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Abstract

In a rapidly growing population one expects that two individuals chosen at random from the nth
generation are unlikely to be closely related if n is large. In this paper it is shown that for a broad class of
rapidly growing populations this is not the case. For a Galton–Watson branching process with an offspring
distribution {p j } such that p0 = 0 and ψ(x) =


j p j I{ j≥x} is asymptotic to x−αL(x) as x → ∞ where

L(·) is slowly varying at ∞ and 0 < α < 1 (and hence the mean m =


j p j = ∞) it is shown that if Xn is
the generation number of the coalescence of the lines of descent backwards in time of two randomly chosen
individuals from the nth generation then n − Xn converges in distribution to a proper distribution supported
by N = {1, 2, 3, . . .}. That is, in such a rapidly growing population coalescence occurs in the recent past
rather than the remote past. We do show that if the offspring mean m satisfies 1 < m ≡


j p j < ∞ and

p0 = 0 then coalescence time Xn does converge to a proper distribution as n → ∞, i.e., coalescence does
take place in the remote past.
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction

If one considers a rapidly growing population then two individuals chosen at random from
the nth generation are very unlikely to be closely related as n gets large. For example, in a
deterministic binary tree the coalescence time Xn for two individuals chosen at random from
the nth generation (Xn is the generation number where the lines of descent of these two chosen
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individuals going backwards in time meet) has the probability distribution P(Xn < k) =
1−2−k

1−2−n ,

k ≥ 0 which converges to 1 − 2−k as n → ∞. Thus, Xn converges in distribution to a geometric
( 1

2 ) distribution on N+
≡ {0, 1, 2, . . .}.

A similar assertion holds for any regular m-nary tree where from each vertex at any grown
level there are m branches coming out for the next level. So it is somewhat surprising and counter
intuitive that if the population grows too rapidly this need not hold. In this paper we provide
a broad class of such growing populations for which the coalescence time Xn does not stay
reasonable but goes to ∞ and indeed n − Xn stays reasonable, i.e., coalescence tends to be very
recent.

We show that in a Galton–Watson branching process if the offspring distribution is in the
domain of attraction of a stable law of order α, 0 < α < 1 (necessarily with infinite mean) then
Xn not only does not converge to a proper distribution but does converge to infinity in distribution
and in fact, n − Xn converges to a proper distribution (Theorem 1). That is, coalescence of two
lines of descent indeed occurs in the very recent past. This somewhat counter intuitive result
may be explained by the fact (see Grey [6], Davies [4] and Schuh and Barbour [9]) that if the
offspring distribution is in the domain of attraction of a stable law of order α, 0 < α < 1 then
between any two lines of descent one outpaces the other (i.e., the ratio of their population sizes
in nth generation goes to zero as n goes to infinity). We do show also that if the offspring mean
m =


∞

j=1 j p j satisfies 1 < m < ∞ and if p0 = 0 then coalescence does take place in the
remote past (Theorem 2).

2. Main results

Let {p j } j≥0 be a probability distribution with p0 = 0 and in the domain of attraction of a
stable law of order α, 0 < α < 1. An equivalent condition (see Feller [5], Bingham et al. [3]) is
that there exists a function L(·) from [1,∞) to R+ such that for any 1 < c, x < ∞, L(cx)

L(x) → 1
as x → ∞ (called slowly varying at ∞) and

j≥x
p j

xαL(x)
→ 1 as x → ∞. (1)

Let {Zn}n≥0 be a Galton–Watson branching process with the offspring distribution {p j } j≥0
and initial population size Z0 < ∞. That is, there exist i.i.d. rv {ξn,i : i ≥ 1, n ≥ 0} with
distribution {p j } j≥0 such that for each n = 0, 1, 2, . . . ,

Zn+1 =

Zn
i=1

ξn,i .

Thus ξn,i can be thought of as the number of offsprings of the i th parent of the nth generation. Let
T denote a typical tree generated by the above process. Now pick two individuals from the nth
generation and trace their lines of descent back in time till a common ancestor is found, i.e. the
lines coalesce. Let Xn denote the generation number of their last common ancestor.

