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This paper studies the long-time behavior of the empirical distribution of age and normalized position of
an age-dependent supercritical branching Markov process. The motion of each individual during its life is a
random function of its age. It is shown that the empirical distribution of the age and the normalized position
of all individuals alive at time t converges as t → ∞ to a deterministic product measure.
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1. Introduction

We consider an age-dependent branching Markov process consisting of a finite collection of
particles distributed in R in which each particle lives for a random length of time and, upon its
death, gives rise to a random number of offspring. Further, during its lifetime, each offspring
migrates according to a prescribed Markov process, starting from the position where its parent
died. The motion process, offspring distribution and lifetime process are all independent of each
other. Further, we allow the motion process to be age-dependent and assume that the system is
supercritical, that is, the mean of the offspring distribution is greater than one. We also assume
that the probability of an individual producing zero offspring is zero. This implies that there is
no extinction. We shall describe the model more precisely in the next section.

We study two aspects of such a system. First, at time t, we consider a randomly chosen indi-
vidual from the population. We show that, asymptotically (as t → ∞), the joint distribution of
the position (appropriately scaled) and age (unscaled) of the randomly chosen individual decou-
ples (see Theorem 1.1). Second, it is shown that the empirical joint distribution of the age and
the normalized position of the population at time t converges in law as t → ∞ to a deterministic
measure (see Theorem 1.2).

Limit theorems (such as Theorems 1.1 and 1.2) for branching Markov processes where the
motion depends on the age do not seem to have been considered in the literature. Our results
on the age distribution (alone) in Theorems 1.1 and 1.2 are well known [2]. This has also been
established for the general Crump–Mode–Jagers process by Jagers and Nerman (see [6,7]). Our
focus here is on the joint distribution of the age (unscaled) and the scaled position. In this paper,
we have restricted ourselves to the case where the branching part is that of a Bellman–Harris
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process (see [2]). If one looks at the positions of the individuals in the embedded Galton–Watson
tree, it gives rise to a branching random walk. There are a number of results (see, e.g., [3,4])
on the asymptotic behavior of these random walks. Our setting is in continuous time and the
question of interest is the asymptotic behavior of the joint distribution of the age and positions of
the particles alive at time t as t → ∞.

1.1. The model

We begin with the description of the particle system. We assume (�, F ,P ) to be a canonical
probability space on which all the random variables are defined. Suppose we are given the fol-
lowing:

(i) lifetime distribution G(·): let G(·) be a cumulative distribution function that is non-lattice
on [0,∞) with G(0) = 0 and μ = ∫ ∞

0 sG(ds) < ∞;
(ii) offspring distribution p: let p ≡ {pk}k≥0 be a probability distribution such that p0 = 0,

m = ∑∞
k=0 kpk > 1 and

∑∞
k=0 k log(k)pk < ∞;

(iii) motion process η(·): let η(·) be an R-valued Markov process starting at 0.

Let α be the Malthusian parameter defined by m
∫ ∞

0 e−αsG(ds) = 1.

Branching Markov process (G,p, η). Suppose we start with an initial configuration C0 =
{(ai

0,X
i
0) : i = 1,2, . . . ,Z0}, 0 < Z0 < ∞, ai

0, Xi
0 denote the age and position of the ith par-

ticle at time 0, respectively. Each particle in the system lives for a random length of time L with
distribution G and upon its death gives rise to a random number of offspring ξ with distribution p.
During its lifetime L, the particle will move in R, according to the process {x +η(t) : 0 ≤ t ≤ L},
where x denotes the position of its parent at the time of its birth. More precisely, if an individ-
ual is born at time τ and at location x and has lifetime L, then it moves during [τ, τ + L) and
its movement {X(t) : τ ≤ t < τ + L} is distributed as {x + η(t − τ) : τ ≤ t < τ + L}, thus the
movement of any individual is a random function of its age. We assume that the three objects
(L, ξ, η) associated with each particle are independent and that the family of triplets (L, ξ, η)

over all particles in the system are i.i.d.
Let Zt be the number of particles alive at time t and

Ct = {(ai
t ,X

i
t ) : i = 1,2, . . . ,Zt } (1.1)

denote the age and position configuration of all the individuals alive at time t. Since m < ∞ and
G(0) = 0, there is no explosion in finite time (i.e., P(Zt < ∞) = 1). Also, P(η(L) ∈ R) = 1 for
each particle. Thus, Ct is well defined for each 0 ≤ t < ∞ and the process {Ct : t ≥ 0} is Markov.

