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In this article, it is shown that for any positive

integer k ≥ 1, there exist unique real numbers

akr, r = 1, 2, . . . , (k +1), such that for any integer

n ≥ 1

Sk,n ≡
n

∑

j=1

jk =

(k+1)
∑

r=1

akrn
r.

The numbers akr are computed explicitly for r =
k + 1, k, k − 1, . . . , (k − 10). This fully determines

the polynomials for k = 1, 2, . . . , 12. The cases

k = 1, 2, 3 are well known and available in high

school algebra books.

1. Introduction

Let k and n be positive integers and Sk,n =
∑n

j=1 jk. A
well-known story in the history of mathematics is that
the great German mathematician Carl Friedrich Gauss,
while in elementary school, noted that for k = 1, S1,n ≡
1+2+ . . .+n is, when written in reverse order, equal to
n+(n−1)+ . . .+1. And when they are added one gets
2S1,n = (1+n)+(2+(n−1))+(3+(n−2))+. . .+(n+1) =

(n + 1)n. This yields S1,n = n(n+1)
2

. Shailesh Shirali has
told the authors that the great Indian mathematician of
ancient times, Aryabhata [1], has explicitly mentioned
in one of his verses the formulas for the cases k = 2
and k = 3. The three cases, k = 1, 2, 3, are now in
high school algebra texts. Proofs of these formulas are
given using the principle of induction. In this article, we
establish that for any integer k ≥ 1 there exist unique
real numbers akr, r = 1, 2, . . . , (k+1), such that for any
positive integer n ≥ 1,
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Sk,n ≡
n

∑

j=1

jk =
k+1
∑

r=1

akrn
r.

In particular, it is shown that for any k ≥ 1,

ak(k+1) =
1

(k + 1)
, akk =

1

2
;

for k ≥ 2, ak(k−1) =
k

12
;

for k ≥ 3, ak(k−2) = 0;

for k ≥ 4, ak(k−3) = −
k(k − 1)(k − 2)

720
;

for k ≥ 5, ak(k−4) = 0;

for k ≥ 6, ak(k−5) =
k(k − 1)(k − 2)(k − 3)(k − 4)

6 × 7!
;

for k ≥ 7, ak(k−6) = 0;

for k ≥ 8, ak(k−7) =
−3k(k − 1) . . . (k − 6)

6!7!
;

for k ≥ 9, ak(k−8) = 0;

for k ≥ 10, ak(k−9) = 10
k(k − 1) . . . (k − 8)

12!
;

and for k ≥ 11, ak(k−10) = 0.

It is to be noted that once a formula is proposed, its
validity may be verified by the principle of induction.
The main problem is to guess what form the formula
takes. We guessed that it should be a polynomial (based
on the known formulas for k = 1, 2, 3) and found the
explicit polynomial by a recurrence relation.

Sury [2] has noted that Euler had shown that for any
positive integers k and n the sum Sk,n can be expressed
in terms of Bernoulli polynomials. Sury has also pointed
out that Euler’s work implies that for each positive in-
teger k the sum Sk,n is a polynomial in n. The main
contribution of the present article is to determine this
polynomial explicitly. We do so from elementary meth-
ods, thus making the article accessible to our undergrad-
uate students.
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2. An Explicit Formula

Fix a positive integer k ≥ 1. For a positive integer
n ≥ 1, let

f(n) ≡ Sk,n ≡
n

∑

j=1

jk

and set f(0) = 0. Then {f(n)}n≥0 satisfies the recur-
rence relation

f(n + 1) = f(n) + (n + 1)k, n = 0, 1, 2, (1)

with initial condition

f(0) = 0. (2)

It is clear that {f(n)}n≥0 is uniquely determined by
(1) and (2). Thus, if we find real numbers akj, j =
1, 2 . . . , (k + 1) such that

gk(n) ≡

(k+1)
∑

r=1

akrn
r, n ≥ 0 (3)

satisfies (1) and (2), then gk(n) has to equal Skn for
all n ≥ 1. Since gk(0) = 0 and hence (2) holds, to
ensure that gk(·) satisfies (1) it suffices to ensure that the
coefficients of powers of n on both sides of the following
equation

gk(n + 1) = gk(n) + (n + 1)k, i. e., (4)

(k+1)
∑

r=1

akr(n + 1)r =

(k+1)
∑

r=1

akrn
r + (n + 1)k, (5)

are equal.

