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AR(1) SEQUENCE WITH RANDOM COEFFICIENTS:
REGENERATIVE PROPERTIES AND ITS APPLICATION

KRISHNA B. ATHREYA, KOUSHIK SAHA, AND RADHENDUSHKA SRIVASTAVA*

ABSTRACT. Let {Xn},>0 be a sequence of real valued random variables such
that X, = pnXn—1+ €n, n = 1,2,..., where {(pn,€en)}n>1 are i.i.d. and
independent of initial value (possibly random) Xo. In this paper it is shown
that, under some natural conditions on the distribution of (p1,€1), the se-
quence {Xn }, >0 is regenerative in the sense that it could be broken up into
i.i.d. components. Further, when p; and €; are independent, we construct a
non-parametric strongly consistent estimator of the characteristic functions
of p1 and €7.

1. Introduction

Let {X,}n>0 be a sequence of real valued random variables satisfying the sto-
chastic recurrence equation

Xpn=pnXn_1+€, n=12..., (1.1)

where {(pn,€n)}n>1 are i.i.d. R%-valued random vectors and independent of the
initial random variable Xy. If E(]Xo|) < oo and E(e,) = 0, for each n > 1 and
then E(X,|Xo,...,Xn-1) = E(pn)Xn—1. For this reason the sequence {X,} sat-
isfying (1.1) is often referred to in the time series literature as Random Coefficient
Auto Regressive sequence of order one (RCAR(1)) (see [1, 6, 7, 9]). [5] studied a
parametric model for (p1,€1) under the assumption that p; and €; are indepen-
dent and provided a consistent estimator of the model parameters. In the current
paper, we find conditions on the distribution function of (p1,€1) to ensure that
{X,} is a Harris recurrent Markov chain and hence regenerative, i.e., it can be
broken up into i.i.d. excursions. We exploit the regenerative property of {X,,} to
construct a non-parametric consistent estimator of the characteristic functions of
p1 and €; under the independence assumption of p; and €.

A sequence {X,, },,>0 is said to be delayed regenerative if there exists a sequence
{T};};>1 of positive integer valued random variables such that P(0 < Tj41 — T <
oo) =1 for all j > 1 and the random cycles n; = ({X; : T; <@ <Tj11}, Tjp1 — 1)
for j = 1,2,... are i.i.d. and independent of o = ({X; : 0 < ¢ < Th},T1). If
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{n;}j>0 are ii.d. then {X,} is called non-delayed regenerative sequence. If, in
addition, E(T, —T1) < oo then {X,,} is called regenerative and positive recurrent.

If {X,} is a Markov chain with a general state space (S, S), that is Harris irre-
ducible and recurrent (see Definition 3.1) then it can be shown that {X,,} is regen-
erative ([4]). Further if {X,,} admits a stationary probability measure (necessarily
unique because of irreducibility), then {X,,} is positive recurrent regenerative as
well.

In Sections 2 and 3, under some condition on the distribution of (p1,€1) we
show that the sequence {X,} satisfying (1.1) is positive recurrent and regener-
ative by establishing that {X,} admits a stationary distribution and is Harris
irreducible, respectively. In Section 4, we show that the distribution of (p1,¢€1)
can be determined by transition probability function of {X,}. We subsequently
provide a consistent estimator of transition probability function of {X,,} by using
the regenerative property. Finally, if p; and €; are independent then we provide a
non-parametric consistent estimator of characteristic function of p; and €7, based
on {Xn}nzo.

2. Limit Distribution of X,

We begin with existence of the limiting distribution of X, in (1.1).

Theorem 2.1. Let —oo < E(log|p1]|) < 0 and E(log|e1|)t < co. Then {X,,} in
(1.1) converges in distribution to X as n — oo where

Xoo =€1+prea+pip2es+ ...+ p1-- Pr€ns1+ ... (2.1)

The infinite series on the right hand side of (2.1) is absolutely convergent with
probability 1.