For a particle chosen uniformly at random from those alive at time t , let Mt, {Lti, {ηti(u),0 ≤
u ≤ Lti} : 1 ≤ i ≤ Mt } denote, respectively, the number of ancestors, the lifetimes, and the motion
processes of its ancestors and {ηt(Mt+1)(u) : 0 ≤ u ≤ t − ∑Mt

i=1 Lti} the motion of the individual
concerned. If Mt = 0, then

at = a0 + t and Xt = X0 + η(a0 + t) − η(a0), (1.2)
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where a0 is the age and X0 is the location of the particle at time t = 0 and η(·) is the assumed
motion process. If Mt > 0, then the age and position, (at ,Xt ), of the particle are given by

at = t −
Mt∑
i=1

Lti (1.3)

and

Xt = X0 + ηt1(Lt1) − ηt1(a0) +
Mt∑
i=2

ηti(Lti) + ηt(Mt+1)(at ). (1.4)

Note that, given {Mt,Lti ,1 ≤ i ≤ Mt }, the collection of stochastic processes {ηti(u),0 ≤ u ≤
Lti,1 ≤ i ≤ Mt } have the same distribution as η and are independent of each other.

Let B(R+) (and B(R)) be the Borel σ -algebra on R+ (and R). Let M(R+ × R) be the space
of finite Borel measures on R+ × R equipped with the weak topology. Let Ma(R+ × R) :=
{ν ∈ M(R+ × R) :ν = ∑n

i=1 δai ,xi
(·, ·), n ∈ N, ai ∈ R+, xi ∈ R}. For any set A ∈ B(R+) and

B ∈ B(R), let Yt (A × B) be the number of particles at time t whose age is in A and position is
in B . As pointed out earlier, m < ∞, G(0) = 0 implies that Yt ∈ Ma(R+ × R) for all t > 0 if
the same holds for Y0. Fix a function φ ∈ C+

b (R+ × R) (the set of all bounded, continuous and
positive functions from R+ × R to R+) and define

〈φ,Yt 〉 ≡
∫

φ dYt =
Zt∑
i=1

φ(ai
t ,X

i
t ). (1.5)

Since η(·) is a Markov process, it can be seen that {Yt : t ≥ 0} is a Markov process and we shall
call Y ≡ {Yt : t ≥ 0} the (G,p, η)-branching Markov process. Note that Ct determines Yt and
conversely.

1.2. Main results

In this section, we describe the main results of the paper.

Theorem 1.1 (Limiting behavior of a randomly chosen particle). Let (at ,Xt ) be the age and
position of a randomly chosen particle from those alive at time t . Let μα = ∫ ∞

0 se−αs dG(s).
Assume that η(·) is such that for all 0 ≤ t < ∞,

E(η(t)) = 0, v(t) ≡ E(η2(t)) < ∞, sup
0≤s≤t

v(s) < ∞ and (1.6)

ψα ≡
∫ ∞

0
v(s)e−αsG(ds) < ∞.

Then (at ,
Xt√

t
) converges, as t → ∞, to (U,V ) in distribution, where U and V are independent,

with U a strictly positive absolutely continuous random variable with density proportional to
e−α·(1 − G(·)) and V a normally distributed random variable with mean 0 and variance ψα

μα
.
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Note that in the theorem, as p0 = 0, P (Zt > 0) = 1 for all 0 ≤ t < ∞ since Z0 > 0. Next,
consider the scaled empirical measure Ỹt ∈ Ma(R+ × R) given by

Ỹt (A × B) = Yt (A × √
tB)

Zt

(1.7)

for A ∈ B(R+),B ∈ B(R).

Theorem 1.2 (Empirical measure). Assume p0 = 0 and (1.6). The scaled empirical measure
Ỹt , as defined above in (1.7), then converges in distribution to a deterministic measure ν, with
ν(A×B) = P(U ∈ A,V ∈ B), where U and V are as in Theorem 1.1 for A ∈ B(R+),B ∈ B(R).

1.3. Layout

The rest of the paper is organized as follows. In Section 2, we prove some preliminary re-
sults from renewal theory. In Section 3, we prove four propositions on age-dependent branching
processes which are used in proving Theorem 1.1 in Section 4. This is required because sampling
an individual from those alive at time t introduces dependencies in the lifetimes of the ancestors
of the chosen individual. In Section 3, we also show that the joint distribution of coalescent times
for a sample of two individuals chosen at random from the population at time t converges as
t → ∞ (see Theorem 3.1). This result is of independent interest and is a key tool that is needed
in proving Theorem 1.2 in Section 5. Some of the results presented in Sections 2 and 3 are known
in the literature. They are included here to make the paper more accessible and also in a form in
which they are needed for the proofs of the main results.

2. Results from renewal theory

Let {Xi : i ≥ 1} be an i.i.d. sequence of positive random variables with cumulative distribution
function G that is non-lattice and satisfies G(0) = 0. Let S0 = 0, Sn = ∑n

i=1 Xi,n ≥ 1. For
t ≥ 0, let N(t) = k if Sk ≤ t < Sk+1, k ≥ 0. Further, let At = t − SN(t) and Rt = SN(t)+1 − t be,
respectively, the age and residual lifetime at time t . Let μ ≡ ∫ ∞

0 x dG(x) ≤ ∞.

