AR(1) SEQUENCE WITH RANDOM COEFFICIENTS: REGENERATIVE PROPERTIES AND ITS APPLICATION

KRISHNA B. ATHREYA, KOUSHIK SAHA, AND RADHENDUSHKA SRIVASTAVA*

Abstract

Let $\left\{X_{n}\right\}_{n \geq 0}$ be a sequence of real valued random variables such that $X_{n}=\rho_{n} X_{n-1}+\epsilon_{n}, n=1,2, \ldots$, where $\left\{\left(\rho_{n}, \epsilon_{n}\right)\right\}_{n \geq 1}$ are i.i.d. and independent of initial value (possibly random) X_{0}. In this paper it is shown that, under some natural conditions on the distribution of $\left(\rho_{1}, \epsilon_{1}\right)$, the sequence $\left\{X_{n}\right\}_{n \geq 0}$ is regenerative in the sense that it could be broken up into i.i.d. components. Further, when ρ_{1} and ϵ_{1} are independent, we construct a non-parametric strongly consistent estimator of the characteristic functions of ρ_{1} and ϵ_{1}.

1. Introduction

Let $\left\{X_{n}\right\}_{n \geq 0}$ be a sequence of real valued random variables satisfying the stochastic recurrence equation

$$
\begin{equation*}
X_{n}=\rho_{n} X_{n-1}+\epsilon_{n}, \quad n=1,2, \ldots, \tag{1.1}
\end{equation*}
$$

where $\left\{\left(\rho_{n}, \epsilon_{n}\right)\right\}_{n \geq 1}$ are i.i.d. \mathbb{R}^{2}-valued random vectors and independent of the initial random variable X_{0}. If $E\left(\left|X_{0}\right|\right)<\infty$ and $E\left(\epsilon_{n}\right)=0$, for each $n \geq 1$ and then $E\left(X_{n} \mid X_{0}, \ldots, X_{n-1}\right)=E\left(\rho_{n}\right) X_{n-1}$. For this reason the sequence $\left\{X_{n}\right\}$ satisfying (1.1) is often referred to in the time series literature as Random Coefficient Auto Regressive sequence of order one (RCAR(1)) (see [1, 6, 7, 9]). [5] studied a parametric model for $\left(\rho_{1}, \epsilon_{1}\right)$ under the assumption that ρ_{1} and ϵ_{1} are independent and provided a consistent estimator of the model parameters. In the current paper, we find conditions on the distribution function of $\left(\rho_{1}, \epsilon_{1}\right)$ to ensure that $\left\{X_{n}\right\}$ is a Harris recurrent Markov chain and hence regenerative, i.e., it can be broken up into i.i.d. excursions. We exploit the regenerative property of $\left\{X_{n}\right\}$ to construct a non-parametric consistent estimator of the characteristic functions of ρ_{1} and ϵ_{1} under the independence assumption of ρ_{1} and ϵ_{1}.

A sequence $\left\{X_{n}\right\}_{n \geq 0}$ is said to be delayed regenerative if there exists a sequence $\left\{T_{j}\right\}_{j \geq 1}$ of positive integer valued random variables such that $\mathbb{P}\left(0<T_{j+1}-T_{j}<\right.$ $\infty)=1$ for all $j \geq 1$ and the random cycles $\eta_{j} \equiv\left(\left\{X_{i}: T_{j} \leq i<T_{j+1}\right\}, T_{j+1}-T_{j}\right)$ for $j=1,2, \ldots$ are i.i.d. and independent of $\eta_{0} \equiv\left(\left\{X_{i}: 0 \leq i<T_{1}\right\}, T_{1}\right)$. If

[^0]$\left\{\eta_{j}\right\}_{j \geq 0}$ are i.i.d. then $\left\{X_{n}\right\}$ is called non-delayed regenerative sequence. If, in addition, $E\left(T_{2}-T_{1}\right)<\infty$ then $\left\{X_{n}\right\}$ is called regenerative and positive recurrent.

If $\left\{X_{n}\right\}$ is a Markov chain with a general state space (S, \mathcal{S}), that is Harris irreducible and recurrent (see Definition 3.1) then it can be shown that $\left\{X_{n}\right\}$ is regenerative ([4]). Further if $\left\{X_{n}\right\}$ admits a stationary probability measure (necessarily unique because of irreducibility), then $\left\{X_{n}\right\}$ is positive recurrent regenerative as well.

In Sections 2 and 3 , under some condition on the distribution of $\left(\rho_{1}, \epsilon_{1}\right)$ we show that the sequence $\left\{X_{n}\right\}$ satisfying (1.1) is positive recurrent and regenerative by establishing that $\left\{X_{n}\right\}$ admits a stationary distribution and is Harris irreducible, respectively. In Section 4 , we show that the distribution of $\left(\rho_{1}, \epsilon_{1}\right)$ can be determined by transition probability function of $\left\{X_{n}\right\}$. We subsequently provide a consistent estimator of transition probability function of $\left\{X_{n}\right\}$ by using the regenerative property. Finally, if ρ_{1} and ϵ_{1} are independent then we provide a non-parametric consistent estimator of characteristic function of ρ_{1} and ϵ_{1}, based on $\left\{X_{n}\right\}_{n \geq 0}$.

