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In this article, it is shown that for any positive
integer k£ > 1, there exist unique real numbers
ag, r=1,2,...,(k+1), such that for any integer
n>1

n (k+1)
Sk:,n = Z]k = Z akrn’".
j=1 r=1

The numbers a, are computed explicitly for r =
k+1,kk—1,...,(k—10). This fully determines
the polynomials for £ = 1,2,...,12. The cases
k = 1,2,3 are well known and available in high
school algebra books.

1. Introduction

Let k and n be positive integers and Sj,, = Z;L=1 g A
well-known story in the history of mathematics is that
the great German mathematician Carl Friedrich Gauss,
while in elementary school, noted that for £ =1, S, =
14+2+...4nis, when written in reverse order, equal to
n+(n—1)+ ...+1. And when they are added one gets
251, = (14+n)+(2+(n—1))+(3+(n—=2))+.. . +(n+1) =
(n + 1)n. This yields Sy, = @ Shailesh Shirali has
told the authors that the great Indian mathematician of
ancient times, Aryabhata [1], has explicitly mentioned
in one of his verses the formulas for the cases k = 2
and k = 3. The three cases, k = 1,2,3, are now in
high school algebra texts. Proofs of these formulas are
given using the principle of induction. In this article, we
establish that for any integer k > 1 there exist unique
real numbers ay,., 7 =1,2,...,(k+1), such that for any
positive integer n > 1,
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k+1

n
_ -k r
Sk = E Jjr= E agn'.
j=1 r=1

In particular, it is shown that for any k& > 1,

1 1
Ap(k+1) = m, Ak = 5;
k
for k > 2, app—1) = 2’
for k Z 3, Ak(k—2) = 0;
k(k—1)(k—2
for k > 4, arp—3) = — ( 72)é );

for k > 5, ap—ay) = 0;

k(k—1)(k—2)(k—=3)(k—4
for 26,y 5 = EEZE=2E 368

for k > 7, an—e) = 0;
—3k(k—1)...(k—6)
6!7! ’

for k > 8, ak(k_7) =

for k > 9, Af(k—8) = 0;

k(k—1)...(k—8)
12! ’

for k > 10, Ak(k—9) = 10
and for k > 11, ag(x—10) = 0.

It is to be noted that once a formula is proposed, its
validity may be verified by the principle of induction.
The main problem is to guess what form the formula
takes. We guessed that it should be a polynomial (based
on the known formulas for £ = 1,2,3) and found the
explicit polynomial by a recurrence relation.

Sury [2] has noted that Euler had shown that for any
positive integers k and n the sum S, can be expressed
in terms of Bernoulli polynomials. Sury has also pointed
out that Euler’s work implies that for each positive in-
teger k the sum Sj, is a polynomial in n. The main
contribution of the present article is to determine this
polynomial explicitly. We do so from elementary meth-
ods, thus making the article accessible to our undergrad-
uate students.
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2. An Explicit Formula

Fix a positive integer £ > 1. For a positive integer

n>1, let
j=1

and set f(0) = 0. Then {f(n)},>o satisfies the recur-
rence relation

fln+1) =f(n)+n+1* n=012 (1)
with initial condition

f(0) =0. (2)

It is clear that {f(n)}n>0 is uniquely determined by
(1 ) and (2). Thus, if we find real numbers ag;,j =
1,2...,(k+1) such that
(k+1)
gr(n) = Z apn”, n>0 (3)
r=1

satisfies (1) and (2), then gx(n) has to equal Sy, for
all n > 1. Since ¢gx(0) = 0 and hence (2) holds, to
ensure that gi(-) satisfies (1) it suffices to ensure that the
coefficients of powers of n on both sides of the following
equation

ge(n+1) = ge(n) + (n+ 1), i.e., (4)

(k+1 (k+1)

)
Za’” n+1 Zakm + n—l—l) (5)
r=1

are equal.