Lemma 2.1. Let At,N(t),Rt and μ be as above. Then:

(i) N(t)
t

a.e.−→ 1
μ

;

(ii) if θ ∈ R is such that g(θ) = ∫ ∞
0 eθt (1 − G(t))dt < ∞ and μ < ∞, then

lim
t→∞E(eθAt ) = lim

t→∞E(eθRt ) = g(θ)

μ
(2.1)

and, for any 0 < l < ∞,

lim
t→∞E(eθAt :At > l) = lim

t→∞E(eθRt :Rt > l) = 1

μ

∫ ∞

l

eθu
(
1 − G(u)

)
du, (2.2)
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hence

lim
l→∞ lim

t→∞E(eθRt :Rt > l) = 0. (2.3)

Proof. Part (i) is a well-known result.
(ii) For t ≥ 0, θ ∈ R, let f (θ, t) = E(eθAt ) and g(θ, t) = E(eθRt ). It is easy to see that

f (θ, t) = eθt
(
1 − G(t)

) +
∫ t

0
f (θ, t − u)dG(u),

g(θ, t) = h(θ, t)
(
1 − G(t)

) +
∫ t

0
g(θ, t − u)dG(u),

where h(θ, t) = E(eθ(X−t)|X > t) with X
d= G. By the key renewal theorem, as t → ∞,

f (θ, t) →
∫ ∞

0 eθu(1 − G(u))du

μ

and

g(θ, t) →
∫ ∞

0 h(θ,u)(1 − G(u))du

μ

=
∫ ∞

0 E(eθ(X−u);X > u)du

μ

= E(
∫ X

0 eθu du)

μ
=

∫ ∞
0 eθuP (X > u)du

μ

=
∫ ∞

0 eθu(1 − G(u))du

μ
.

This proves (2.1). This being true for all θ ≤ 0, it follows that as t → ∞, both At
d−→ A∞ and

Rt
d−→ R∞, where A∞ and R∞ have the same distribution, namely, an absolutely continuous

one on (0,∞) with probability density function (1−G(·))
μ

. Since P(R∞ = l) = 0,

E(eθRt ;Rt > l) → E(eθR∞;R∞ > l) = 1

μ

∫ ∞

l

eθt
(
1 − G(t)

)
dt,

which proves (2.2). Under the hypothesis
∫ ∞

0 eθt (1 − G(t))dt < ∞, (2.3) follows easily
from (2.2) by the dominated convergence theorem. �

The first part of the following lemma is known in various forms in the literature (see [3–5]).
A proof is given here for our setup in the precise form in which we will need it.
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Lemma 2.2. Let {Xi}i≥1 be i.i.d. positive random variables with distribution function G and
G(0) = 0. Let m > 1 and 0 < α < ∞ be the Malthusian parameter given by m

∫ ∞
0 e−αx dG(x) =

1. Let {X̃i}i≥1 be i.i.d. positive random variables with distribution function G̃(x) = m ×∫ x

0 e−αy dG(y), x ≥ 0. Let N(t),At ,Rt be as defined above for {Xi}i≥1 and Ñ(t), Ãt , R̃t be

the corresponding objects for {X̃i}i≥1. Then:

(i) for any k ≥ 1 and bounded Borel measurable function φ : Rk → R,

E(φ(X̃1, X̃2, . . . , X̃k)) = E(e−αSkmkφ(X1,X2, . . . ,Xk)), (2.4)

where Sk = ∑k
i=1 Xi;

(ii) for any t ≥ 0, k ≥ 0, c ∈ R and Borel measurable function h, and ε > 0,

E

(
eαRt e−αSk+1mk+1I

(
N(t) = k,

∣∣∣∣∣1

k

k∑
i=1

h(Xi) − c

∣∣∣∣∣ > ε

))
(2.5)

= E

(
eαR̃t I

(
Ñ(t) = k,

∣∣∣∣∣1

k

k∑
i=1

h(X̃i) − c

∣∣∣∣∣ > ε

))
;

(iii)

lim
l→∞ lim

t→∞E(eαR̃t : R̃t > l) = 0. (2.6)

Proof. From the definition of G̃, for any Borel sets Bi, i = 1,2, . . . , k, we have

P(X̃i ∈ Bi, i = 1,2, . . . , k) =
k∏

i=1

m

∫
Bi

e−αx dG(x) = E

(
e−αSkmk

k∏
i=1

I (Xi ∈ Bi)

)
.