2. Limit Distribution of X_{n}

We begin with existence of the limiting distribution of X_{n} in (1.1).
Theorem 2.1. Let $-\infty \leq \mathbb{E}\left(\log \left|\rho_{1}\right|\right)<0$ and $\mathbb{E}\left(\log \left|\epsilon_{1}\right|\right)^{+}<\infty$. Then $\left\{X_{n}\right\}$ in (1.1) converges in distribution to X_{∞} as $n \rightarrow \infty$ where

$$
\begin{equation*}
X_{\infty} \equiv \epsilon_{1}+\rho_{1} \epsilon_{2}+\rho_{1} \rho_{2} \epsilon_{3}+\ldots+\rho_{1} \ldots \rho_{n} \epsilon_{n+1}+\ldots \tag{2.1}
\end{equation*}
$$

The infinite series on the right hand side of (2.1) is absolutely convergent with probability 1.

The above result can be deduced from [6]. A proof of Theorem 2.1 is given in the appendix. Theorem 2.1 does not indicate nature of limiting distribution of X_{n}. We show that the distribution of X_{∞} is non-atomic when the distribution of $\left(\rho_{1}, \epsilon_{1}\right)$ is non-degenerate.

Theorem 2.2. Let $-\infty \leq \mathbb{E}\left(\log \left|\rho_{1}\right|\right)<0, \mathbb{E}\left(\log \left|\epsilon_{1}\right|\right)^{+}<\infty, \mathbb{P}\left(\rho_{1}=0\right)=0$ and $\left(\rho_{1}, \epsilon_{1}\right)$ has a non-degenerate distribution. Then X_{∞} has a non atomic distribution, i.e., $\mathbb{P}\left(X_{\infty}=a\right)=0$ for all $a \in \mathbb{R}$.

Proof. Since $\left(\rho_{1}, \epsilon_{1}\right)$ has a nondegenerate distribution, the random variable X_{∞} as in (2.1) does not have a degenerate distribution and hence $\sup \left\{\mathbb{P}\left(X_{\infty}=a\right): a \in\right.$ $\mathbb{R}\} \equiv p<1$. Let a_{0} be such that $\mathbb{P}\left(X_{\infty}=a_{0}\right)=p$. Then by Doob's martingale convergence theorem (see page 211 of [3]), we have

$$
\begin{equation*}
\mathbb{E}\left(\mathbb{I}\left(X_{\infty}=a_{0}\right) \mid \mathcal{F}_{n}\right) \rightarrow \mathbb{E}\left(\mathbb{I}\left(X_{\infty}=a_{0}\right) \mid \mathcal{F}_{\infty}\right) \quad \text { w. p. } 1 \tag{2.2}
\end{equation*}
$$

where, $\mathcal{F}_{n} \equiv \sigma\left\{\left(\rho_{i}, \epsilon_{i}\right): i=1,2, \ldots, n, X_{0}\right\}$, the σ-algebra generated by $\left(\rho_{i}, \epsilon_{i}\right)$ for $i=1, \ldots, n$ and X_{0}, and $\mathcal{F}_{\infty} \equiv \sigma\left\{\left(\rho_{i}, \epsilon_{i}\right): i \in \mathbb{N}, X_{0}\right\}$. Since X_{∞} is measurable
with respect to $\mathcal{F}_{\infty}, \mathbb{E}\left(\mathbb{I}\left(X_{\infty}=a_{0}\right) \mid \mathcal{F}_{\infty}\right)=\mathbb{I}\left(X_{\infty}=a_{0}\right)$. Next,

$$
\begin{aligned}
& \mathbb{E}\left(\mathbb{I}\left(X_{\infty}=a_{0}\right) \mid \mathcal{F}_{n}\right) \\
& =\mathbb{P}\left(\epsilon_{1}+\rho_{1} \epsilon_{2}+\cdots+\rho_{1} \cdots \rho_{n-1} \epsilon_{n}+\rho_{1} \cdots \rho_{n}\left(\epsilon_{n+1}+\rho_{n+1} \epsilon_{n+2}+\cdots\right)=a_{0} \mid \mathcal{F}_{n}\right) \\
& =\mathbb{P}\left(\left.Y_{n}=\frac{a_{0}-\epsilon_{1}-\rho_{1} \epsilon_{2}-\cdots-\rho_{1} \rho_{2} \cdots \rho_{n-1} \epsilon_{n}}{\rho_{1} \rho_{2} \cdots \rho_{n}} \right\rvert\, \mathcal{F}_{n}\right)
\end{aligned}
$$

where $Y_{n}=\epsilon_{n+1}+\rho_{n+1} \epsilon_{n+2}+\rho_{n+1} \rho_{n+2} \epsilon_{n+3}+\cdots$ and last equality holds since $\mathbb{P}\left(\rho_{1}=0\right)=0,\left|\rho_{1} \cdots \rho_{n}\right| \neq 0 \forall n \geq 1$. But Y_{n} and X_{∞} have the same distribution, and Y_{n} is independent of \mathcal{F}_{n} and $\frac{a_{0}-\epsilon_{1}-\rho_{1} \epsilon_{2}-\cdots-\rho_{1} \rho_{2} \cdots \rho_{n-1} \epsilon_{n}}{\rho_{1} \rho_{2} \cdots \rho_{n}}$ is \mathcal{F}_{n} measurable. So

$$
\mathbb{E}\left(\mathbb{I}\left(X_{\infty}=a_{0}\right) \mid \mathcal{F}_{n}\right) \leq p<1 \text { for all } n \geq 1
$$

From (2.2), it follows that $\mathbb{I}\left(X_{\infty}=a_{0}\right) \leq p<1$ with probability 1 . Since $\mathbb{I}\left(X_{\infty}=\right.$ $\left.a_{0}\right)$ is a $\{0,1\}$ valued random variable, $\mathbb{I}\left(X_{\infty}=a_{0}\right)=0$ with probability 1 and hence $\mathbb{P}\left(X_{\infty}=a_{0}\right)=0$. Hence, X_{∞} has a non atomic distribution.