The above result can be deduced from [6]. A proof of Theorem 2.1 is given in
the appendix. Theorem 2.1 does not indicate nature of limiting distribution of
X.,,. We show that the distribution of X, is non-atomic when the distribution of
(p1,€1) is non-degenerate.

Theorem 2.2. Let —oco < E(log|p1]) < 0, E(log |e1])T < oo, P(p1 = 0) = 0 and
(p1,€1) has a non-degenerate distribution. Then X, has a non atomic distribution,
i.e., P(Xoo = a) =0 for all a € R.

Proof. Since (p1, €1) has a nondegenerate distribution, the random variable X, as
in (2.1) does not have a degenerate distribution and hence sup{P(Xo =a): a €
R} = p < 1. Let ag be such that P(Xo, = ag) = p. Then by Doob’s martingale
convergence theorem (see page 211 of [3]), we have

E(( X = a0)|Fn) = E(I(Xoo = a9)|Fo) w. p. 1 (2.2)

where, F,, = o{(pi, &) : i =1,2,...,n,Xp}, the o-algebra generated by (p;,€;) for
i=1,...,n and Xy, and Foo = o{(ps,€) : € N, Xg}. Since X, is measurable
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with respect t0 Foo, E(I(X oo = ag)|Foo) = I(Xoo = ag). Next,
E(I(Xo = ao)|Fn)
= Ples +prea+--+p1 - pn1€n +p1 - pul€ngr + prsi€nga + 00 ) = aolFn)
_ P(Yn _ ap — €1 — pP1€2 "'ppo"'pn—1€n|]:n>
pLp2- - Pn

where Y, = €,41 + pPnt1€nt2 + Pnt1Pn+2€nt+s + -+ and last equality holds since
P(p1 =0)=0, |p1---pn| #0Vn > 1. But Y, and X, have the same distribution,

and Y,, is independent of F,, and “2=2=2 16;;’);5 12 "Pn=1n s F, measurable. So
n

E(I(Xo = ao)|Fn) <p<1foralln>1.
From (2.2), it follows that I(X« = ap) < p < 1 with probability 1. Since [(X, =

ap) is a {0,1} valued random variable, I(Xo, = ag) = 0 with probability 1 and
hence P(X, = ag) = 0. Hence, X has a non atomic distribution. O

A natural question is under what additional conditions on the distribution of
(p1,€1), the sequence {X,} is regenerative. When a Markov sequence is Harris
recurrent and o-algebra is countably generated then it can be established that
the sequence exhibits regenerative property (see [4]). We now explore the Harris
recurrence property of {X,}.

3. Harris Recurrence of X,

Definition 3.1. A Markov chain {X,, },>0 is called Harris or ¢-recurrent if there
exists a o-finite measure ¢ on the state space (.9,S) such that

P(A) >0 = Plra<xoXg=2x)=1VzeSs, (3.1)
where 74 = min{n:n > 1, X, € A}.
Note that any irreducible and recurrent Markov chain with a countable state

space is Harris recurrent as one can take ¢ to be the § measure at some ig € S. A
definition related to Definition 1 is given by [4].

Definition 3.2. A Markov chain {X,} is called (A, ¢, ¢, ng) recurrent if there
exists a set A € S, a probability measure ¢ on S, a real number ¢ > 0, and an
integer ng > 0 such that

P(ta < 0| Xg =) =Pp(14 < 00) =P, (X, € Aforsomen>1)=1 VaeS

(3.2)
and
P(X,, € E|Xo =12) =Py(Xp, € E) =P (2, E) > ep(E) YVzeA,VECS.
(3.3)

It can be shown by using the C-set lemma of Doob (see [8]) that when S is
countably generated, then Definition 3.1 implies Definition 3.2. That Definition
3.2 implies Definition 3.1 is not difficult to prove.