Therefore, (2.4) follows and (2.5) follows from it by setting, for given t ≥ 0, k ≥ 0,

(x1, x2, . . . , xk+1) ∈ R
k+1,

φt (x1, x2, . . . , xk+1) = eαrt I

(
sk ≤ t < sk+1,

∣∣∣∣∣1

k

k∑
i=1

h(xi) − c

∣∣∣∣∣ > ε

)
,

where rt = ∑k+1
i=1 xi − t , sj = ∑j

i=1 xi, 1 ≤ j ≤ k + 1. Now,

∫ ∞

0
eαx

(
1 − G̃(x)

)
dx

= m

∫ ∞

0
eαx

(∫ ∞

x

e−αy dG(y)

)
dx = m

∫ ∞

0

(∫ y

0
eαx dx

)
e−αy dG(y) (2.7)

= m

∫ ∞

0

eαy − 1

α
e−αy dG(y) = m

α

(
1 − 1

m

)
< ∞.
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Therefore, (2.6) follows from (2.3). �

Corollary 2.1. Assume the setup of Lemma 2.2. Let μα ≡ m
∫ ∞

0 xe−αx dG(x). Then, for all
ε > 0,

lim
t→∞ e−αtE

(
mN(t) :

∣∣∣∣N(t)

t
− 1

μα

∣∣∣∣ > ε

)
= 0. (2.8)

Proof. By the definition of Rt ,

e−αtE

(
mN(t);

∣∣∣∣N(t)

t
− 1

μα

∣∣∣∣ > ε

)

= E

(
e−α(t−SN(t)+1)e−αSN(t)+1mN(t)I

(∣∣∣∣N(t)

t
− 1

μα

∣∣∣∣ > ε

))

= 1

m

∞∑
k=0

E

(
eαRt e−αSk+1mk+1I

(
N(t) = k,

∣∣∣∣kt − 1

μα

∣∣∣∣ > ε

))
(2.9)

= 1

m

∞∑
k=0

E

(
eαR̃t I

(
Ñ(t) = k,

∣∣∣∣kt − 1

μα

∣∣∣∣ > ε

))

= 1

m
E

(
eαR̃t ;

∣∣∣∣ Ñ(t)

t
− 1

μα

∣∣∣∣ > ε

)
,

where the second-to-last equality follows from Lemma 2.2(ii). Since X̃1 satisfies the hypothesis
of Lemma 2.1(ii), the family of random variables {eαR̃t : t ≥ 0} is uniformly integrable. Also,

by Lemma 2.1(i), Ñ(t)
t

→ 1
μα

with probability 1. Therefore, E(eαR̃t ; | Ñ(t)
t

− 1
μα

| > ε) → 0 as
t → ∞. �

3. Results on branching processes

Let {Zt : t ≥ 0} be an age-dependent branching process with offspring distribution {pk}k≥0 and
lifetime distribution G (see [2] for details). Let {ζk}k≥0 be the embedded discrete-time Galton–
Watson branching process with ζk being the size of the kth generation, k ≥ 0. Since p0 = 0,

P (Zt > 0) = 1 for all t > 0. On this event, choose an individual uniformly from those alive at
time t . Let Mt be the generation number and at the age of this individual.

Proposition 3.1. Let α > 0 be the Malthusian parameter defined by m
∫ ∞

0 e−αu dG(u) = 1.

(i) For x ≥ 0,

lim
t→∞P(at ≤ x) =

∫ x

0 e−αu(1 − G(u))du∫ ∞
0 e−αu(1 − G(u))du

≡ Ã(x). (3.1)
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(ii) Let μα = m
∫ ∞

0 xe−αx dG(x). Then

Mt

t

a.e.−→ 1

μα

(3.2)

as t → ∞.

Proof. (i) Fix x ≥ 0. Then P(at ≤ x) = E(A(t, x)), where A(t, x) is the proportion of individ-

uals alive at time t with age less than or equal to x. From [1], it is known that A(t, x)
p→ Ã(x).

By the bounded convergence theorem, the result follows.
(ii) Let {ζk}k≥0 be the embedded Galton–Watson process. For each t > 0 and k ≥ 1, let ζkt

denote the number of lines of descent in the kth generation alive at time t (i.e., the successive
lifetimes {Li}i≥1 of the individuals in that line of descent satisfying

∑k
i=1 Li ≤ t ≤ ∑k+1

i=1 Li ).
Denote the lines of descent of these individuals by {ζktj : 1 ≤ j ≤ ζkt }. Now, for any k > 0, η > 0,
let N(t) be as in Lemma 2.1. Then

P(Mt > kt) = E

(
1

Zt

∑
j>kt

ζjt

)
≤ P(Zt < eαtη) + 1

ηeαt

∑
j>kt

Eζjt .