This leads to the following conditions:

(coeff of n*) Ak(kt1) = Qk(k41) (6)

k+1
(coeff of n*) ak(kﬂ)( : ) +a =ap+1  (7)
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_ k+1 k
(coeff of n*~1) ak(k+1)< 5 > + akk<1>

k
+ (k1) = Q(k—1) T <1) (8)

_ k+1 k
(coeff of n* 2) ak(k+1)< 5 ) + apk <2>

k—1
+agk—1) 1 + Qk(k—2) = Qk(k—2)

)

and more generally,

k+1 k
ff of k—r
(coeff of n" ™) a1 <r N 1) + Qg (r)

k—r+1
+...+ akl(k_rﬂ) 1

k
FAk(k—r) = Ak(k—r) T (T) (10)

Now (6) provides no information but (7), (8), etc. do.
Indeed (7) holds iff

E+1

and (8) holds iff

)= ) w1

and (10) holds iff for k£ > (r + 1)

k—r+1 k k+1
A(k—r = —a

k(k—r+1) 1 , E(k+1) rl

(+)
— Ak N
T
k—r+2
= Q(k—r42) ( 9 )) -(13)
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forr=0,1,2,... k.

It follows from (7), (8), (9) and (10) that ag,,r =1,2,--- |
k + 1 are uniquely determined as (10) provides a recur-

sive determination of ajy—r41) from the knowledge of

aij for j = (k+1),...,(k —r+2). Thus, (7)-(9) yield

for any k£ > 1,

1 k

Ap(k+1) = m> Agg = 53

k
and for k> 2, app-1) = ES

and (10) determines ay; for j < (k — 2).

This proves the theorem given in the abstract. Let us
call it Theorem A:

Theorem A. Let k be a positive integer. Then, there
exist unique numbers ag,, r = 1,2,...,(k+ 1) such
that for any integer n > 1,

(k+1)

n
_ &
Skm:E j* = E apn’.
Jj=1

r=1

3. Another Proof of Theorem A

We provide another proof of Theorem A at the end of
this equation by first establishing the following:

Theorem B. For positive integers k and n let gy(n) =
> iy g% Then

(i) g(n) = "5

(ii) Fork>2 n>1,

(k+ Do) = Z (") -t

+nM 4 (k4 )nf —n.
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Proof.

(i) This result follows from Gauss’s argument:
gn)=1+2+...4n=n+n-1)+...+1

implying 2¢1(n) = (1+n)+ 2+ (n—1))+...+
(n+1)=(n+1)n.

(ii) For k> 2, n>1,

(k1)

> (") i

I
|
VR
ol
s+
—_
~~
3
AN
<
3

(where, if n = 1, we set >~ —j7 =0forr>1),

n—1 [ (k+1)

= —Z Z(lHl)J —1— (k+1)7* =5

n—

= —Z(j+1>"’“+( D+ (kE+1)) 5"

1
n—1
2
j=1

= —(ger1(m) = D)+ (n = 1) + (k+ D) (gu(n) — n)
+gr1(n) —n w
= 0+ (k+ Dge(n) — (k + 1)n* — nt+!

—_

<.
Il

yielding (ii).

Proof of Theorem A. By Theorem B(i), g1(n) is a
polynomial of degree two. Then Theorem B (ii) implies
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that go(n) is a polynomial of degree three and by induc-
tion gx(n) is a polynomial of degree (k + 1). Further,
Theorem B (ii) also shows that the leading coefficient
in gr(n) is (k+1)~'. One can use the same formula to
show that the coefficient of n* in gx(n) is 3.

Remark 1. We now derive explicit expressions for gx(n)
for k =2,3,4,5. From Theorem B (ii) we deduce that

3g2(n)

yielding

Next,

4gs(n)

732

G) (n — g1(n)) +n® + 3n® —n

1
3(71—%)4—713—%3712—71
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yielding

Next,

san() = (7)) + (5) 02 - o)
+

3
n(n+1)
=)
+10(n2—(n—3+n—2+E
3 2 6
3 7’L4 7’L3 7’L2 5 4
+10<n —(Z—i—?—i—z))—i—n +5n" —n
1

1 1
= n5+n42+n3€0+n2 0+n<—6>,
yielding
( )_7’L5+’I'L4 ’I’L3 n
S L NIk
Next,
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+15(n2_(n_3+n_2+2 )
326
e (54 1)

4 4
15 nd n
15 (o'~ (5

+n% +6n° —n

+

(LS 2 (0 B
2 2 4 2 6 30
6 5 49 3 n?
= n +3n°+n"=-+n".0——+n.0,
2 2
yielding

This process can be continued and gg(n) can be com-
puted recursively for all integers & > 1. In Section 6, we
compute gx(n) for k=1,2,3,...,12.