This leads to the following conditions:

(coeff of nk+1) ak(k+1) = ak(k+1) (6)

(coeff of nk) ak(k+1)

(

k + 1

1

)

+ akk = akk + 1 (7)
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(coeff of nk−1) ak(k+1)

(

k + 1

2

)

+ akk

(

k

1

)

+ ak(k−1) = ak(k−1) +

(

k

1

)

(8)

(coeff of nk−2) ak(k+1)

(

k + 1

3

)

+ akk

(

k

2

)

+ak(k−1)

(

k − 1

1

)

+ ak(k−2) = ak(k−2)

+

(

k

2

)

(9)

and more generally,

(coeff of nk−r)ak(k+1)

(

k + 1

r + 1

)

+ akk

(

k

r

)

+ . . . + ak1(k−r+1)

(

k − r + 1

1

)

+ak(k−r) = ak(k−r) +

(

k

r

)

.(10)

Now (6) provides no information but (7), (8), etc. do.
Indeed (7) holds iff

ak(k+1)

(

k + 1

1

)

= 1 (11)

and (8) holds iff

akk

(

k

1

)

=

(

k

1

)

− ak(k+1)

(

k + 1

2

)

(12)

and (10) holds iff for k ≥ (r + 1)

ak(k−r+1)

(

k − r + 1

1

)

=

(

(

k

r

)

− ak(k+1)

(

k + 1

r + 1

)

− akk

(

k

r

)

. . .

− a(k−r+2)

(

k − r + 2

2

)

)

.(13)
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for r = 0, 1, 2, . . . k.

It follows from (7), (8), (9) and (10) that akr, r = 1, 2, · · · ,

k + 1 are uniquely determined as (10) provides a recur-
sive determination of ak(k−r+1) from the knowledge of
akj for j = (k + 1), . . . , (k − r + 2). Thus, (7)–(9) yield
for any k ≥ 1,

ak(k+1) =
1

(k + 1)
, akk =

k

2
;

and for k ≥ 2, ak(k−1) =
k

12
;

and (10) determines akj for j ≤ (k − 2).

This proves the theorem given in the abstract. Let us
call it Theorem A:

Theorem A. Let k be a positive integer. Then, there

exist unique numbers akr, r = 1, 2, . . . , (k + 1) such

that for any integer n > 1,

Sk,n ≡
n

∑

j=1

jk =

(k+1)
∑

r=1

akrn
r.

3. Another Proof of Theorem A

We provide another proof of Theorem A at the end of
this equation by first establishing the following:

Theorem B. For positive integers k and n let gk(n) ≡
∑n

j=1 jk. Then

(i) g1(n) = n(n+1)
2

(ii) For k ≥ 2, n ≥ 1,

(k + 1)gk(n) =
k−1
∑

r=1

(

k + 1

r

)

(nr − gr(n))

+nk+1 + (k + 1)nk − n .
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Proof.

(i) This result follows from Gauss’s argument:

g1(n) = 1 + 2 + . . . + n = n + (n − 1) + . . . + 1

implying 2g1(n) = (1 + n) + (2 + (n − 1)) + . . . +
(n + 1) = (n + 1)n.

(ii) For k ≥ 2, n ≥ 1,

(k−1)
∑

r=1

(

k + 1

r

)

(nr − gr(n))

=

(k−1)
∑

r=1

(

k + 1

r

)

(nr −

n
∑

j=1

jr)

= −

(k−1)
∑

r=1

(

k + 1

r

) n−1
∑

j=1

jr

(where, if n = 1, we set
∑n−1

j=1 jr = 0 for r ≥ 1),

= −
n−1
∑

j=1

⎛

⎝

(k+1)
∑

r=0

(

k + 1

r

)

jr − 1 − (k + 1)jk − jk+1

⎞

⎠

= −
n−1
∑

j=1

(j + 1)k+1 + (n − 1) + (k + 1)
n−1
∑

j=1

jk

+

n−1
∑

j=1

jk+1

= −(gk+1(n) − 1) + (n − 1) + (k + 1)(gk(n) − nk)

+gk+1(n) − nk+1

= n + (k + 1)gk(n) − (k + 1)nk − nk+1

yielding (ii).