A natural question is under what additional conditions on the distribution of $\left(\rho_{1}, \epsilon_{1}\right)$, the sequence $\left\{X_{n}\right\}$ is regenerative. When a Markov sequence is Harris recurrent and σ-algebra is countably generated then it can be established that the sequence exhibits regenerative property (see [4]). We now explore the Harris recurrence property of $\left\{X_{n}\right\}$.

3. Harris Recurrence of X_{n}

Definition 3.1. A Markov chain $\left\{X_{n}\right\}_{n \geq 0}$ is called Harris or ϕ-recurrent if there exists a σ-finite measure ϕ on the state space (S, \mathcal{S}) such that

$$
\begin{equation*}
\phi(A)>0 \quad \Longrightarrow \quad \mathbb{P}\left(\tau_{A}<\infty \mid X_{0}=x\right)=1 \forall x \in S, \tag{3.1}
\end{equation*}
$$

where $\tau_{A}=\min \left\{n: n \geq 1, X_{n} \in A\right\}$.
Note that any irreducible and recurrent Markov chain with a countable state space is Harris recurrent as one can take ϕ to be the δ measure at some $i_{0} \in S$. A definition related to Definition 1 is given by [4].

Definition 3.2. A Markov chain $\left\{X_{n}\right\}$ is called $\left(A, \epsilon, \phi, n_{0}\right)$ recurrent if there exists a set $A \in \mathcal{S}$, a probability measure ϕ on S, a real number $\epsilon>0$, and an integer $n_{0}>0$ such that

$$
\begin{equation*}
\mathbb{P}\left(\tau_{A}<\infty \mid X_{0}=x\right) \equiv \mathbb{P}_{x}\left(\tau_{A}<\infty\right)=\mathbb{P}_{x}\left(X_{n} \in A \text { for some } n \geq 1\right)=1 \quad \forall x \in S \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{P}\left(X_{n_{0}} \in E \mid X_{0}=x\right) \equiv \mathbb{P}_{x}\left(X_{n_{0}} \in E\right)=\mathbb{P}^{\left(n_{0}\right)}(x, E) \geq \epsilon \phi(E) \quad \forall x \in A, \forall E \subset \mathcal{S} \tag{3.3}
\end{equation*}
$$

It can be shown by using the C-set lemma of Doob (see [8]) that when \mathcal{S} is countably generated, then Definition 3.1 implies Definition 3.2. That Definition 3.2 implies Definition 3.1 is not difficult to prove.

The following theorem provides a sufficient condition for $\left\{X_{n}\right\}$ in (1.1) to be a Harris recurrent Markov chain.

Theorem 3.3. Let $-\infty \leq \mathbb{E}\left(\log \left|\rho_{1}\right|\right)<0, \mathbb{E}\left(\log \left|\epsilon_{1}\right|\right)^{+}<\infty, \mathbb{P}\left(\rho_{1}=0\right)=0$ and $-\infty<c<d<\infty$ be such that $\mathbb{P}\left(c \leq X_{\infty} \leq d\right)>0$. Then for all $x \in \mathbb{R}$,

$$
\begin{equation*}
\mathbb{P}\left(X_{n} \in[c, d] \text { for some } n \geq 1 \mid X_{0}=x\right)=1 \tag{3.4}
\end{equation*}
$$

In addition, let there exists a finite measure ϕ on \mathcal{R} such that $\phi([c, d])>0$ and $0<\alpha<1$ such that

$$
\begin{equation*}
\inf _{c \leq x \leq d} \mathbb{P}\left(\rho_{1} x+\epsilon_{1} \in \cdot\right) \geq \alpha \phi(\cdot) \tag{3.5}
\end{equation*}
$$

Then the Markov chain $\left\{X_{n}\right\}_{n \geq 0}$ as described in (1.1) is Harris recurrent and hence regenerative.

Note that since X_{n} converges in distribution to X_{∞} which is a proper real valued random variable, $\left\{X_{n}\right\}_{n>0}$ is positive recurrent as well. Thus under the hypothesis of Theorem 3.3, $\left\{X_{n}\right\}_{n \geq 0}$ is regenerative and positive recurrent. The proof of Theorem 3.3 is based on the following results.