However, Eζjt = mjP (N(t) = j). Hence,

P(Mt > kt) = P(Zt < eαtη) + 1

η
e−αt

∑
j>kt

mjP
(
N(t) = j

)

= P(Zt < eαtη) + 1

η
e−αtE

(
mN(t);N(t) > kt

)
(3.3)

= P(Zt < eαtη) + 1

ηm
E

(
eαR̃t ; Ñ(t) > kt

)

≤ P(Zt < eαtη) + eαl

ηm
P

(
Ñ(t) > kt

) + 1

ηm
E(eαR̃t ; R̃t > l),

where the second-to-last step follows from an argument similar to that used in the proof of Corol-
lary 2.1. Now, by Lemma 2.1(i), lim supt→∞ P(Ñ(t) > kt) = 0 if k > 1

μα
, and by Lemma 2.1(ii),

lim supl→∞ lim supt→∞ E(eαRt :Rt > l) = 0. Also, as
∑∞

k=1 k log(k)pk < ∞ (see [2], Chapter

4), there exists a random variable W such that Zte−αt a.e.−→ W as t → ∞ and P(W < η) → 0 as
η ↓ 0. Consequently, from (3.3), for k > 1

μα
, we obtain

lim sup
t→∞

P(Mt > kt) ≤ lim sup
η↓0

lim sup
t→∞

P(Zt < eαtη) + eαl

ηm
lim sup
t→∞

P
(
Ñ(t) > kt

)

+ 1

ηm
lim sup
l→∞

lim sup
t→∞

E(eαR̃t : R̃t > l) = 0.

Similarly, one can show that lim supt→∞ P(Mt < kt) → 0 for k < 1
μα

, thereby obtaining the
result. This result has also been proven in [9], using a different method. �
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Proposition 3.2 (Law of large numbers). Let ε > 0 be given. For the randomly chosen individ-
ual at time t , let {Lti : 1 ≤ i ≤ Mt } be the lifetimes of its ancestors. Let h : [0,∞) → R be Borel
measurable such that m

∫ ∞
0 |h(x)|e−αx dG(x) < ∞. Then, as t → ∞,

P

(∣∣∣∣∣ 1

Mt

Mt∑
i=1

h(Lti) − c

∣∣∣∣∣ > ε

)
→ 0, (3.4)

where c = m
∫ ∞

0 h(x)e−αx dG(x).

Proof. Let ζk, ζkjt be as in proof of Proposition 3.1(ii). We call ζktj bad if

∣∣∣∣∣1

k

k∑
i=1

h(Lktji) − c

∣∣∣∣∣ > ε, (3.5)

where {Lktji}i≥1 are the successive lifetimes in the line of descent ζktj starting from the ancestor.
Let ζkt,b denote the cardinality of the set {ζktj : 1 ≤ j ≤ ζkt and ζktj is bad}. Then

P

(∣∣∣∣∣ 1

Mt

Mt∑
i=1

h(Lti) − c

∣∣∣∣∣ > ε

)

= E

(∑∞
j=0 ζjt,b

Zt

)
= E

(∑∞
j=0 ζjt,b

Zt

;Zt < eαtη

)
+ E

(∑∞
j=0 ζjt,b

Zt

;Zt ≥ eαtη

)
(3.6)

≤ P(Zt < eαtη) + 1

ηeαt
E

( ∞∑
j=0

ζjt,b

)
,

where η > 0. Now, note that for j ≥ 0 and t ≥ 0,

E(ζjtb) = mjP

(
j∑

i=1

Li ≤ t <

j+1∑
i=1

Li,

∣∣∣∣
∑j

i=1 h(Li)

j
− c

∣∣∣∣ > ε

)

= E
(
mjI (Sj ≤ t < Sj+1, |Ȳj | > ε)

)
,

where {Li} are i.i.d. G, Sj = ∑j

i=1 Li and Ȳj =
∑j

i=1 h(Li)

j
− c. Thus,

∞∑
j=0

1

η
e−αtE(ζjt,b)

= 1

η

∞∑
j=0

E
(
e−αtmj I (Sj ≤ t < Sj+1, |Ȳj | > ε)

)
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= 1

ηm

∞∑
j=0

E
(
eαRt e−αSj+1mj+1I (Sj ≤ t < Sj+1, |Ȳj | > ε)

)

= 1

ηm

∞∑
j=0

E
(
eαR̃t I

(
Ñ(t) = j, | ¯̃Y j | > ε

))
(by Lemma 2.2(ii))

= 1

ηm
E

(
eαR̃t I

(∣∣ ¯̃
Y Ñ(t)

∣∣ > ε
))

≤ eαl

ηm
P

(∣∣ ¯̃
Y

Ñ(t)

∣∣ > ε
) + 1

ηm
E(eαR̃t ; R̃t > l).