Proof of Theorem A. By Theorem B(i), g1(n) is a
polynomial of degree two. Then Theorem B (ii) implies
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that g2(n) is a polynomial of degree three and by induc-
tion gk(n) is a polynomial of degree (k + 1). Further,
Theorem B (ii) also shows that the leading coefficient
in gk(n) is (k + 1)−1. One can use the same formula to
show that the coefficient of nk in gk(n) is 1

2
.

Remark 1. We now derive explicit expressions for gk(n)
for k = 2, 3, 4, 5. From Theorem B (ii) we deduce that

3g2(n) =

(

3

1

)

(n − g1(n)) + n3 + 3n2 − n

= 3

(

n −
n(n + 1)

2

)

+ n3 + 3n2 − n

= n3 + n2 3

2
+

n

2
,

yielding

g2(n) ≡
n

∑

j=1

j2 =
n3

3
+

n2

2
+

n

6
.

Next,

4g3(n) =

(

4

1

)

(n − g1(n)) +

(

4

2

)

(n2 − g2(n))

+n4 + 4n3 − n

= 4

(

n −
n(n + 1)

2

)

+6

(

n2 −

(

n3

3
+

n2

2
+

n

6

))

+n4 + 4n3 − n

= n4 + n3

(

4 −
6

3

)

+ n2

(

6

2
−

4

2

)

+n

(

4

2
−

6

6
− 1

)

= n4 + 2n3 + n2,
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yielding

g3(n) =
n4

4
+

n3

2
+

n2

4
.

Next,

5g4(n) =

(

5

1

)

(n − g1(n)) +

(

5

2

)

(n2 − g2(n))

+

(

5

3

)

(n3 − g3(n)) + n5 + 5n4 − n

= 5

(

n −
n(n + 1)

2

)

+10

(

n2 −

(

n3

3
+

n2

2
+

n

6

))

+10

(

n3 −

(

n4

4
+

n3

2
+

n2

4

))

+ n5 + 5n4 − n

= n5 + n4

(

5 −
10

4

)

+ n3

(

10

2
−

10

3

)

+n2

(

−
5

2
+

10

2
−

10

4

)

+ n

(

5

2
−

10

6
= 1

)

= n5 + n4 5

2
+ n310

6
+ n2 · 0 + n

(

−
1

6

)

,

yielding

g4(n) =
n5

5
+

n4

2
+

n3

3
−

n

30
.

Next,

6g5(n) =

(

6

1

)

(n − g1(n)) +

(

6

2

)

(n2 − g2(n))

+

(

6

3

)

(n3 − g3(n)) +

(

6

4

)

(n4 − g4(n))

+n6 + 6n5 − n

= 6

(

n −

(

n2

2
+

n

2

))
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+15

(

n2 −

(

n3

3
+

n2

2
+

n

6

))

+20

(

n3 −

(

n4

4
+

n3

2
+

n2

4

))

+15

(

n4 −

(

n5

5
+

n4

2
+

n3

3
−

n

30

))

+n6 + 6n5 − n

= n6 + n5(6 − 3) + n4

(

15

2
−

20

4

)

+n3

(

20

2
−

15

3
−

15

3

)

+n2

(

−
6

2
+

15

2
−

20

4

)

+ n

(

6

2
−

15

6
+

15

30
− 1

)

= n6 + 3n5 + n45

2
+ n3.0 −

n2

2
+ n.0,

yielding

g5(n) =
n6

6
+

n5

2
+ n4 5

12
−

n2

12
.

This process can be continued and gk(n) can be com-
puted recursively for all integers k ≥ 1. In Section 6, we
compute gk(n) for k = 1, 2, 3, . . . , 12.

4. A Matrix Method

Now that we know that akr, r = 1, 2, . . . (k + 1) are
determined uniquely, here is a matrix inversion method
to find them. Let

ψk(ℓ) =
�

∑

r=1

rk, ℓ = 1, 2, . . . , (k + 1). (14)

Then, since

(k+1)
∑

r=1

akrℓ
r = Sk,� = ψk(ℓ), ℓ = 1, 2, . . . , (k + 1), (15)
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it follows that

Ak

⎛

⎜

⎜

⎝

ak1

ak2

·
ak(k+1)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

ψk(1)
ψk(2)

·
ψk(k + 1)

⎞

⎟

⎟

⎠

, (16)

where Ak is the (k + 1) × (k + 1) matrix with entries in
the ℓth row given by

(ℓ, ℓ2, . . . , ℓ(k+1)), ℓ = 1, 2, . . . , (k + 1).