Lemma 3.4. Let $-\infty \leq \mathbb{E}\left(\log \left|\rho_{1}\right|\right)<0, \mathbb{E}\left(\log \left|\epsilon_{1}\right|\right)^{+}<\infty, \mathbb{P}\left(\rho_{1}=0\right)=0$ and $-\infty<c<d<\infty$ be such that $\mathbb{P}\left(c \leq X_{\infty} \leq d\right)>0$. Then there exist $\theta>0$ and for all $x \in \mathbb{R}$, an integer $n_{x} \geq 1$ such that

$$
\begin{equation*}
\mathbb{P}\left(X_{n} \in[c, d] \mid X_{0}=x\right) \geq \theta \quad \text { for all } n \geq n_{x} \tag{3.6}
\end{equation*}
$$

Proof. Iterating (1.1) yields,

$$
X_{n}=\rho_{n} \rho_{n-1} \cdots \rho_{1} X_{0}+\rho_{n} \rho_{n-1} \cdots \rho_{2} \epsilon_{1}+\cdots+\rho_{n} \epsilon_{n-1}+\epsilon_{n} \equiv Z_{n} X_{0}+Y_{n}, \text { say }
$$

So, if $X_{0}=x \mathrm{w}$. p. 1, then

$$
\begin{aligned}
\mathbb{P}_{x}\left(X_{n} \in[c, d]\right) & =\mathbb{P}\left(Y_{n}+Z_{n} x \in[c, d]\right) \\
& \geq \mathbb{P}\left(Y_{n} \in[c+\eta, d-\eta],\left|Z_{n} x\right|<\eta\right) \\
& \geq \mathbb{P}\left(Y_{n} \in[c+\eta, d-\eta]\right)-\mathbb{P}\left(\left|Z_{n} x\right| \geq \eta\right)
\end{aligned}
$$

where $\eta>0$ such that $c+\eta<d-\eta$. Now, define

$$
\begin{equation*}
Y_{n}^{\prime} \equiv \epsilon_{1}+\rho_{1} \epsilon_{2}+\rho_{1} \rho_{2} \epsilon_{3}+\cdots+\rho_{1} \ldots \rho_{n-1} \epsilon_{n} \tag{3.7}
\end{equation*}
$$

Note that the distribution of Y_{n} and Y_{n}^{\prime} are same and from Theorem 2.1, $Y_{n}^{\prime} \rightarrow X_{\infty}$ with probability 1 . Thus, we have

$$
\begin{aligned}
& \mathbb{P}_{x}\left(X_{n} \in[c, d]\right) \\
& \quad \geq \mathbb{P}\left(Y_{n}^{\prime} \in[c+\eta, d-\eta]\right)-\mathbb{P}\left(\left|Z_{n} x\right| \geq \eta\right) \\
& \quad \geq \mathbb{P}\left(Y_{n}^{\prime} \in[c+\eta, d-\eta],\left|Y_{n}^{\prime}-X_{\infty}\right| \leq \eta^{\prime}\right)-\mathbb{P}\left(\left|Z_{n} x\right| \geq \eta\right) \\
& \quad \geq \mathbb{P}\left(X_{\infty} \in\left[c+\eta+\eta^{\prime}, d-\eta-\eta^{\prime}\right]\right)-\mathbb{P}\left(\left|Y_{n}^{\prime}-X_{\infty}\right| \geq \eta^{\prime}\right)-\mathbb{P}\left(\left|Z_{n} x\right| \geq \eta\right)
\end{aligned}
$$

where $\eta^{\prime}>0$ such that $c+\eta+\eta^{\prime}<d-\eta-\eta^{\prime}$.
Now choose n_{1} large such that $\mathbb{P}\left(\left|Y_{n}^{\prime}-X_{\infty}\right| \geq \eta^{\prime}\right) \leq \frac{\delta}{2}$ and n_{2} large such that $\mathbb{P}\left(\left|Z_{n_{2}} x\right| \geq \eta\right) \leq \frac{\delta}{2}$. Note that choice of n_{2} depends on x. Let $n_{x}=\max \left(n_{1}, n_{2}\right)$. Then for all $n \geq n_{x}$,

$$
\mathbb{P}_{x}\left(X_{n_{x}} \in[c, d]\right) \geq \mathbb{P}\left(X_{\infty} \in\left[c+\eta+\eta^{\prime}, d-\eta-\eta^{\prime}\right]\right)-\delta
$$

Since X_{∞} has a continuous distribution by Theorem 2.2 and $\mathbb{P}\left(c \leq X_{\infty} \leq d\right)>0$, first choose η and η^{\prime} and then δ small enough such that

$$
\theta \equiv \mathbb{P}\left(X_{\infty} \in\left[c+\eta+\eta^{\prime}, d-\eta-\eta^{\prime}\right]\right)-\delta>0
$$

Thus (3.6) is established.
Lemma 3.5. Let $\left\{X_{n}\right\}$ be a time homogeneous Markov chain with state space (S, \mathcal{S}) and transition function $P(\cdot, \cdot)$. Let there exists $A \in \mathcal{S}$ and $0<\theta \leq 1$ such that for all $x \in S$, there exists an integer $n_{x} \geq 1$ such that

$$
\begin{equation*}
\mathbb{P}\left(X_{n_{x}} \in A \mid X_{0}=x\right) \geq \theta \tag{3.8}
\end{equation*}
$$