Theorem 1. Assume {p j } j≥0 satisfies (1) with 0 < α < 1. Then

(i) for almost all family trees T and k = 1, 2, . . . ,

P(Xn < k|T) → 0 as n → ∞;
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(ii) for k = 1, 2, . . . ,

lim
n→∞

P(n − Xn ≤ k) = π(k) exists;

(iii) let {ηi }i≥1 be i.i.d. exp(1) random variables; let Γk ≡
k

i=1 ηi , k ≥ 1; for 0 < α < 1, let

Yα ≡


∞

k=1
Γ

−
2
α

k

 1
2


∞

k=1
Γ

−
1
α

k

 .

Then, π(k) = E(Yαk ), k ≥ 1 and π(k) ↑ 1 as n ↑ ∞.

Remark 1. Conclusion (i) above is often referred to as the “quenched” version (i.e. given the
tree T). It implies the “annealed” version, i.e., for k = 1, 2, . . . ,

P(Xn < k) → 0 as n → ∞.

Remark 2. By the strong law, Γk
k → 1 as k → ∞ and since 0 < α < 1,


∞

k=1 Γ
−

p
α

k converges
with probability 1 for p = 1, 2. Thus, for 0 < α < 1, Yα is a well-defined random variable.

Since Yα =


∞

k=1 ξ
2
k

 1
2

where ξk ≡
Γ

−
1
α

k
∞

j=1 Γ
−

1
α

j

satisfies 0 < ξk < 1, ∀k, and


∞

k=1 ξk = 1, it

follows that 0 < Yα < 1 with probability 1.

Remark 3. Note that (ii) and (iii) in Theorem 1 above shows that coalescence in this case takes
place in the very recent past. Also, (iii) gives an explicit expression for π(k). It can be shown
(see Proposition 4) that E(Yα) is strictly increasing in α and have π(k) − π(k − 1) > 0 for all
k ≥ 1.

Remark 4. There is no quenched version of Theorem 1 (ii). This is so since as shown in the
proof the random quantity P(n − Xn ≤ k|T) given by (6) does not converge as n → ∞ for each
tree T but does converge only in distribution.

Under the hypothesis of Theorem 1 the offspring mean m =


∞

j=1 j p j is necessarily infinite.
If on the other hand the mean m is finite then the coalescence time Xn does indeed converge to a
proper distribution.

Theorem 2. Let the offspring distribution {p j } j≥0 satisfy p0 = 0, 1 < m =


∞

j=1 j p j < ∞.
Then, for almost all family tree T

(i) for 1 ≤ k < ∞

lim
n→∞

P(Xn < k|T) = πk(T) exists;

(ii) πk(T) ↑ 1 as k ↑ ∞;
(iii) for 1 ≤ k < ∞,

lim
n→∞

P(Xn < k) ≡ πk exists

and πk ↑ 1 as k ↑ ∞.
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Remark 5. In Theorem 2, (i) and (ii) do yield the quenched version. The annealed version (iii)
follows easily from (i) and (ii) by the bounded convergence theorem.

In the next section we collect some results needed to prove the above two theorems. Some of
these are known in the literature. For others the proofs are given in the Appendix.

3. Some useful results

The proofs of Propositions 1–3 are given in the Appendix.

Proposition 1 (Grey [6] and Davies [4]). Let {Zn}n≥0 and {Z∗
n}n≥0 be two independent copies

of a Galton–Watson branching process with Z0 = 1 = Z∗

0 and the offspring distribution {p j } j≥0
with p0 = 0 and m ≡


∞

j=1 j p j = ∞. Let {p j } j≥0 be in the domain of attraction of a stable
law of order α, 0 < α < 1. Then

P


Z∗

n

Zn
→ 0


=

1
2

= P


Zn

Z∗
n

→ 0

.

Proposition 2. Let {Zn}n≥0 be a Galton–Watson branching process with the offspring
distribution {p j } j≥0 and Z0 = 1. Suppose {p j } j≥0 is in the domain of attraction of a stable
law of order α, 0 < α < 1. Then for each 1 ≤ k < ∞, Zk is in the domain of attraction of a
stable law of order αk .

