 > 1. (10)

As the row sums of M are larger than 1, this implies that the largest eigenvalue ρ is bigger than 1
and this implies the process is super-critical.

�

Now, for x ∈ Td, y ∈ Td(x) is called a first child if it is (almost surely) the minimiser of

min
z∼x,z 6=←−x

h1(x, z)

ω(x, z)
(11)

For m ≥ 1,
Fm,x = {y ∈ Td(y) :| y | − | x |= m and y is a first child}.

6



Let ψ ≥ 1, ζ ≥ 1
Σx = Td(x) ∩ Zψ ∩∞k=1 F

c
kζψ,x

B(x) = {Σx is finite}, B0 = B(e), and Bk = B(XTkψζ ), k ≥ 1.

Lemma 2.2. The collection of events {Bi, i ≥ 1}, are independent.

Proof. The event B(x) ∈ σ{hn(z, y) : z, y ∈ Td(x)n ≥ 1}. Let i1 < i2 < . . . < ik be positive
integers. Note, as observed,

Bij ∈ σ{hn(z, y) : z, y ∈ Td(Xijζψ)n ≥ 1}.

Note however that Xijζψ is a first child at level ijζψ. and this implies Td(Xijζψ) ∩ Td(Xilζψ) = ∅.
Hence {Bij : 1 ≤ j ≤ k} are mutually independent. �

Proposition 2.3. ∃ γ < 1 such that for n ≥ 1, we have

P(l1 ≥ nψζ) ≤ γn−1.

Proof. Note that Bc
i ⊆ {level iψζ is a regeneration level}. Hence, using that Bi are independent

we have,

P(l1 ≥ nψζ) ≤ P(

n−1
⋂

i=1

Bi) =

n−1
∏

i=1

P(Bi).

For s ∈ S, let
Bs
i := {

←−
X−1TiζψXTiζψ = s} ∩Bi.

Note that for s ∈ S, P(Bs
i ) = P(Bs

j ) for all 1 ≤ i, j ≤ n. Hence ,

P(Bi) = P(∪s∈SBs
i ) =

∑

s∈S

P(Bs
i ) = γ

Therefore P(l1 ≥ nψζ) ≤
∏n−1
i=1

(
∑

s∈S P(B
s
i )
)

= γn−1.
Now we will show that we can choose ζ > 0, such that, γ < 1. It is enough to show that we can

choose ζ > 0, such that, P(B1) < 1. For this we follow an argument similar to the proof of Lemma
3.3 of [CS11]. From definition, it is clear that the vertices which belong to ΣXψζ , are obtained as
follows. The vertices at level (ζ − 1)ψ are of d-types, and has a distribution with mean matrix
M (ζ−1)ψ. Further, the vertices at level ζψ has a number of various types of coloured vertices, and
we have deleted the first child, thus the expectation matrix of such vertices is M −A, where A is a
d× d-matrix with 0 ≤ Asu ≤ 1 and A1 = 1. Thus, γ = P(B1) is at most as large as, the extinction
probability of a multi-type branching process with mean matrix M̃ζ := M (ζ−1)ψ(M − A). But,
from equation (10), it follows that

m0 := min
s∈S

∑

u∈S

msu > 1.

So for any s ∈ S, the s-th row sum of M̃ζ is at least as large as m
(ζ−1)ψ
0 (m0− 1). Now select ζ ≥ 1,

such that, m
(ζ−1)ψ
0 (m0 − 1) > 1. From the argument above then we can conclude that γ < 1. �
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2.2 Moment bounds

For x ∈ Td, let T (x) be as in (5) and τ1 be as in (9). Further let

L(x) :=

∞
∑

j=0

I{Xj=x} and D :=
∑

x∈Td

I{T (x)≤τ1} (12)

be total number visits to x and the number of distinct vertices visited before τ1 respectively.

Proposition 2.4. Assume (E1) and (E2). Then for p ≥ 1,

(a) E[L(e)p] <∞;

(b) E[Dp] <∞; and

(c) E[τp1 ] <∞.

Proof. (a) For n ≥ 1, let

Un = {{xi}di=1 : xi ∈ T
n
d and [xi, e] ∩ [xj, e] = {e} for all 1 ≤ i 6= j ≤ d}.