Then for all $x \in S$,

$$
\begin{equation*}
\mathbb{P}\left(\tau_{A}<\infty \mid X_{0}=x\right)=1 \tag{3.9}
\end{equation*}
$$

where $\left.\tau_{A}=\min \left\{n: n \geq 1, X_{n} \in A\right)\right\}$.
Proof. Fix $x \in S$. Let $B_{0} \equiv\left\{X_{n_{x}} \notin A\right\}$ and $\tau_{0}=n_{x}$. Then $B_{0} \equiv\left\{X_{\tau_{0}} \notin A\right\}$. Let us define

$$
\begin{aligned}
B_{1} & \equiv\left\{X_{\tau_{0}} \notin A, X_{\tau_{0}+n_{X_{\tau_{0}}}} \notin A\right\} \\
\tau_{1} & =\tau_{0}+n_{X_{\tau_{0}}} \\
B_{2} & \equiv\left\{X_{\tau_{0}} \notin A, X_{\tau_{1}} \notin A, X_{\tau_{1}+n_{X_{\tau_{1}}}} \notin A\right\} \\
\tau_{2} & =\tau_{1}+n_{X_{\tau_{1}}}
\end{aligned}
$$

and so on. Note $B_{1}=\left\{X_{\tau_{0}} \notin A, X_{\tau_{1}} \notin A\right\}, B_{2}=\left\{X_{\tau_{0}} \notin A, X_{\tau_{1}} \notin A, X_{\tau_{2}} \notin A\right\}$ and for any integer $k \geq 3$,

$$
B_{k} \equiv\left\{X_{\tau_{0}} \notin A, X_{\tau_{1}} \notin A, \ldots, X_{\tau_{k}} \notin A\right\}
$$

with $\tau_{k}=\tau_{k-1}+n_{X_{\tau_{k-1}}}$. By hypothesis (3.8), $\mathbb{P}\left(\left(B_{0}\right) \leq(1-\theta)\right.$. By the strong Markov property of $\left\{X_{n}\right\}, \mathbb{P}\left(B_{1}\right) \leq(1-\theta)^{2}$ and $\mathbb{P}\left(B_{k}\right) \leq(1-\theta)^{k+1}$ for all integer $k \geq 3$. This implies $\sum_{k=0}^{\infty} \mathbb{P}\left(B_{k}\right)<\infty$ since $\theta>0$. So $\sum_{k=0}^{\infty} \mathbb{I}_{B_{k}}(\cdot)<\infty$ with probability 1 . This implies that with probability $1, \mathbb{I}_{B_{k}}=0$ for all large $k>1$. That is, for all $x \in S, \mathbb{P}_{x}\left(X_{\tau_{k}} \in A\right.$ for some $\left.k<\infty\right)=1$. Hence, for all $x \in S$, $\mathbb{P}_{x}\left(\tau_{A}<\infty\right)=1$.

Proof of Theorem 3.3. In view of Definition 3.2, it is enough to prove (3.4) to show $\left\{X_{n}\right\}$ is Harris recurrent. The proof of (3.4) follows from Lemma 3.4 and 3.5. Now from Lemma 2.2.5 of [2], it follows that X_{n} is regenerative.

Theorem 3.3 provides sufficient conditions on $\left(\rho_{1}, \epsilon_{1}\right)$ so that the sequence X_{n} becomes Harris recurrent and hence regenerative. These sufficient conditions are fairly general and hold for large class of distribution of $\left(\rho_{1}, \epsilon_{1}\right)$. Here are some examples where (3.4) and (3.5) hold.

Example 3.6. ϵ_{1} is a standard normal, $N(0,1)$ random variable, ρ_{1} has bounded support with $\mathbb{E} \log \left|\rho_{1}\right|<0$ and ϵ_{1}, ρ_{1} are independent.

Example 3.7. ϵ_{1} is a Uniform $(-1,1)$ random variable, ρ_{1} has bounded support with $\mathbb{E} \log \left|\rho_{1}\right|<0$ and ϵ_{1}, ρ_{1} are independent.

In both the cases hypothesis of Theorem 2.1 hold and X_{∞} is of the form $\left(\epsilon_{1}+\right.$ $\rho_{1} \tilde{X}_{\infty}$) where \tilde{X}_{∞} has the same distribution as X_{∞} and independent of X_{∞}. One can show in both above cases that for some $c<0<d,|c|$ and d sufficiently small, conditions (3.4) and (3.5) hold.

In Theorem 3.3, growth sequence $\left\{\rho_{n}\right\}$ has no mass at zero and the regeneration property of X_{n} is established by showing Harris recurrence of the sequence. When $\mathbb{P}\left(\rho_{1}=0\right)>0$, then the regenerative property of X_{n} can be shown more easily.
Theorem 3.8. Let $\left\{X_{n}\right\}_{n \geq 0}$ be a $R C A R(1)$ sequence as in (1.1). If $\mathbb{P}\left(\rho_{1}=0\right) \equiv$ $\alpha>0$, then $\left\{X_{n}\right\}_{n \geq 0}$ is a positive recurrent regenerative sequence.
Proof. Let $\tau_{0}=0$ and $\tau_{j+1}=\min \left\{n: n \geq \tau_{j}+1, \rho_{n}=0\right\}$ for $j \geq 0$. We need to show that

$$
\begin{align*}
& \mathbb{P}\left(\tau_{j+1}-\tau_{j}=k_{j}, X_{\tau_{j}+l} \in A_{l, j}, 0 \leq l<k_{j}, 1 \leq j \leq r\right) \\
& \quad=\prod_{j=1}^{r} \mathbb{P}\left(\tau_{2}-\tau_{1}=k_{j}, X_{\tau_{1}+l} \in A_{l, j}, 0 \leq l<k_{j}\right) \tag{3.10}
\end{align*}
$$