The following theorem provides a sufficient condition for {X,} in (1.1) to be a
Harris recurrent Markov chain.
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Theorem 3.3. Let —oco < E(log|p1]) < 0, E(log|e1|)t < oo, P(p1 = 0) = 0 and
—00 < ¢ < d< oo be such that P(c < Xoo < d) > 0. Then for all x € R,

P(X, € [e,d] for some n>1|Xg=2x)=1. (3.4)
In addition, let there exists a finite measure ¢ on R such that ¢([c,d]) > 0 and
0 < a <1 such that
i D) > ad(). .
cglgldeP(plm—&-el €:) > ap(r) (3.5)

Then the Markov chain {X,}n>0 as described in (1.1) is Harris recurrent and
hence regenerative.

Note that since X,, converges in distribution to X, which is a proper real
valued random variable, {X,,},>¢ is positive recurrent as well. Thus under the
hypothesis of Theorem 3.3, {X,,}n>0 is regenerative and positive recurrent. The
proof of Theorem 3.3 is based on the following results.

Lemma 3.4. Let —oo < E(log|p1|) < 0, E(log|e1])T < oo, P(p1 = 0) = 0 and
—00 < ¢ < d < oo be such that P(c < Xoo < d) > 0. Then there exist 6 > 0 and
for all x € R, an integer n, > 1 such that

P(X, € e, d]|Xo=2) > 6 foralln > n,. (3.6)
Proof. Iterating (1.1) yields,
Xn = PnPn—-1""" plXO + PnPn—1""" P2€1 + -+ Prn€n—1 + €n = ZnXO + an say.
So, if Xg = w. p. 1, then
P.(X, € e, d]) = P(Y,+ Z,zx € [c,d])
Z P(Yne[c+77»d*77]v|znz|<77)
> P(Y, € c+n,d—n]) —P(|Z,z] > n),

where 77 > 0 such that ¢+ 7 < d —n. Now, define
Y,; =€+ p1€2 +p1p2e3+ -+ pP1.. . Pn—1€n. (3.7)

Note that the distribution of ¥, and Y;, are same and from Theorem 2.1, Y] — X
with probability 1. Thus, we have
P, (X, € [c,d])
> P(Y, € [c+n,d—n]) = P(|Z.z| > 1)
> PB(Y, € letnd—nl,|Y; - Xec| <0) = P(|Z0z| = 1)
> P(Xeo €lctn+n,d=n=n]) =P(Y; = Xeo| 2 ) = P(|Znz| = n),

where n, > 0 such that c—|—77—|—r]' < d—r]—n/.

Now choose ny large such that P(|Y, — Xoo| > 1) < ¢ and n large such that
P(|Zy,z| > 1) < 3. Note that choice of ny depends on z. Let n, = max(ni,ns).
Then for all n > ng,,

Py(Xn, € le,d]) >P(Xoe € [c+n+10,d—n—17]) 4.
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Since X, has a continuous distribution by Theorem 2.2 and P(c < X, < d) > 0,
first choose 7 and 17, and then § small enough such that

0=P(Xoo €lc+n+n,d—n—n])—6>0.
Thus (3.6) is established. O
Lemma 3.5. Let {X,} be a time homogeneous Markov chain with state space

(S,8) and transition function P(-,-). Let there exists A € S and 0 < 0 < 1 such
that for all x € S, there exists an integer n, > 1 such that

P(X,, € A|Xo=x) > 6. (3.8)
Then for all x € S,

P(ta < 0| Xg=2) =1 (3.9)
where T4 =min{n: n>1,X, € A)}.

Proof. Fix x € S. Let By = {X,,, ¢ A} and 790 = n,. Then By = {X,, ¢ A}. Let
us define

By = {X5 ¢4, XTo+nx,0 ¢ A}

T = To+ nx,

By = {X‘Fo ¢ Aa X7'1 ¢ Aa XT1+7Lle ¢ A}
T, = T+ n}(,1 )

and so on. Note By = {X,, ¢ A, X, ¢ A}, Bo={X,, ¢ A, X, ¢ A, X, ¢ A}
and for any integer k > 3,