4. A Matrix Method

Now that we know that a., » = 1,2,...(k + 1) are
determined uniquely, here is a matrix inversion method
to find them. Let

Up(0) =) =12, (k+1). (14)

Then, since

(k+1)
>l = See=wn(D), £=12..,(k+1), (15)

r=1
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it follows that

k1 Yi(1)
acl me = @ e
Ae(k+1) Yr(k+1)

where Ay, is the (k4 1) x (k + 1) matrix with entries in
the th row given by

(0,02, 0Dy =12 (k+1).

It can be checked that

T 0
I I
Tht1 0
implies that 1 =0, 2o =0,..., 2,41 = 0.

This implies that Ay is invertible and hence, for any
integer k > 1,

k1 (1)
Al (k41) ¢k(k+1)

5. An Example

We now give an example where the function gi(n) arises
in a counting situation.

Let S, be the set {0,1,2,...,n} of integers. How many
closed intervals [i, j] are there where i,j € S,, and i <
j? There are exactly n intervals of length one each.
These are [i,i + 1] for ¢ = 0,1,2,(n — 1). There are
exactly (n — 1) intervals of length two each. These are
[i,i4+2], i=0,1,...,(n—2). And in general there are
exactly (n — k+ 1) intervals of length k each. These are
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[i,i+k], i=0,1,...,(n—k). Thus the total number
of closed intervals [i,j] with 4,7 in S, and i < j is
n+(mn—1)+...4+(n—k+1)+...+ 1. This is precisely
g1(n).

Next, consider the set S, = {(4,7) i,7 € S,}. How
many squares are there with all vertices in 5,2 and
sides parallel to the axes? There are exactly n? such
squares whose side length is one. These are with vertices
{(4,7), (i +1,7),(i,7+ 1), G+ 1,7+ 1)} with 0 < <
n—1, 0 <j <n-—1. Next, for any integer ¢, 1 < ¢ <n
there are exactly (n — £ + 1)? squares whose side length
is ¢ with vertices all in S, 5. These are the ones with ver-
tices {(i,7), (i4+¢,7), (4, j+), (i+£,j+£)} with0 < i <
n—~, 0 <7 <mn—/{ Thus, the total number of squares
with all vertices in S, 9 is D)L, (n — £+ 1)* = X770 5°
which is precisely g2(n).

Next, consider the set S, 3 = {(4,, k), 4, j,k € S, }. How
many cubes are there with all vertices in .S, 3 and faces
parallel to the coordinate planes? There are exactly n?
such cubes whose side length is one. These are the ones
with vertices {(i,7,k), (i + 1,7, k), (i,7 + 1, k), (4, ,k +
1),(@+1,5+1,k), (4, j+1,k+1), i+1,5,k+1), (i+1, j+
LEk+1)}with0<i<n—1,0<j<n—-1,0<k<n—1.
Similarly, there are (n — ¢ + 1)* cubes of side length ¢
with vertices in S, 3. Thus, the total number of cubes
with vertices in Sy, 3 is Y 3,_  (n—£+1)* = 377 j° which
is precisely gs(n). Next, for any integer k > 3 consider
the set

Sn’kE{<i1,i2,...,ik) ij € Sn,J = 1,2,...,k}.

How many k-dimensional cubes are there with all ver-
tices in S, and faces parallel to the coordinate hyper-
planes? Arguing as before, the number of such cubes
with side length ¢ and vertices in S, is (n — £ + 1)*.
Thus, the total number of k-dimensional cubes with all
vertices in Sy, is Y, (n — £+ 1) = 377 | 5% which is
precisely gi(n).
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6. Determination of a;; for j = (k+1),k, ..., (k—10)
Returning to (7)—(9) we note that

1 k ok
=, _

Ak(k+1) =

Next, for £ > 3

Ak (k—2)
(G — ey (1) — am(5) — e (75))
("1")
11 1 1
= k0 (G5 g a) =0
For k > 4,

A(k-3) = (k—3)

_ k(E-=1)(k-2)
- 720
For k > 5,
Ak(k—a) = <(5) — oy ) o (g)_“k<k1>(k4l)>
)

X11 1 11+1 .
25 6 12 4! 1440/
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For k > 6,

A (k—5)

For k > 7,

Qk(k—6) —

For k > 8,

- (&) e () =)
= Qg(k-1) (k ; 1)
(") /(1)

= k(k—1)(k —2)(k — 3)(k — 4)

><11 1 11+11
26 7 12 5 720 3!

k(k—1)(k—2)(k —3)(k—4) 1

11 1 11 1 1 11
X[z o ———— — e = o
27 8 126! 720 41 76 2

k E+1
Ap(k-7) = g) Al (k+1) 9

738
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11 1 11+11
28 9 127 720 5!