for all $k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{N}$ and $A_{l, j} \in \mathcal{B}(\mathbb{R}), 0 \leq l<k_{j}, j=1,2, \ldots, r, r=1,2, \ldots$.
Since $\left\{\left(\rho_{n}, \epsilon_{n}\right)\right\}_{n \geq 1}$ are i.i.d. and $\mathbb{P}\left(\rho_{1}=0\right)=\alpha>0$, it follows that $\left\{\tau_{j+1}-\right.$ $\left.\tau_{j}, j \geq 0\right\}$ are i.i.d. with jump distribution

$$
\mathbb{P}\left(\tau_{j+1}-\tau_{j}=k\right)=(1-\alpha)^{k-1} \alpha, \quad \text { for } \quad k=1,2, \ldots,
$$

that is, geometric with "success" parameter α. Next, since $\left\{\left(\rho_{n}, \epsilon_{n}\right)\right\}_{n \geq 1}$ are i.i.d. (3.10) follows. Further since $\mathbb{E}\left(\tau_{2}-\tau_{1}\right)<\infty$, the sequence $\left\{X_{n}\right\}$ is positive recurrent regenerative.

Remark 3.9. When $\mathbb{P}\left(\rho_{1}=0\right)=\alpha>0$ and the joint distribution of $\left(\rho_{1}, \epsilon_{1}\right)$ is discrete, then the limiting distribution π of X_{∞} is a discrete probability distribution, that is, there exists a countable set A_{0} in \mathbb{R}^{2} such that $\pi\left(A_{0}\right)=1$. This is in contrast to Theorem 2.2 which provides a sufficient condition for X_{∞} to have a non atomic distribution.

4. Estimation of Transition Function and Characteristic Functions of ρ_{1} and ϵ_{1}

The transition function $\mathbb{P}(x, A)$ of the Markov chain $\left\{X_{n}\right\}_{n \geq 0}$, defined by (1.1), is precisely equal to $\mathbb{P}\left(\rho_{1} x+\epsilon_{1} \in A\right)$. The following result determines the joint distribution of $\left(\rho_{1}, \epsilon_{1}\right)$ in terms of the transition function, $\mathbb{P}(\cdot, \cdot)$.
Theorem 4.1. If the distribution of $\rho_{1} x+\epsilon_{1}$ is known for all x of the form $\frac{t_{1}}{t_{2}}$ where $t_{2} \neq 0$ and $\left(t_{1}, t_{2}\right)$ is dense in \mathbb{R}^{2} then the distribution of $\left(\rho_{1}, \epsilon_{1}\right)$ is determined.
Proof. For any $\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$, the characteristic function of $\left(\rho_{1}, \epsilon_{1}\right)$ is

$$
\psi_{\left(\rho_{1}, \epsilon_{1}\right)}\left(t_{1}, t_{2}\right)=\mathbb{E}\left(e^{i\left(t_{1} \rho_{1}+t_{2} \epsilon_{1}\right)}\right)=\mathbb{E}\left(e^{i t_{2}\left(\rho_{1} \frac{t_{1}}{t_{2}}+\epsilon_{1}\right)}\right)=\phi_{\frac{t_{1}}{t_{2}}}\left(t_{2}\right)
$$

where $\phi_{x}(t)=\mathbb{E}\left(e^{i t\left(\rho_{1} x+\epsilon_{1}\right)}\right)$ for all $x, t \in \mathbb{R}$. If $\phi_{x}(\cdot)$ is known for all x of the form $\frac{t_{1}}{t_{2}}$ where $\left(t_{1}, t_{2}\right)$ is dense in \mathbb{R}^{2}, then $\psi_{\left(\rho_{1}, \epsilon_{1}\right)}\left(t_{1}, t_{2}\right)$ is determined for all such $\left(t_{1}, t_{2}\right)$ and hence by continuty for all $\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$. Hence the distribution of (ρ_{1}, ϵ_{1}) is determined completely.

Theorem 4.1 implies that if the transition function $\mathbb{P}(x, A)$ of $\left\{X_{n}\right\}_{n \geq 0}$ can be determined from observing the sequence sequence $\left\{X_{n}\right\}$, then the distribution of $\left(\rho_{1}, \epsilon_{1}\right)$ can also be determined. We now estimate the transition probability function $\mathbb{P}(x,(-\infty, y])$, for $x, y \in \mathbb{R}^{2}$ from the data $\left\{X_{i}\right\}_{i=0}^{n}$. In the following theorems, we show that the estimator $F_{n, h}(x, y)$, given in (4.1) below, is a strongly consistent estimator for $\mathbb{P}\left(X_{1} \leq y \mid X_{0}=x\right)$.