Bi=1{X, ¢ A, X, ¢ A,... . X, ¢ A},

with 7, = 741 + nx, . By hypothesis (3.8), P((Bo) < (1 — ). By the strong
Markov property of { X, }, P(B;) < (1 —6)? and P(B;,) < (1 —60)**! for all integer
k > 3. This implies > - P(By) < oo since § > 0. So > p2,Ip,(-) < co with
probability 1. This implies that with probability 1, Ip, = 0 for all large £ > 1.
That is, for all z € S, P,(X,, € A for some k < co) = 1. Hence, for all z € S,

P.(14 < 00) = 1. O

Proof of Theorem 3.3. In view of Definition 3.2, it is enough to prove (3.4) to show
{X,} is Harris recurrent. The proof of (3.4) follows from Lemma 3.4 and 3.5. Now
from Lemma 2.2.5 of [2], it follows that X, is regenerative. O

Theorem 3.3 provides sufficient conditions on (p1,€1) so that the sequence X,
becomes Harris recurrent and hence regenerative. These sufficient conditions are
fairly general and hold for large class of distribution of (p1,€1). Here are some
examples where (3.4) and (3.5) hold.

Example 3.6. ¢; is a standard normal, N (0, 1) random variable, p; has bounded
support with Elog|p1| < 0 and €y, p; are independent.

Example 3.7. ¢; is a Uniform (—1,1) random variable, p; has bounded support
with Elog|p1| < 0 and €1, p; are independent.
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In both the cases hypothesis of Theorem 2.1 hold and X, is of the form (e; +
plXoo) where X, oo has the same distribution as X, and independent of X,,. One
can show in both above cases that for some ¢ < 0 < d, |c| and d sufficiently small,
conditions (3.4) and (3.5) hold.

In Theorem 3.3, growth sequence {p, } has no mass at zero and the regeneration
property of X,, is established by showing Harris recurrence of the sequence. When
P(p; = 0) > 0, then the regenerative property of X,, can be shown more easily.

Theorem 3.8. Let {X,, }n>0 be a RCAR(1) sequence as in (1.1). IfP(p; =0) =
a >0, then {X,,}n>0 is a positive recurrent regenerative sequence.

Proof. Let 79 = 0 and 741 = min{n : n > 7; + 1, p,, = 0} for j > 0. We need to
show that

P(rj41 =75 =kj, X001 € A1j,0< 1< kj,1<j<r)

= HP(TQ—Tl =k, Xr 4 6A57j70§l<kj) (3.10)
j=1
for all ki,ks,..., k- € Nand 4;; € BR),0<1<k;,j=1,2,...,r,r=1,2,....
Since {(pn,é€n)}n>1 are ii.d. and P(p; = 0) = a > 0, it follows that {7;11 —
Tj,j > 0} are i.i.d. with jump distribution
P(rjy1—7j=k)=(1-a)ta, for k=1,2,...,
that is, geometric with “success” parameter . Next, since {(pn, €,)}n>1 are i.i.d.

(3.10) follows. Further since E(m — 71) < oo, the sequence {X,} is positive
recurrent regenerative. O

Remark 3.9. When P(p; = 0) = a > 0 and the joint distribution of (pi1,€;1) is
discrete, then the limiting distribution 7 of X, is a discrete probability distribu-
tion, that is, there exists a countable set Ay in R? such that 7(Ag) = 1. This is
in contrast to Theorem 2.2 which provides a sufficient condition for X, to have a
non atomic distribution.

4. Estimation of Transition Function and Characteristic Functions
of p; and ¢

The transition function P(x, A) of the Markov chain {X,, },>0, defined by (1.1),
is precisely equal to P(p1z + €1 € A). The following result determines the joint
distribution of (p1,€1) in terms of the transition function, P(-,-).

Theorem 4.1. If the distribution of p1x+e€; is known for all x of the form % where
to # 0 and (t1,t2) is dense in R? then the distribution of (p1,e€1) is determined.