Proposition 3. Let {X i }i≥1 be i.i.d. rv such that P(0 < X1 < ∞) = 1 and X1 is in the domain
of attraction of a stable law of order α, 0 < α < 1. Let {ηi }i≥1 be i.i.d. exp(1) random variables.
Let Γk ≡

k
i=1 ηi , k ≥ 1. Let

Yα ≡


∞

k=1
Γ

−
2
α

k

 1
2


∞

k=1
Γ

−
1
α

k

 .

Then
(i)

n
i=1

X2
i

n
i=1

X i

2
d
−→ Yα as n → ∞;

(ii) ∀0 < α < 1, P(0 < Yα < 1) = 1 and E(Yα) ↑ 1 as α ↓ 0.

4. Proofs of main results

4.1. Proof of Theorem 1

Fix 0 ≤ k < ∞. Then

P(Xn ≥ k|T) =

Zk
i=1


Z (k)n−k,i

2




Zn
2

 (2)
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where {Z (k)j,i : j ≥ 0} is the branching process initiated by the i th individual in the
kth generation.

The right side of (2) can be written as

Zk
i=1

Z (k)n−k,i (Z
(k)
n−k,i − 1)

Zk
i=1

Z (k)n−k,i


Zk

i=1
Z (k)n−k,i − 1

 . (3)

By the result of Grey [6] and Davies [4] (Proposition 1) quoted earlier it follows that for almost
all trees T, given Zk , there exists an i0 (depending on the tree T) such that 1 ≤ i0 ≤ Zk and for
i ≠ i0

Z (k)n−k,i

Z (k)n−k,i0

→ 0 as n → ∞. (4)

Thus the expression in (3) converges with probability 1 to 1 as n → ∞.
This yields from (2) that for each 1 ≤ k < ∞

P(Xn ≥ k|T) → 1 as n → ∞, establishing (i).

Next, for 1 ≤ k < ∞

P(Xn ≥ n − k) = E


Zn−k
i=1

Z (n−k)
k,i (Z (n−k)

k,i − 1)

Zn(Zn − 1)

 . (5)

From Proposition 2, it follows that for each k < ∞, {Z (n−k)
k,i : 1 ≤ i ≤ Zn−k} are conditionally

(given Zn−k) i.i.d. distributed as Zk with Z0 = 1 and hence in the domain of attraction of a stable
law of order αk . Also Zn−k → ∞ with probability 1. So by Proposition 3(i) the selfnormalized
sum

Zn−k
i=1

Z (n−k)
k,i (Z (n−k)

k,i − 1)
Zn−k
i=1

Z (n−k)
n,i


Zn−k
i=1

Z (n−k)
n,i − 1

 (6)

converges in distribution to a random variable Yαk (where Yα is as in Proposition 3).
By the bounded convergence theorem (5) implies that

P(Xn ≥ n − k) → E(Yαk ) = π(k), say.

This in turn implies that

P(n − Xn ≤ k) → π(k) as n → ∞.

Since 0 < α < 1, αk
→ 0 as k → ∞. Hence, by Proposition 3(ii) π(k) = E(Yαk ) ↑ 1 as

k → ∞. This completes the proof of Theorem 1. �
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4.2. Proof of Theorem 2

From the Seneta–Heyde results (see Athreya and Ney [1]) and (3) there exists a sequence
{cn}n≥0 of constants such that for each k, 0 ≤ k < ∞

P(Xn ≥ k|T) =

Zk
i=1


Z (k)n−k,i (Z

(k)
n−k,i −1)

c2
n−k


 Zk

i=1

Z (k)n−k,i
cn−k

 Zk
i=1

Z (k)n−k,i
cn−k

−
1

cn−k



→

Zk
i=1

W 2
k,i Zk

i=1
Wk,i

2 ≡ π̃k(T) say, as n → ∞,

where conditioned on Zk , {Wk,i }i≥1 are i.i.d. random variables distributed as W ≡ limn→∞
Zn
cn

(which exists with probability 1 and P(0 < W < ∞) = 1). This proves (i).
Since P(Xn ≥ k|T) is non-increasing in k, it follows that

π̃k(T) ↓ π̃(T) as k ↑ ∞.