Theorem 4.2. Let $\left\{X_{n}\right\}$ satisfies the hypothesis of Theorem 3.3. For $n \geq 1$, $h>0, x, y \in \mathbb{R}$, let

$$
F_{n, h}(x, y)= \begin{cases}\frac{1}{n h} \sum_{i=0}^{n-1} \mathbb{I}\left(x \leq X_{i} \leq x+h, X_{i+1} \leq y\right) \tag{4.1}\\ \frac{1}{n h} \sum_{i=0}^{n} \mathbb{I}\left(x \leq X_{i} \leq x+h\right) & \text { if } \mathbb{I}\left(x \leq X_{i} \leq x+h\right) \neq 0 \text { for some } i \\ 0 & \text { otherwise },\end{cases}
$$

where $\mathbb{I}(A)$ denotes the indicator function of the event A.
(a) Then with probability 1 , for each $x, y \in \mathbb{R}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{n, h}(x, y) \equiv \psi(x, y, h)=\frac{\int_{x}^{x+h} G(u, y) \mathbb{P}\left(X_{\infty} \in d u\right)}{\mathbb{P}\left(X_{\infty} \in(x, x+h]\right)} \tag{4.2}
\end{equation*}
$$

where $G(u, y)=\mathbb{P}(x,(-\infty, y])=\mathbb{P}\left(X_{1} \leq y \mid X_{0}=x\right)$.
(b) In addition, let $G(x, y)$ and the random variable X_{∞} satisfy

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\int_{x}^{x+h} G(u, y) \mathbb{P}\left(X_{\infty} \in d u\right)}{\mathbb{P}\left(x<X_{\infty} \leq x+h\right)}=G(x, y), \quad \text { for } x, y \in \mathbb{R}^{2} \tag{4.3}
\end{equation*}
$$

Then for $x, y \in \mathbb{R}$

$$
\begin{equation*}
\lim _{h \rightarrow 0} \lim _{n \rightarrow 0} F_{n, h}(x, y)=\mathbb{P}\left(X_{1} \leq y \mid X_{0}=x\right) \text {, with probability } 1 \tag{4.4}
\end{equation*}
$$

Proof. Since $\left\{X_{i}\right\}_{i \geq 0}$ is regenerative and positive recurrent, the vector sequence $\left\{\left(X_{i}, X_{i+1}\right)\right\}_{i \geq 0}$ is also regenerative and positive recurrent Markov chain. The numerator in (4.1) converges to $\int_{x}^{x+h} G(u, y) \mathbb{P}\left(X_{\infty} \in d u\right)$ with probability 1 by using Theorem 9.2 .10 of [3]. Similarly denominator converges to $\mathbb{P}\left(X_{\infty} \in(x, x+h]\right)$ with probability 1 . This completes the proof of part (a).

The proof of part (b) follows from (4.2) and (4.3).
Remark 4.3. A sufficient condition for (4.3) to hold is that the distribution of X_{∞} is absolutely continuous with strictly positive and continuous density function and the function $G(x, y)$ is continuous in x for fixed y.

The following result is similar to that of Theorem 4.2.
Theorem 4.4. Fix $x, t, h \in \mathbb{R}$. Let
$\phi_{n, h, x}(t)= \begin{cases}\frac{\frac{1}{n h} \sum_{j=0}^{n-1} e^{i t X_{j+1}} \mathbb{I}\left(x<X_{j} \leq x+h\right)}{\frac{1}{n h} \sum_{j=0}^{n-1} \mathbb{I}\left(x<X_{j} \leq x+h\right)} & \text { if } \mathbb{I}\left(x \leq X_{i} \leq x+h\right) \neq 0 \text { for some } i, \\ 0 & \text { otherwise } .\end{cases}$
Then

$$
\lim _{h \rightarrow 0} \lim _{n \rightarrow \infty} \phi_{n, h, x}(t)=\mathbb{E}\left(e^{i t\left(\rho_{1} x+\epsilon_{1}\right)}\right) \text { with probability } 1
$$

provided

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\frac{1}{h} \int_{x}^{x+h} \mathbb{E}\left(e^{i t\left(\rho_{1} x+\epsilon_{1}\right)}\right) \mathbb{P}\left(X_{\infty} \in d u\right)}{\frac{1}{h} \int_{x}^{x+h} \mathbb{P}\left(X_{\infty} \in d u\right)}=\mathbb{E}\left(e^{i t\left(\rho_{1} x+\epsilon_{1}\right)}\right) \tag{4.5}
\end{equation*}
$$

Proof. Proof of this theorem is similar to the proof of Theorem 4.2 and hence omitted.

Remark 4.5. A sufficient condition for (4.5) to hold is that the distribution of X_{∞} is absolutely continuous with strictly positive and continuous density function on $(-\infty, \infty)$ and the function $\mathbb{E}\left(e^{i t\left(\rho_{1} x+\epsilon_{1}\right)}\right)$ is continuous in x for fixed t.

Let $\left\{\rho_{1}\right\}$ and $\left\{\epsilon_{1}\right\}$ are independent random variables. Then

$$
\phi_{x}(t) \equiv \mathbb{E}_{x}\left(e^{i t X_{1}}\right)=\mathbb{E}\left(e^{i t\left(\rho_{1} x+\epsilon_{1}\right)}\right)=\psi_{\rho}(t x) \psi_{\epsilon}(t)
$$

where $\psi_{\rho}(t)=\mathbb{E}\left(e^{i t \rho}\right)$ and $\psi_{\epsilon}(t)=\mathbb{E}\left(e^{i t \epsilon}\right)$. Also, note that

$$
\psi_{\epsilon}(t)=\phi_{0}(t) \text { and } \psi_{\rho}(t x)=\frac{\phi_{x}(t)}{\phi_{0}(t)}, \text { when } \psi_{\epsilon}(t) \neq 0
$$