We will denote any element of Un by An and the smallest sub-tree in Td containing An will be
denoted by Tn. Consider the walk {Y Tn

k : k ≥ 1}. Define

T̃An = inf{k ≥ 1 : Y Tn

k ∈ An}, and L̃(e, T̃An) =
∞
∑

i=0

I
{Y Tn
i =e,i<T̃An}

to be the hitting time of An and the number of visits of Y Tn to e before the walk Y Tn hits An
respectively. Define R̃n = inf{k ≥ 1 : Y Tn

k = e} return time to e. Under the quenched law,

L̃(e, T̃An) is a geometric random variable with parameter qω given by

qw = Pω(T̃An < R̃n) =

d
∑

i=1

w(e, si)





n
∑

j=1

j−1
∏

k=1

ω(xik, x
i
k−1)

ω(xik, x
i
k+1)





−1

.

Using standard results about geometric random variables we know that for p > 1, ∃ cp > 0,
such that ,

E[L̃(e, T̃An )
p] ≤ cpE[q

−p
ω ] = cpE











d
∑

i=1

w(e, si)





n
∑

j=1

j−1
∏

k=1

ω(xik, x
i
k−1)

ω(xik, x
i
k+1)





−1



−p





≤ cp d
−p

E









 min
1≤i≤d





n
∑

j=1

j−1
∏

k=1

ω(xik, x
i
k−1)

ω(xik, x
i
k+1)





−1



−p





= cp d
−p

E



max
1≤i≤d





n
∑

j=1

j−1
∏

k=1

ω(xik, x
i
k−1)

ω(xik, x
i
k+1)





p

 . (13)
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For x ∈ Td, define R
x := inf{n ≥ 1 : Y

Td(x
n ) = x}, and

H := inf{k ≥ 1 : ∃Ak ∈ Uk such that Px
ω(R

x =∞) = 1 for all x ∈ Ak}.
Observe that for any n ≥ 1,

L(e)I{H=n} ≤ L̃(e, T̃An)I{H=n}.

By Hölder’s inequality for ǫ > 0, with a = 1 + ǫ/p, b = 1 + p/ǫ, and using (13) we have

E[L(e)p, I{H=n}] ≤ E[(L̃(e, T̃An))
pI{H=n}]

≤ E[L̃(e, T̃An)
pa]1/aP(H = n)1/b

≤



cpa d
−pa

E



max
1≤i≤d





n
∑

j=1

j−1
∏

k=1

ω(xik, x
i
k−1)

ω(xik, x
i
k+1)





pa







1/a

P(H = n)1/b.

(14)

Now,

P(H = n) ≤ P







⋃

s∼e

⋂

y∈Td(s)∩T
n−1
d

{Ry <∞}






≤
∑

s∼e

P







⋂

y∈Td(s)∩T
n−1
d

{Ry <∞}







=
∑

s∼e

∏

y∈Td(s)∩T
n−1
d

P (Ry <∞) ,≤ d
(

max
s∈S,y∈Td(s)∩T

n−1
d

P (sy = s,Ry <∞)

)(d−1)n−2

.

(15)

Let q(s) = P(Ry <∞ : y ∈ T
1
d, sy = s) and q = maxs∈S q(s). From (14) and (15) we have,

E[L(e)p, I{H=n}] ≤



cpa d
−pa

E



max
1≤i≤d





n
∑

j=1

j−1
∏

k=1

ω(xik, x
i
k−1)

ω(xik, x
i
k+1)





pa







1/a
(

dq(d−1)
n−2
) 1
b

≤ c1c
n
2q

(d−1)n−2

b (16)

Now it easily follow that E[L(e)p] =
∑∞

n=1 E[L(e)
p, I{H=n}] <∞.

(b) From the definition of D, we have

D =
∑

x∈Td

I{T (x)≤τ1} = 1 +
∑

x 6=e,x∈Td

∞
∑

n=1

I{T (x)≤Tn} I{l1=n}

= 1 +

∞
∑

n=1

∑

x 6=e,x∈Td

I{T (x)≤Tn} I{l1=n}

= 1 +
∞
∑

n=1





n
∑

k=1

∑

x∈Tk
d

I{T (x)≤Tn}



 I{l1=n}

≤ 1 +
∞
∑

n=1





n
∑

k=1

∑

x∈Tk
d

I{T (x)<∞}



 I{l1=n}.
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For each k ≥ 1, we may dominate the random variable
∑

x∈Tk
d
I{T (x)<∞} by a Geometric (1 − q)

random variable (where q was defined in the previous proof). This implies

E





∑

x∈Tk
d

I{T (x)<∞}





2p

≤ cp(1− q)−2p.