1 1
42 x 61 3!

“3k(k—1)...(k —6)
71 6!

For k > 9,

k kE+1 k
Ag(k—-8) — 9 = Qk(k+1) 10 — Qkk 9
k—1 k—3
—  Qg(k-1) ( 8 ) — Ok(k-3) ( 6 )
k—>5 k—17 k—>5
—  Ok(k-5) A — Qk(k-7) 9 1

= k(k—l)...(k—7)<§a—1—m_ﬁg

+11 111+31
6! 6! 4! 6! 42 2 76!

C k(k—1).. (k=7 1
= 101 (5—1—7—§+7
3
~5+5=0.

For k£ > 10,

k k+1
a _ = —a
k1 (k—9) 10 k(k+1) 11
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k k—1
— Qkk 10) ~ Af(k—1) 9
k—3 k—5
—  Qk(k-3) 7 — Qk(k-1) 5
k—17 k—9
—  Qk(k-7) 3 1

= k(k;—l)...(k:—S)( ——————— +

111 1,03
720 71 6! 42 51 T 71613
k(k—1)...(k—28) 10

12! '

For k > 11,

k k+1 k
Ag(k—10) = 11 — Qk(k+1) 19 — Qkk 11

120 x 11 x 10 x 9

* 720

12x 11 x10x 9 x8

6 x 6!
+312><11><10><9><81 10
6! 41 2
B k(k—1)...(k—=9) B
= 1] 0=0.
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Summarizing the above we have:

for k Z 1 Ak(k+1
for k Z 2 Ak(k—1

(k+1)

(k=1) = 12
for k>3 apk-2 =0
for k>4 aps = —S4=00=2)
for k>5  app—ay =0
for k>6  app_s = k(k—l)(k—Zg!(k—3)(k—4) %
for k>7  app-¢) =0
for k>8 app_n = _3k(k—17)!-é-!(k—6)
for k>9  agpk-s =0
for k > 10 a9y = k(kfl).l..Q(!ka)lo
for k > 11 ag(k-10) =0

This, in turn, yields for integers n > 1,

Sin
S2n
S3n
Sun
Ss.n

)

S6n

)

S?,n

N
[N

n
273
nd n?® n
37276
nt nd n?
T2 7
n5 n4 n3 n
57273 %
nd n® ni5  n?
IS TIRET
n7 n6 n5 n3 n
TR T
n_8+n_7+n6__ 4l+n_2
8 2 12 24 12
n—9+n—8+n72 ni +n3g—£
9 2 3 15 9 30
n_m+n_9_|_n83 n61 n_4_in2
10 2 4 10 2 20
nll nlO 3 5
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S n12+ 11+ oIl (11 11
n = — +— Y
1, 12 "2 12 8 6
33+
24 12
nt?  npl2 11 22 33
Sporn = 4 gLl 744 599
12, 13—|—2—|— n6—|—n7 nlO
5, 691
-n’ — ——n.
3 2730

A natural conjecture from our calculations is that for
any k > (2r + 1), k,r positive integers, ag(_o,) = 0. It
may be noted that we have verified it for r =1,2,....5
and k > (2r +1).

7. Concluding Remarks
7.1 Asymptotic Behavior of S;, For Large n

It follows from
k1

n
_ k j
= E 5= E ;T
j=1 j=1

that
n k i
1 -k Z =1 akjn]
kL Z] = Qgk+1) + ]nk—f—l
=1
1 P g
_ J
(k41 +jzl nk+1
1
R

This also follows from the Riemann sum approximation

n

k+1 = ka , where fk(a:):xk, 0<z<1
n
=1

which converges to

' 1
—>/O fr(z)dx = D)
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Similarly, the second order behavior is given by

11 2
_ i1 j
n’““z‘7 k+1) B Qn—{—jz1 nk+l
1
=n nk+1zj k+1) 9
And so on.

7.2 No Induction Involved

For the cases k =

principle of induction.

from first principles.

7.3 Other Treatments

There are many papers on this subject. Some of them

are listed in the Suggested Reading.
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