By the strong law of large numbers, | ¯̃Y Ñ(t)
| a.e.−→ 0 and, consequently, lim supt→∞ P(| ¯̃Y

Ñ(t)
| >

ε) = 0. Applying (2.3) with θ = α shows that the second term on the right-hand side of (3.6)
converges to zero as t → ∞. Further, since lim supη→0 lim supt→∞ P(Zt < eαtη) = 0, (3.4)
follows. �

Proposition 3.3. Assume that (1.6) holds. Let {Li}i≥1 be i.i.d. G and {ηi}i≥1 be i.i.d. copies of
η and independent of the {Li}i≥1. For θ ∈ R, t ≥ 0, define φ(θ, t) = Eeiθη(t). There then exists
an event D with P(D) = 1, and on D for all θ ∈ R,

n∏
j=1

φ

(
θ√
n
,Lj

)
→ e−θ2ψ/2 as n → ∞,

where � = ∫ ∞
0 v(s)G(ds).

Proof. Recall from (1.6) that v(t) = E(η2(t)) for t ≥ 0. Consider

Xni = ηi(Li)√∑n
j=1 v(Lj )

for 1 ≤ i ≤ n

and F = σ(Li : i ≥ 1). Given F , {Xni : 1 ≤ i ≤ n} is a triangular array of independent random
variables such that for 1 ≤ i ≤ n, E(Xni |F ) = 0,

∑n
i=1 E(X2

ni |F ) = 1.

Let ε > 0 be given. Let

Ln(ε) =
n∑

i=1

E(X2
ni;X2

ni > ε|F ).

By the strong law of large numbers,

∑n
j=1 v(Lj )

n
→ ψ w.p. 1. (3.7)
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Let D be the event on which (3.7) holds. Then, on D,

lim sup
n→∞

Ln(ε) ≤ lim sup
n→∞

2

ψn

n∑
i=1

E

(∣∣∣∣ηi(Li)|2 : | ηi(Li)|2 >
εnψ

2

∣∣∣∣F
)

≤ lim sup
k→∞

lim sup
n→∞

2

ψn

n∑
i=1

E
(|ηi(Li)|2 : | ηi(Li)|2 > k|F

)

= 2

ψ
lim sup
k→∞

E
(|η1(L1)|2 : | η1(L1) |2> k

)
(by SLLN)

= 0.

Thus, the Lindeberg–Feller central limit theorem implies that on D, for all θ ∈ R,

n∏
i=1

φ

(
θ√∑n

j=1 v(Lj )
,Lj

)
= E(eiθ

∑n
j=1 Xnj |F ) → e−θ2/2.

Combining this with (3.7) yields the result. �

Proposition 3.4. For the randomly chosen individual at time t , let {Lti, {ηti(u) : 0 ≤ u ≤ Lti} :
1 ≤ i ≤ Mt } be the lifetimes and motion processes of its ancestors. Let Zt1 = 1√

Mt

∑Mt

i=1 ηti(Lti)

and Lt = σ {Mt,Lti : 1 ≤ i ≤ Mt }. Then

E
(|E(eiθZt1 |Lt ) − e−θ2ψα/2|) → 0 as t → ∞. (3.8)

Proof. Fix θ ∈ R, ε1 > 0 and ε > 0. Replace the definition of “bad” in (3.5) by

∣∣∣∣∣
k∏

i=1

φ

(
θ√
k
,Lktji

)
− e−θ2ψα/2

∣∣∣∣∣ > ε. (3.9)

By Proposition 3.3, we have, if the {Li}i≥1 are i.i.d. G̃ (as in Lemma 2.2),

lim
k→∞P

(
sup
j≥k

∣∣∣∣∣
j∏

i=1

φ

(
θ√
j
,Li

)
− e−θ2ψα/2

∣∣∣∣∣ > ε

)
= 0. (3.10)

Using this and following along the lines of the proof of Proposition 3.2 (since the details mirror
that proof we avoid repeating them here), we obtain that for t sufficiently large,

P

(∣∣∣∣∣
Mt∏
i=1

φ

(
θ√
Mt

,Lti

)
− e−θ2ψα/2

∣∣∣∣∣ > ε1

)
< ε. (3.11)
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Now, for all θ ∈ R,

E(eiθZt1 |Lt ) =
Mt∏
i=1

φ

(
θ√
Mt

,Lti

)
.

Therefore,

lim sup
t→∞

E
(∣∣E(

eiθ(1/
√

Mt)
∑Mt

i=1 ηi(Lti )
∣∣Lt

) − e−θ2ψα/2
∣∣)

= lim sup
t→∞

E

(∣∣∣∣∣
Mt∏
i=1

φ

(
θ√
Mt

,Lti

)
− e−θ2ψα/2

∣∣∣∣∣
)

< ε1 + 2 lim sup
t→∞

P

(∣∣∣∣∣
Mt∏
i=1

φ

(
θ√
Mt

,Lti

)
− e−θ2ψα/2

∣∣∣∣∣ > ε1

)

= ε1 + 2ε.