Using this, Jensen’s inequality, followed by Hölder’s inequality we have for all n ≥ 1,

E









∑

x∈Tk
d

I{T (x)<∞}





p

I{l1=n}



 ≤ np−1
n
∑

k=1

E









∑

x∈Tk
d

I{T (x)<∞}





p

I{l1=n}





≤ np−1
n
∑

k=1

√

√

√

√

√E





∑

x∈Tk
d

I{T (x)<∞}





2p
√

P(l1 = n)

≤ cp(1− q)−2pnp
√

P(l1 = n)

Then,

E[Dp] ≤ cp(1− P(R <∞))−p
∞
∑

n=1

np P(l1 = n)1/2. (17)

The result follows from Proposition 2.3.
(c) Let {xi : 1 ≤ i ≤ D} be an enumeration of the vertices visited by the walk X before time

τ1. It is easy to see that

τ1 =

D
∑

i=1

L(xi).

So,

E[τp1 ] = E

[(

D
∑

i=1

L(xi)

)p]

≤ E

[

Dp−1
D
∑

i=1

L(xi)
p

]

. (18)

Now

Dp−1
D
∑

i=1

L(xi)
p =

∞
∑

i=1

Dp−1L(xi)pI{D≥i}.

For each i ≥ 1, using Hölder’s inequality twice (first with with q = 1 + δ/p, and q′ = 1 + p/δ) and
Chebychev’s inequality , we have

E
[

Dp−1L(xi)pI{D≥i}
]

≤
[

E[L(xi)
p+δ]

]1/q [

E[D(p−1)q′I{D≥i}]
]1/(q′)

≤
[

E[L(xi)
p+δ]

]1/q [

E[D2(p−1)q′ ]
]1/(2q′)

P(D ≥ i)1/(2q′)

≤
[

E[L(xi)
p+δ]

]1/q [

E[D2(p−1)q′ ]
]1/(2q′) [

E(D4q′)
]1/(2q′) 1

i2
.

(19)
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By definition of L we have

E[L(xi)
p+δ] ≤ E[L(xi)

p+δ)|X0 = xi] = E[L(e)p+δ]. (20)

Using (18), (19), (20), the fact that
∑∞

i=1
1
i2

= π2

6 , along with part (a) and (b), we have the result.
�

3 Proof of Main Results

Proof of Theorem 1.1: Let {τn}n≥1 be the sequence of regeneration times defined in (9). By Propo-
sition (2.4), E(τ1) <∞. So for all n ≥ 1, there exists a (random) subsequence {kn}n≥1 such that

τkn < n ≤ τkn+1. (21)

It is then readily seen that

| Xn |
n

=
| Xτ1 | +

∑kn−1
l=1 (| Xτl+1

| − | Xτl |)+ | Xn | − | Xτkn
|

τ1 +
∑kn−1

l=1 (τl+1 − τl) + n− τkn
. (22)

For any s ∈ S, define

Yi(s) =

{

τ1I{sXτ1=s}
i = 1

(τi − τi−1)I{sXτi=s} i > 1
, Zi(s) =

{

| Xτ1 | I{sXτ1=s} i = 1

(| Xτi | − | Xτi−1 |)I{sXτi=s} i > 1
. (23)

Then, for each s ∈ S, {Yi(s)}i≥1 and {Zi(s)}i≥1 are i.i.d. Using Proposition 2.4,

E[Yi(s)] = E[Y1(s)] = E[τ1I{sXτ1=s}] ≤ E[τ1] <∞,

and
E[Zi(s)] = E[Z1(s)] = E[| Xτ1 | I{sXτ1=s}] ≤ E[| Xτ1 |] ≤ c1E[τ1] <∞.