It remains to show that π̃(T) = 0 with probability 1.
Now if {Wi }i≥1 are i.i.d. distributed as W then for any n

M2
n

S2
n

≤

n
i=1

W 2
i

n
i=1

Wi

2 ≤
Mn

Sn

where Mn = max{Wi : 1 ≤ i ≤ n} and Sn =
n

i=1 Wi .

So, it suffices to show that Mn
Sn

P
−→ 0 as this will imply by the bounded convergence theorem

E π̃k(T) → 0 as k → ∞ implying Eπ̃(T) = 0 and hence π̃(T) = 0 with probability 1.
Since

π̃k(T) ≡

Zk
i=1

W 2
k,i Zk

i=1
Wk,i

2

≤
max{Wk,i : 1 ≤ i ≤ Zk}

Zk
i=1

Wk,i

≡ ˜̃πk(T), say

it suffices to show that ˜̃πk(T ) P
−→ 0.

Athreya and Schuh [2] have shown that the Seneta–Heyde limit W satisfies ψ(x) = E(W :

W ≤ x) is slowly varying at ∞, i.e., ψ(cx)
ψ(x) → 1 as x → ∞ for all 0 < c < ∞.

Also O’Brien [8] has established the following result.
Let {X i }i≥1 be i.i.d. rv with P(0 < X1 < ∞) = 1. Then the following are equivalent.
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(i) ψ(x) = E(X1 : X1 ≤ x) is slowing varying at ∞,

(ii) Mn
Sn

P
−→ 0 where Mn = max1≤i≤n X i and Sn =

n
i=1 X i , n ≥ 1.

Now conditioned on Zk , {Wk,i : 1 ≤ i ≤ Zk} are i.i.d. and Zk → ∞ with probability one, it
follows from Athreya and Schuh [2] and O’Brien [8] results that ˜̃πk(T ) → 0 with probability
one. So the proof is complete. �
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Appendix

Proof of Proposition 1.

Remark 6. This proposition is due to Grey [6] and can be deduced from Davies [4]. For
completeness, the proof is outlined below.

Since

Zn+1 =

Zn
i=1

ξn,i

for all n ≥ 0 as in Section 2, it follows that

Zn+1

(n + 1)
1
α

=

 1

Z
1
α
n

Zn
i=1

ξn,i




Zn

n

 1
α


n

n + 1

 1
α

implying

Vn+1 = log Un +
1
α

Vn +
1
α

log


1 +
1
n

−1

where Vn = ln


Zn
n


, Un =

1

Z
1
α

n

Zn
i=1 ξn,i .

This in turn implies

αn+1Vn+1 = αn+1 log Un + αn Vn + αn log


1 +
1
n

−1
.

Since {ξn,i }i≥1 belong to the domain of attraction of a stable law of order α, 0 < α < 1,
log Un converges in distribution as n → ∞ (conditioned on Zn). This can be used to show that

∞

j=1 α
j log U j converges with probability one yielding the result (proved first by Davies [4])

that {αn log Zn} converges with probability one to a continuous random variable V , say. Thus,
in the explosive case, Zn grows super exponentially fast. For two independent copies of {Zn},
αn log Z (1)n − αn log Z (2)n converges with probability one to a random variable V1 − V2 where V1
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and V2 are i.i.d. distributed as V . Now, V1 − V2 is a symmetric continuous random variable and
hence P(V1 − V2 > 0) =

1
2 = P(V1 − V2 < 0). This in turns yields

log


Z (1)n

Z (2)n


→ ∞ or − ∞

with probability 1
2 each. This is Grey’s [6] result quoted in Proposition 1. �

Proof of Proposition 2. Let f (s) ≡ E(s Z1 |Z0 = 1) ≡


∞

j=0 p j s j , 0 ≤ s ≤ 1. Then
f2(s) ≡ f ( f (s)) = E(s Z2 |Z0 = 1).