Since ε > 0, ε1 > 0 are arbitrary, we have the result. �

The above propositions will be used in the proof of Theorem 1.1. For the proof of Theorem 1.2,
we will need a result on coalescing times of the lines of descent.

Theorem 3.1. For t ≥ 0, choose two individuals uniformly at random from those alive at time t

and trace their lines of descents backward in time to find the time of death τt of their last common
ancestor, also known as the coalescent time. Then, for 0 < s < ∞,

lim
t→∞P(τt < s) = H(s) exists and lim

s→∞H(s) = 1. (3.12)

Proof. For s ≥ 0 and t ≥ s, let {Zt−s,i : t ≥ s}, i = 1,2, . . . ,Zs , denote the branching processes
initiating from the Zs individuals at time s. Then

P(τt < s) = E

(∑Zs

i �=j=1 Zt−s,iZt−s,j

Zt (Zt − 1)

)
. (3.13)

As
∑∞

k=1 k log(k)pk < ∞ (see [2], Chapter 4), conditional on Zs , e−α(t−s)Zt−s,i
a.e.−→ Wieαas,i

as t → ∞ for all i = 1, . . . ,Zs , where {Wi}i≥1 is a sequence of i.i.d. random variables with
Wi < ∞ a.e. and E(Wi) = 1. {as,i}i=1,...,Zs are the ages of the individuals alive at time s. Hence,∑Zs

i �=j=1 Zt−s,iZt−s,j

Zt (Zt − 1)

a.e.−→
∑Zs

i �=j=1 WiWj eαas,i eαas,j

(
∑Zs

i=1 Wieαas,i )2
. (3.14)

Define the function g : N → N by

g(k) = E

(∑k
i �=j=1 WiWj

(
∑k

i=1 Wi)2

)
= 1 − E

( ∑k
i=1 W 2

i

(
∑k

i=1 Wi)2

)
.
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Since
∑k

i=1 W 2
i ≤ (

∑k
i=1 Wi)

2, we have 0 ≤ g(k) ≤ 1. So, by the bounded convergence theorem,

E

(∑Zs

i �=j=1 Zt−s,iZt−s,j

Zt (Zt − 1)

∣∣∣Zs

)
a.e.−→ g(Zs).

It follows from (3.13) and the bounded convergence theorem that

lim
t→∞P(τt < s) = E(g(Zs)) ≡ H(s).

We now claim that g(k) → 1 as k → ∞. Again, by the bounded convergence theorem, it suffices
to show that ∑k

i=1 W 2
i

(
∑k

i=1 Wi)2

p→ 0.

Since
∑∞

j=1 j log jpj < ∞, E(Wi) ≡ 1, and hence, by the strong law,

1

k

k∑
i=1

Wi → 1 a.e. (3.15)

Consequently, it suffices to show that

1

k2

k∑
i=1

W 2
i

p→ 0. (3.16)

Since E(Wi) = 1 and the {Wi}i≥1 are i.i.d., for every ε > 0,
∑∞

i=1 P(Wi ≥ iε) < ∞. So, by
the Borel–Cantelli lemma, with probability 1, Wi ≤ iε for all large i. This implies that if W ∗

k ≡
max1≤i≤k Wi, then

lim sup
k→∞

W ∗
k

k
≤ ε w.p. 1.

This, together with (3.15), yields

lim sup
k→∞

1

k2

k∑
i=1

W 2
i ≤ ε w.p. 1.

(3.16) follows from the above and the fact that the empirical age distribution converges. Since
Zs

a.e.−→ ∞ as s → ∞, it follows by the bounded convergence theorem that lims→∞ H(s) = 1. �

A similar argument to the above leads to the following corollary. This, however, is not required
for the proof of Theorem 1.2.
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Corollary 3.1. Suppose r individuals are chosen at time t by simple random sampling without
replacement. Let τr,t be the last time they have a common ancestor. Then

lim
t→∞P(τr,t < s) = Hr(s) exists and lim

s→∞Hr(s) = 1. (3.17)

4. Proof of Theorem 1.1

For the individual chosen, let (at ,Xt ) be the age and position at time t . As in Proposition 3.4, let
{Lti, {ηti(u),0 ≤ u ≤ Lti} : 1 ≤ i ≤ Mt } be the lifetimes and motion processes of the ancestors
of this individual and {ηt(Mt+1)(u) : 0 ≤ u ≤ t − ∑Mt

i=1 Lti} the motion of this individual. Let
Lt = σ(Mt ,Lti,1 ≤ i ≤ Mt). It is immediate from the construction of the process that

at = t −
Mt∑
i=1

Lti

whenever Mt > 0, that it is equal to a0 + t otherwise and that

Xt = X0 − ηt1(a0) +
Mt∑
i=1

ηti(Lti) + ηt(Mt+1)(at ).