It can be checked that

Ak

⎛

⎜

⎜

⎝

x1

·
·

xk+1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0
·
·
0

⎞

⎟

⎟

⎠

implies that x1 = 0, x2 = 0, . . . , xn+1 = 0.

This implies that Ak is invertible and hence, for any
integer k ≥ 1,

⎛

⎜

⎜

⎝

ak1

ak2

·
ak(k+1)

⎞

⎟

⎟

⎠

= A−1
k

⎛

⎜

⎜

⎝

ψk(1)
ψk(2)

·
ψk(k+1)

⎞

⎟

⎟

⎠

. (17)

5. An Example

We now give an example where the function gk(n) arises
in a counting situation.

Let Sn be the set {0, 1, 2, . . . , n} of integers. How many
closed intervals [i, j] are there where i, j ∈ Sn and i <

j? There are exactly n intervals of length one each.
These are [i, i + 1] for i = 0, 1, 2, (n − 1). There are
exactly (n − 1) intervals of length two each. These are
[i, i+2], i = 0, 1, . . . , (n−2). And in general there are
exactly (n− k + 1) intervals of length k each. These are



736 RESONANCE ⎜  August  2015

GENERAL  ⎜ ARTICLE

[i, i+ k], i = 0, 1, . . . , (n− k). Thus the total number
of closed intervals [i, j] with i, j in Sn and i < j is
n+(n− 1)+ . . .+(n− k +1)+ . . .+1. This is precisely
g1(n).

Next, consider the set Sn,2 ≡ {(i, j) i, j ∈ Sn}. How
many squares are there with all vertices in Sn,2 and
sides parallel to the axes? There are exactly n2 such
squares whose side length is one. These are with vertices
{(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)} with 0 ≤ i ≤
n−1, 0 ≤ j ≤ n−1. Next, for any integer ℓ, 1 ≤ ℓ ≤ n

there are exactly (n− ℓ + 1)2 squares whose side length
is ℓ with vertices all in Sn,2. These are the ones with ver-
tices {(i, j), (i+ℓ, j), (i, j+ℓ), (i+ℓ, j+ℓ)} with 0 ≤ i ≤
n− ℓ, 0 ≤ j ≤ n− ℓ. Thus, the total number of squares
with all vertices in Sn,2 is

∑n

�=1(n − ℓ + 1)2 =
∑n

j=1 j2

which is precisely g2(n).

Next, consider the set Sn,3 ≡ {(i, j, k), i, j, k ∈ Sn}. How
many cubes are there with all vertices in Sn,3 and faces
parallel to the coordinate planes? There are exactly n3

such cubes whose side length is one. These are the ones
with vertices {(i, j, k), (i + 1, j, k), (i, j + 1, k), (i, j, k +
1), (i+1, j+1, k), (i, j+1, k+1), (i+1, j, k+1), (i+1, j+
1, k+1)} with 0 ≤ i ≤ n−1, 0 ≤ j ≤ n−1, 0 ≤ k ≤ n−1.
Similarly, there are (n − ℓ + 1)3 cubes of side length ℓ

with vertices in Sn,3. Thus, the total number of cubes
with vertices in Sn,3 is

∑n

�=1(n−ℓ+1)3 =
∑n

j=1 j3 which
is precisely g3(n). Next, for any integer k > 3 consider
the set

Sn,k ≡ {(i1, i2, . . . , ik) ij ∈ Sn, j = 1, 2, . . . , k}.

How many k-dimensional cubes are there with all ver-
tices in Sn,k and faces parallel to the coordinate hyper-
planes? Arguing as before, the number of such cubes
with side length ℓ and vertices in Sn,k is (n − ℓ + 1)k.
Thus, the total number of k-dimensional cubes with all
vertices in Sn,k is

∑n

�=1(n − ℓ + 1)k =
∑n

j=1 jk which is
precisely gk(n).
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6. Determination of akj for j = (k+1), k, . . . , (k−10)

Returning to (7)–(9) we note that

ak(k+1) =
1

(k + 1)
, akk =

k

2
, ak(k−1) =

k

12
.

Next, for k ≥ 3

ak(k−2)

=

((

k

3

)

− ak(k+1)

(

k+1
4

)

− akk

(

k

3

)

− ak(k−1)

(

k−1
2

))

(

k−2
1

)

= k(k − 1)

(

1

3!