Proof. For any (t,t2) € R?, the characteristic function of (p1,€1) is
Uior.en) (t1,12) = E(e 7 H20)) = B0 BTD) = gy (1)
t2

where ¢,(t) = E(e(P12te)) for all z,t € R. If ¢,(-) is known for all x of the
form % where (t1,1t2) is dense in R?, then 1, ¢,)(t1,2) is determined for all such

(t1,t2) and hence by continuty for all (t;,t2) € R2. Hence the distribution of
(p1,€1) is determined completely. a
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Theorem 4.1 implies that if the transition function P(x, A) of {X,},>0 can
be determined from observing the sequence sequence {X,,}, then the distribution
of (p1,€1) can also be determined. We now estimate the transition probability
function P(z,(—o0,y]), for z,y € R? from the data {X;}",. In the following
theorems, we show that the estimator F), j(z,y), given in (4.1) below, is a strongly
consistent estimator for P(X; < y|Xo = ).

Theorem 4.2. Let {X,} satisfies the hypothesis of Theorem 3.3. For n > 1,
h>0, z,y e R, let

2 S (@< X <a+h, Xig1<y)
EERSD -
Fnyh(x, y) = nh Zi:o [(z<X;<z+h)

ifl(x < X; <xz+h)#0 for some i

0 otherwise,
(4.1)
where 1(A) denotes the indicator function of the event A.
(a) Then with probability 1, for each x,y € R
z+h
. Ji T Glu y)P(Xo € du)
lim F, = h) === 4.2
ningo n,h(xay) 7/’(55,7!7 ) ]P(Xoo c (l’,(E + h]) ) ( )
where G(u,y) = P(x, (—oo,y]) = P(X1 < y|Xo = ).
(b) In addition, let G(x,y) and the random variable X satisfy
z+h
T Gl y)P(Xo € du) 2
1 z = R-. 4.
Then for x,y € R
lim lim F,, (z,y) = P(X;1 < y|Xo = z), with probability 1. (4.4)

h—0n—0
Proof. Since {X;};>0 is regenerative and positive recurrent, the vector sequence
{(Xi, Xi41)}i>0 is also regenerative and positive recurrent Markov chain. The
numerator in (4.1) converges to f;Jrh G(u,y)P(Xs € du) with probability 1 by
using Theorem 9.2.10 of [3]. Similarly denominator converges to P(X o, € (x,x+h])

with probability 1. This completes the proof of part (a).
The proof of part (b) follows from (4.2) and (4.3). O

Remark 4.3. A sufficient condition for (4.3) to hold is that the distribution of X
is absolutely continuous with strictly positive and continuous density function and
the function G(z,y) is continuous in x for fixed y.

The following result is similar to that of Theorem 4.2.

Theorem 4.4. Fix x,t,h € R. Let

A r oy e i (a< X <z +h)
Gnho(t) = A I(z<X,<a+h)
0 otherwise.

if l(x < X; <ax+h)#0 for some i,

Then
lim lim ¢y p4(t) = E(eit(plz“l)) with probability 1,

h—0n—o00
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provided
o E LB ) P(X s € du)
im

= E(e(Prote)y, (4.5)
x+h
h—0 + [T P(X oo € du)

Proof. Proof of this theorem is similar to the proof of Theorem 4.2 and hence
omitted. (]

Remark 4.5. A sufficient condition for (4.5) to hold is that the distribution of X,
is absolutely continuous with strictly positive and continuous density function on
(—00,00) and the function E(e(P1#+€1)) is continuous in 2 for fixed .

Let {p1} and {e;} are independent random variables.Then
Gu(t) = By (1) = B(e"177V) = g (ta)ic(t),
where 1, (t) = E(e'*?) and v (t) = E(e¢). Also, note that

) = dnlt) and (1) = 2. when wi(t) 20

This yields the following corollary of Theorem 4.4.

Corollary 4.6. Let p; and €1 be independent and conditions of Theorem 4.4 holds.
Then

(a) limp 0 limy, o0 O p0(t) = e(t) for allt € R with probability 1.

(b) Let p(t) # 0 for all t € R, then for all x # 0

lim lim 7¢n’h’m(t/m)

A /) = ,(t) for allt € R with probability 1.