Rearranging the terms, we obtain

(
at ,

Xt√
t

)
=

(
at ,

√
1

μα

Zt1

)
+

(
0,

(√
Mt

t
−

√
1

μα

)
Zt1

)
+

(
0,

X0 + ηt1(a0)√
t

+ Zt2

)
,

where Zt1 =
∑Mt

i=1 ηti (Lti
)√

Mt
and Zt2 = 1√

t
ηt (Mt+1)(at ). Let ε > 0 be given,

P(|Zt2| > ε) ≤ P(|Zt2| > ε,at ≤ k) + P(|Zt2| > ε,at > k)

≤ P(|Zt2| > ε,at ≤ k) + P(at > k)

≤ E(|Zt2|2I (at ≤ k))

ε2
+ P(at > k).

By Proposition 3.1(i), at converges in distribution to U and hence, for any η > 0, there is a kη

such that for all k ≥ kη, t ≥ 0,

P(at > k) <
η

2
.

Next,

E
(|Zt2|2I (at ≤ kη)

) = E
(
I (at ≤ kη)E(|Zt2|2|Lt )

) = E

(
I (at ≤ kη)

v(at )

t

)

≤ supu≤kη
v(u)

t
.



152 K.B. Athreya, S.R. Athreya and S.K. Iyer

Hence,

P(|Zt2| > ε) ≤ supu≤kη
v(u)

tε2
+ η

2
.

Using (1.6), since ε > 0 and η > 0 are arbitrary, this shows that as t → ∞,

Zt2
p→ 0. (4.1)

Now, for λ > 0, θ ∈ R, as at is Lt measurable, we have

E
(
e−λat e−i(θ/

√
μα)Zt1

)
= E

(
e−λat

(
E

(
e−i(θ/

√
μα)Zt1

∣∣Lt

) − e−θ2ψα/(2μα)
)) + e−θ2ψα/(2μα)E(e−λat ).

Proposition 3.4 shows that the first term above converges to zero and, using Proposition 3.1(i),
we can conclude that as t → ∞, (

at ,
1√
μα

Zt1

)
d−→ (U,V ). (4.2)

As X0, a0 are constants, by Proposition 3.1, (4.2), (4.1) and Slutsky’s theorem, the proof is com-
plete.

5. Proof of Theorem 1.2

Let φ ∈ Cb(R × R+). By Theorem 1.1 and the bounded convergence theorem,

E(〈Ỹt , φ〉) → E(φ(U,V )). (5.1)

We shall show that

Var(〈Ỹt , φ〉) ≡ E(〈Ỹt , φ〉2) − (E(〈Ỹt , φ〉))2 → 0 (5.2)

as t → ∞. This will yield that

〈Ỹt , φ〉 d−→ φ(U,V )

for all φ ∈ Cb(R × R+). The result then follows from [8], Theorem 16.16. We now proceed to
establish (5.2).

Pick two individuals C1,C2 at random (i.e., by simple random sampling without replace-
ment) from those alive at time t . Let the age and position of the two individuals be denoted by
(ai

t ,X
i
t ), i = 1,2. Let τt = τC1,C2,t be the birth time of their common ancestor, say D, whose

position we denote by X̃τt . Let the net displacement of C1 and C2 from D be denoted by
Xi

t−τt
, i = 1,2, respectively. Then Xi

t = X̃τt + Xi
t−τt

, i = 1,2.
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Next, conditioned on this history up to the birth of D(≡ Gt ), the random variables (ai
t ,X

i
t−τt

),

i = 1,2, are independent. By Theorem 3.1, τt

t

d−→ 0. Also, by Theorem 1.1, conditioned on

Gt , {(ai
t ,

Xi
t−τt√
t−τt

), i = 1,2} converges in distribution to {(Ui,Vi), i = 1,2}, which are i.i.d. with

distribution (U,V ), as in Theorem 1.1. Next, by Theorem 3.1, {τt : t ≥ 0} is tight and hence
X̃τt√

t

p→ 0 as t → ∞.

Combining these, we conclude that {(ai
t ,

Xi
t√
t
), i = 1,2} converges in distribution to {(Ui,Vi),

i = 1,2}. Thus, for any φ ∈ Cb(R+ × R), we have, by the bounded convergence theorem,

lim
t→∞E

(
2∏

i=1

φ

(
ai
t ,

Xi
t√
t

))
= E

2∏
i=1

φ(Ui,Vi) = (Eφ(U,V ))2.

Now,

E(Ỹt (φ))2 = E

(
(φ(at ,Xt/

√
t))2

Zt

)
+ E

(
2∏

i=1

φ

(
ai
t ,

Xi
t√
t

)
Zt(Zt − 1)

Z2
t

)
.

Using the fact that φ is bounded and Zt
a.e.−→ ∞, we have

lim
t→∞E(Ỹt (φ))2 → (Eφ(U,V ))2.

This, along with (5.1), implies (5.2) and we have thus proven the theorem.
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