By strong of law of large numbers for each s ∈ S,

lim
n→∞

∑n
i=1 Yi(s)

n
→ E[Y1(s)] and lim

n→∞

∑n
i=1 Zi(s)

n
−→ E[Z1(s)]

almost surely P, as n→∞. Consequently,

∑kn−1
l=1 τl+1 − τl
kn − 1

=
∑

s∈S

kn−1
∑

i=1

Yi(s)

kn − 1
−→

∑

s∈S

E[Y1(s)] = E[τ1], (24)

and
∑kn−1

l=1 | Xτl+1
| − | Xτl |

kn − 1
=
∑

s∈S

kn−1
∑

i=1

Zi(s)

kn − 1
−→

∑

s∈S

E[Z1(s)] = E[| Xτ1 |], (25)
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almost surely P, as n→∞. Now,

0 ≤ n− τkn ≤ τkn+1 − τkn , (26)

E[τkn − τkn−1] =
∑

s∈S

E[τkn − τkn−1I{sXτkn=s}]

=
∑

s∈S

E[I{sXτkn =s}E[τkn − τkn−1 | sXτkn = s]] =
∑

s∈S

E[I{sXτkn=s}E[τ2 − τ1 | sXτ1 = s]]

≤
∑

s∈S

E[E[τ2 − τ1 | sXτ1 = s]] =| S | E[τ2 − τ1], (27)

and

0 ≤| Xn | − | Xτkn
|≤| Xτkn+1

| − | Xτkn
| and n− | Xτkn

|≤ c1(n− τkn) (28)

for some c1 > 0. Using (24)-(28) along with simple elementary algebra on (22) yields

| Xn |
n
−→ E[| Xτ1 |]

E[τ1]

almost surely as n→∞. �

Proof of Theorem 1.2: Recall from (23) and (21), kn, τ·, Z·(·) and Y·(·). Let

v =
E[Xτ1 ]

E[τ1]
, Wk(s) = Zk(s)− Yk(s)v, Sn(s) =

n
∑

k=1

Wk(s), and Sn =
∑

s∈S

Sn(s).

Observe that,
√
n

( |Xn|
n
− v
)

=
√
n

( |Xn|
n
− Skn − v

)

+
Skn√
n
.

As,
1√
n
| | Xn | −Skn − nv |≤ max

1≤i≤kn

τi − τi−1√
n

,

our result will follow if we establish that as n→∞
Skn√
n

d→ N(0, σ2), for some σ2 > 0 (29)

and for all δ > 0

P

(

max
0≤i≤kn

τi+1 − τi√
n

> δ

)

−→ 0. (30)

Proof of (29): Note that it is easy to check that sXτi is uniform on S (see [ABD14, Section 2])and
thus the vector (Wk(s))s∈S form an i.i.d sequence with

E[W1(s)] = E[Xτ1I{sXτ1=s}]− E[τ1I{sXτ1=s}]v for each s ∈ S and

σs1s2 = E

2
∏

i=1

[
(

| Xτ1 | I{sXτ1=si
} − τ1I{sXτ1=si

}v − E[W1(si)]
)

] for s1, s2 ∈ S.
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Therefore by the Multivariate central limit theorem, we have

(Sn(s)− nE[W1(s)])s∈S√
n

d→ N(0,Σ)

where Σ = (σsisj)si,sj∈S . The continuous map theorem then implies that for each s ∈ S,

Sn(s)− nE[W1(s)]√
n

d→ N(0, σ2s )

with σ2s = σss. If σ = 1tΣ1 then it is immediate that as n→∞

Sn√
n

d→ N(0, σ2). (31)

Note that there is no centering because
∑

s∈S E[W1(s)] = 0. From proof of Theorem 1.1, we know

that kn
n → 1

E[τ1]
. Using this and (31) we are done.

Proof of (30): Using Proposition 2.4 (c) the proof is standard (See [BZ06, Proof of Theorem 2.3]).
Since kn ≤ n, we have that for any δ > 0,

P

(

max
0≤i≤kn

τi+1 − τi√
n

> δ

)

≤
n
∑

i=1

P(τ1 > δ
√
n). (32)

Note that, since E
[

τ21
]

<∞, one has that

∞
∑

i=1

P(τ1 >
δ
√
i√
T
) =

∞
∑

i=1

P(τ21 >
δ2i

T
) <∞ .

Hence, for each ǫ > 0 there is a deterministic constant N ≡ N(d, δ, ǫ) such that

∞
∑

i=N

P(τ1 >
δ
√
i√
T
) < ǫ .

Therefore,

lim sup
n→∞

n
∑

i=1

P(τ1 > δ
√
n) ≤ lim sup

n→∞

(

N
∑

i=1

P(τ1 > δ
√
n) +

∞
∑

i=N+1

P(τ1 >
δ
√
i√
T
)

)

≤ ǫ .

As ǫ > 0 was arbitrary, one concludes from the last limit and (32) that (30) holds. �
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