From Feller [5, pp. 447] and Bingham et al. [3] it is known that {p j } j≥0 is in the domain of
attraction of a stable law of order α, 0 < α < 1, iff

1 − f (s) ∼ (1 − s)αL


1

1 − s


as s ↑ 1 (A.1)

where L : R+
→ R+ is a slowly varying (at ∞) function.

Now,

E(s Z2) = 1 − f2(s) = 1 − f ( f (s)).

From (A.1) this is

∼(1 − f (s))αL
 1

1 − f (s)


as s ↑ 1 (A.2)

∼(1 − s)α
2


L
 1

1 − s

α
L


1

1 − f (s)


as s ↑ 1

∼(1 − s)α
2


L
 1

1 − s

α
L


1

(1 − s)αL( 1
1−s )


.

Let L̃(x) =


L(x)

α
L


xα 1

L(x)


for x > 0.

Then for 0 < c < ∞

L̃(cx)

L̃(x)
=


L(cx)

L(x)

α L

cαxα 1

L(cx)


L

xα 1

L(x)

 .

Since L(·) is slowly varying at ∞, for 0 < c < ∞,

L(cx)

L(x)
→ 1 as x → ∞

L


xα 1

L(x)


cα L(x)

L(cx)


L


xα 1

L(x)

 → 1 as x → ∞

implying

L̃(cx)

L̃(x)
→ 1 as x → ∞

i.e., L̃(·) is slowly varying at ∞.
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Thus, from Feller [5, pp. 447], it follows that Z2 (given Z0 = 1) is in the domain of attraction
of a stable law of order α2.

The case of Zk |Z0 = 1 for k > 2 follows by induction. �

Proposition 3 is a special case of the following more general result.

Proposition 4. Let {X i }i≥1 be i.i.d. random variables such that

1) P(0 < X1 < ∞) = 1;
2) for some 0 < α < 1 and a function L(·) : [1,∞) → (0,∞) slowly varying at ∞, i.e.

L(cx)

L(x)
→ 1 as x → ∞,∀0 < c < ∞, lim

x→∞

P(X > x)

x−αL(x)
= 1.

Let

Tn,r ≡


n

i=1
Xr

i

 1
r


n

i=1
X i

 , 0 < r < ∞, n ≥ 1.

Then

(i) for each 0 < r < ∞, 0 < α < 1, as n → ∞

Tn,r
d
−→


∞

k=1
Γ

−
r
α

k

 1
r


∞

k=1
Γ

−
1
α

k

 ≡ T (r)α , say,

where Γk ≡
k

i=1 ηi , k ≥ 1, {ηi }i≥1 are i.i.d. exp(1) random variables;

(ii) ∀0 < r < ∞, T (r)α → 1 with probability 1 as α ↓ 0.

Proof. (i) is proved by Lepage et al. [7, Theorem 1, Corollary 1].
It remains only to prove (ii).

Let ξr,α =


∞

k=1 Γ
−

r
α

k , where {Γk}k≥1 is as in (i).
Clearly,

ξr,α

Γ
−

r
α

1

= 1 +

∞
k=2


Γ1

Γk

 r
α

.

Now 0 < Γ1
Γk
< 1 for all k. So, ∀k,


Γ1
Γk

 r
α

↓ 0 as α ↓ 0.

Further, 0 < α < r
2 ,

Γ1

Γk

 r
α

<


Γ1

Γk

2

.

By s. l. l. n. Γk
k → 1 with probability 1.

So,


∞

k=1


Γ1
Γk

2

< ∞ with probability 1.
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So by the dominated convergence theorem

lim
α→0

∞
k=2


Γ1

Γk

 r
α

= 0 with probability 1.

Then for 0 < r < ∞,

ξr,α

Γ
−

r
α

1

→ 1 with probability 1 as α ↓ 0.

Since

T (r)α =


ξr,α

 1
r

ξ1,α
=


ξr,α

Γ
−

r
α

1

 1
r 1

ξ1,α

Γ
−

1
α

1


it follows that T (r)α → 1 with probability 1 as α ↓ 0. �

Remark 7. Proposition 3 is a special case of Proposition 4 with r = 2.
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