1

2
−

1

4!
−

1

24

)

= 0.

For k ≥ 4,

ak(k−3) =

((

k

4

)

− ak1(k+1)

(

k+1
5

)

− ark

(

k

4

)

− ak1(k−1)

(

k−1
3

))

(

k−3
1

)

= k(k − 1)(k − 2)

(

1

2

1

4!
−

1

5!
−

1

12

1

3!

)

= −
k(k − 1)(k − 2)

720
.

For k ≥ 5,

ak(k−4) =

(

(

k

5

)

− ak(k+1)

(

k+1
6

)

− akk

(

k

5

)

−ak(k−1)

(

k−1
4

)

(

k−4
1

)

)

×

(

−ak1(k−3)

(

k−3
2

)

(

k−4
1

)

)

= k(k − 1)(k − 2)(k − 3)

×

(

1

2

1

5!
−

1

6!
−

1

12

1

4!
+

1

1440

)

= 0.
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For k ≥ 6,

ak(k−5) =

((

k

6

)

− ak(k+1)

(

k + 1

7

)

− akk

(

k

6

)

− ak(k−1)

(

k − 1

5

)

−ak1(k−3)

(

k − 3

3

))/(

k − 5

1

)

= k(k − 1)(k − 2)(k − 3)(k − 4)

×

(

1

2

1

6!
−

1

7!
−

1

12

1

5!
+

1

720

1

3!

)

=
k(k − 1)(k − 2)(k − 3)(k − 4)

6!

1

7 × 6
.

For k ≥ 7,

ak(k−6) =

(

(

k

7

)

− ak(k+1)

(

k + 1

8

)

− akk

(

k

7

)

− ak(k−1)

(

k − 1

6

)

− ak(k−3)

(

k − 3

4

)

− ak(k−5)

(

k − 5

2

)

)

/(

k − 6

1

)

= k(k − 1) . . . (k − 5)

×

(

1

2

1

7!
−

1

8!
−

1

12

1

6!
+

1

720

1

4!
−

1

7!6

1

2

)

= k(k − 1) . . . (k − 5) 0 = 0.

For k ≥ 8,

ak(k−7) =

(

(

k

8

)

− ak(k+1)

(

k + 1

9

)

− akk

(

k

8

)

− ak(k−1)

(

k − 1

7

)
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− ak(k−3)

(

k − 3

5

)

− ak(k−5)

(

k − 5

3

)

)

/(

k − 7

1

)

= k(k − 1) . . . (k − 6) ×
(

1

2

1

8!
−

1

9!
−

1

12

1

7!
+

1

720

1

5!

−
1

42 × 61

1

3!

)

=
−3k(k − 1) . . . (k − 6)

7! 6!
.

For k ≥ 9,

ak(k−8) =

(

(

k

9

)

− ak(k+1)

(

k + 1

10

)

− akk

(

k

9

)

− ak(k−1)

(

k − 1

8

)

− ak(k−3)

(

k − 3

6

)

− ak(k−5)

(

k − 5

4

)

− ak(k−7)

(

k − 7

2

)

)

/(

k − 5

1

)

= k(k − 1) . . . (k − 7)

(

1

2

1

9!
−

1

10!
−

1

12

1

8!

+
1

6!

1

6!
−

1

4!

1

6!

1

42
+

3

2

1

7!6!

)

=
k(k − 1) . . . (k − 7)

10!
(5 − 1 − 7 −

1

2
+ 7

−5 +
3

2
= 0.

For k ≥ 10,

ak1(k−9) =

(

(

k

10

)

− ak(k+1)

(

k + 1

11

)
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− akk

(

k

10

)

− ak(k−1)

(

k − 1

9

)

− ak(k−3)

(

k − 3

7

)

− ak(k−1)

(

k − 5

5

)

− ak(k−7)

(

k − 7

3

)

)

/(

k − 9

1

)

= k(k − 1) . . . (k − 8)

(

1

2

1

10!
−

1

11!
−

1

12

1

9!
+

1

720

1

7!
−

1

6! 42

1

5!
+

3

7!6!3!

)

=
k(k − 1) . . . (k − 8) 10

12!
.