5. Appendix

Proof of Theorem 2.1: Choose ¢ > 0 such that E(log |p1]) + ¢ < 0. Now, by the
strong law of large number,

1 n
E(log|p1]) < 0= ~ > log |pi| < E(log |p1]) + €,
=1

for sufficiently large n, with probability 1. Hence

1P pu| <7, (5.1)

where 0 < A = —(E(log |p1| + €) < oo, for all large n, with probability 1.

Also E(log |e1])* < oo implies that for any g > 0, Y 07 P(log |e1] > nu) < oo
and hence ) P(log|e,| > nu) < co. By Borel Cantelli lemma, |e,| < e™* for all
n large enough, with probability 1.

Now choose 0 < i < A. Then for sufficiently large n, with probability 1,

l€nt101p2 - pn| < e Mt hu,

Therefore ) |eny1|p1p2 ... pn| < 0o with probability 1. Hence Xoo =€ + pL€a +
pP1p2€3 + ...+ p1... pr€ns1 + ... is well defined.
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Observe that
X = palpn-1Xn2+en1) ten
= PnpPn-1- P1Xo+ pnpPn—1-- P21+ F pren_1 + €
and which has the same distribution as

€1+ prea+ -+ p1p2- - prn_i€n + p1p2 - pnXo. (5.2)

Now by using (5.1) and above, we have |p1ps- - pnXo| converges to zero with
probability 1. Thus, from (5.2), as n — oo, we have

X, % X,

d e
where — stands for convergence in distribution. (I

Acknowledgment. K. B. Athreya would like to thank the Department of Math-
ematics, IIT Bombay and in particular, Prof. Sudhir Ghorpade for offering him
visiting professorship.

References

1. Andeél, J.: Autoregressive series with random parameters, Math. Operationsforsch. Statist.
7 (1976), no. 5, 735-741.

2. Athreya, K. B. and Atuncar, G. S.: Kernel estimation for real-valued Markov chains, Sankhya
Ser. A 60 (1998), no. 1, 1-17.

3. Athreya, K. B. and Lahiri, S. N.: Probaility Theory (TRIM Series 41), Hindustan Book
agency, New Delhi, 2006.

4. Athreya, K. B. and Ney, P.: A new approach to the limit theory of recurrent Markov chains,
Trans. Amer. Math. Soc. 245 (1978), 493-501.

5. Aue, A., Horvath, L., and Steinebach, J.: Estimation in random coefficient autoregressive
models, J. Time Ser. Anal. 27 (2006), no. 1, 61-76.

6. Brandt, A.: The stochastic equation Y, 1 = AnYn + B, with stationary coefficients, Adv.
in Appl. Probab. 18 (1986), no. 1, 211-220.

7. Nicholls, D. F. and Quinn, B. G.: The estimation of random coefficient autoregressive models
I, J. Time Ser. Anal. 1 (1980), no. 1, 37-46.

8. Orey, S.: Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities, Van
Nostrand Reinhold Co., London-New York-Toronto, Ont., 1971.

9. Robinson, P. M.: Statistical inference for a random coefficient autoregressive model, Scand.
J. Statist. 5 (1978), no. 3, 163-168.

KRISHNA B. ATHREYA: DEPARTMENTS OF MATHEMATICS AND STATISTICS, IowA STATE UNI-
VERSITY, IowA 50011, USA AND DISTINGUISHED VISITING PROFESSOR, DEPARTMENT OF MATH-
EMATICS, IIT BoMBAY, MUMBAI 400076, INDIA

E-mail address: kba@iastate.edu

KOUSHIK SAHA: DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY BOM-
BAY, MUMBAI 400076, INDIA
E-mazil address: ksaha@math.iitb.ac.in

RADHENDUSHKA SRIVASTAVA: DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECH-
NOLOGY BOMBAY, MumMBAI 400076, INDIA
E-mail address: radhe@math.iitb.ac.in



	Communications on Stochastic Analysis
	9-13-2017

	AR(1) Sequence with Random Coefficients:Regenerative Properties and its Application
	Krishna B. Athreya
	Koushik Saha
	Radhendushka Srivastava
	Recommended Citation


	tmp.1513444928.pdf.kFGcA