For k ≥ 11,

ak(k−10) =

(

(

k

11

)

− ak(k+1)

(

k + 1

12

)

− akk

(

k

11

)

− ak(k−1)

(

k − 1

10

)

− ak(k−3)

(

k − 3

8

)

− ak(k−5)

(

k − 5

6

)

− ak(k−7)

(

k − 7

4

)

− ak(k−9)

(

k − 9

2

)

)

/(

k − 10

1

)

=
k(k − 1) . . . (k − 9)

12!

(

12

2
− 1 − 11

+
120 × 11 × 10 × 9

720

−
12 × 11 × 10 × 9 × 8

6 × 6!

+ 3
12 × 11 × 10 × 9 × 8

6!

1

41
−

10

2

)

=
k(k − 1) . . . (k − 9)

12!
0 = 0.
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Summarizing the above we have:

for k ≥ 1 ak(k+1) = 1
(k+1)

akk = 1
2

for k ≥ 2 ak(k−1) = k
12

for k ≥ 3 ak(k−2) = 0

for k ≥ 4 ak(k−3) = −k(k−1)(k−2)
720

for k ≥ 5 ak(k−4) = 0

for k ≥ 6 ak(k−5) = k(k−1)(k−2)(k−3)(k−4)
6!

1
7×6

for k ≥ 7 ak(k−6) = 0

for k ≥ 8 ak(k−7) = −3k(k−1)...(k−6)
7!6!

for k ≥ 9 ak(k−8) = 0

for k ≥ 10 ak(k−9) = k(k−1)...(k−8)10
12!

for k ≥ 11 ak(k−10) = 0.

This, in turn, yields for integers n ≥ 1,

S1,n =
n2

2
+

n

2

S2,n =
n3

3
+

n2

2
+

n

6

S3,n =
n4

4
+

n3

2
+

n2

4

S4,n =
n5

5
+

n4

2
+

n3

3
−

n

30

S5,n =
n6

6
+

n5

2
+

n45

12
−

n2

12

S6,n =
n7

7
+

n6

2
+

n5

2
−

n3

6
+

n

42

S7,n =
n8

8
+

n7

2
+ n6 7

12
− n4 7

24
+

n2

12

S8,n =
n9

9
+

n8

2
+ n7 2

3
− n5 7

15
+ n3 2

9
−

n

30

S9,n =
n10

10
+

n9

2
+ n8 3

4
− n6 7

10
+

n4

2
−

3

20
n2

S10,n =
n11

11
+

n10

2
+ n9 5

6
− n7 + n5 −

n3

3
+

5

66
n
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S11,n =
n12

12
+

n11

2
+ n10 11

12
− n8 11

8
+ n6 11

6

− n4 33

24
+ n2 5

12

S12,n =
n13

13
+

n12

2
+ n11 − n911

6
+ n7 22

7
− n533

10

+
5

3
n3 −

691

2730
n.

A natural conjecture from our calculations is that for
any k ≥ (2r + 1), k, r positive integers, ak(k−2r) = 0. It
may be noted that we have verified it for r = 1, 2, . . . , 5
and k ≥ (2r + 1).

7. Concluding Remarks

7.1 Asymptotic Behavior of Sk,n For Large n

It follows from

Sk,n =
n

∑

j=1

jk ≡
k+1
∑

j=1

akj
nj

that

1

nk+1

n
∑

j=1

jk = ak(k+1) +

∑k

j=1 akjn
j

nk+1

=
1

(k + 1)
+

k
∑

j=1

akjn
j

nk+1

⇒ limn→∞

n
∑

j=1

jk

nk+1
=

1

(k + 1)
.

This also follows from the Riemann sum approximation

n
∑

j=1

jk

nk+1
=

1

n

n
∑

j=1

fk(
j

n
), where fk(x) = xk, 0 ≤ x ≤ 1

which converges to

→

∫ 1

0

fk(x)dx =
1

(k + 1)
.
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Similarly, the second order behavior is given by
(

1

nk+1

n
∑

j=1

jk −
1

(k + 1)

)

=
1

2

1

n
+

k−1
∑

j=1

akjn
j

nk+1

⇒ n

(

1

nk+1

n
∑

j=1

jk −
1

(k + 1)

)

→
1

2
.

And so on.

7.2 No Induction Involved

For the cases k = 1, 2, 3, the proof in elementary texts
involves merely the verification of the formula using the
principle of induction. Our proofs of the polynomial
formula in Theorem A involves no induction but are
from first principles.

7.3 Other Treatments

There are many papers on this subject. Some of them
are listed in the Suggested Reading.