This yields the following corollary of Theorem 4.4.
Corollary 4.6. Let ρ_{1} and ϵ_{1} be independent and conditions of Theorem 4.4 holds. Then
(a) $\lim _{h \rightarrow 0} \lim _{n \rightarrow \infty} \phi_{n, h, 0}(t)=\psi_{\epsilon}(t)$ for all $t \in \mathbb{R}$ with probability 1 .
(b) Let $\psi_{\epsilon}(t) \neq 0$ for all $t \in \mathbb{R}$, then for all $x \neq 0$

$$
\lim _{h \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\phi_{n, h, x}(t / x)}{\phi_{n, h, 0}(t / x)}=\psi_{\rho}(t) \text { for all } t \in \mathbb{R} \text { with probability } 1
$$

5. Appendix

Proof of Theorem 2.1: Choose $\epsilon>0$ such that $\mathbb{E}\left(\log \left|\rho_{1}\right|\right)+\epsilon<0$. Now, by the strong law of large number,

$$
\mathbb{E}\left(\log \left|\rho_{1}\right|\right)<0 \Rightarrow \frac{1}{n} \sum_{i=1}^{n} \log \left|\rho_{i}\right| \leq \mathbb{E}\left(\log \left|\rho_{1}\right|\right)+\epsilon
$$

for sufficiently large n, with probability 1 . Hence

$$
\begin{equation*}
\left|\rho_{1} \rho_{2} \ldots \rho_{n}\right| \leq e^{-n \lambda} \tag{5.1}
\end{equation*}
$$

where $0<\lambda \equiv-\left(\mathbb{E}\left(\log \left|\rho_{1}\right|+\epsilon\right)<\infty\right.$, for all large n, with probability 1 .
Also $\mathbb{E}\left(\log \left|\epsilon_{1}\right|\right)^{+}<\infty$ implies that for any $\mu>0, \sum_{n=1}^{\infty} \mathbb{P}\left(\log \left|\epsilon_{1}\right|>n \mu\right)<\infty$ and hence $\sum_{n} \mathbb{P}\left(\log \left|\epsilon_{n}\right|>n \mu\right)<\infty$. By Borel Cantelli lemma, $\left|\epsilon_{n}\right| \leq e^{n \mu}$ for all n large enough, with probability 1.

Now choose $0<\mu<\lambda$. Then for sufficiently large n, with probability 1 ,

$$
\left|\epsilon_{n+1} \rho_{1} \rho_{2} \ldots \rho_{n}\right| \leq e^{-n \lambda} e^{(n+1) \mu}
$$

Therefore $\sum_{n}\left|\epsilon_{n+1}\right| \rho_{1} \rho_{2} \ldots \rho_{n} \mid<\infty$ with probability 1 . Hence $\tilde{X}_{\infty}=\epsilon_{1}+\rho_{1} \epsilon_{2}+$ $\rho_{1} \rho_{2} \epsilon_{3}+\ldots+\rho_{1} \ldots \rho_{n} \epsilon_{n+1}+\ldots$ is well defined.

Observe that

$$
\begin{aligned}
X_{n} & =\rho_{n}\left(\rho_{n-1} X_{n-2}+\epsilon_{n-1}\right)+\epsilon_{n} \\
& =\rho_{n} \rho_{n-1} \cdots \rho_{1} X_{0}+\rho_{n} \rho_{n-1} \cdots \rho_{2} \epsilon_{1}+\cdots+\rho_{n} \epsilon_{n-1}+\epsilon_{n}
\end{aligned}
$$

and which has the same distribution as

$$
\begin{equation*}
\epsilon_{1}+\rho_{1} \epsilon_{2}+\cdots+\rho_{1} \rho_{2} \cdots \rho_{n-1} \epsilon_{n}+\rho_{1} \rho_{2} \cdots \rho_{n} X_{0} \tag{5.2}
\end{equation*}
$$

Now by using (5.1) and above, we have $\left|\rho_{1} \rho_{2} \cdots \rho_{n} X_{0}\right|$ converges to zero with probability 1. Thus, from (5.2), as $n \rightarrow \infty$, we have

$$
X_{n} \xrightarrow{d} \tilde{X}_{\infty}
$$

where \xrightarrow{d} stands for convergence in distribution.

Acknowledgment. K. B. Athreya would like to thank the Department of Mathematics, IIT Bombay and in particular, Prof. Sudhir Ghorpade for offering him visiting professorship.

References

1. Anděl, J.: Autoregressive series with random parameters, Math. Operationsforsch. Statist. 7 (1976), no. 5, 735-741.
2. Athreya, K. B. and Atuncar, G. S.: Kernel estimation for real-valued Markov chains, Sankhy \bar{a} Ser. A 60 (1998), no. 1, 1-17.
3. Athreya, K. B. and Lahiri, S. N.: Probaility Theory (TRIM Series 41), Hindustan Book agency, New Delhi, 2006.
4. Athreya, K. B. and Ney, P.: A new approach to the limit theory of recurrent Markov chains, Trans. Amer. Math. Soc. 245 (1978), 493-501.
5. Aue, A., Horváth, L., and Steinebach, J.: Estimation in random coefficient autoregressive models, J. Time Ser. Anal. 27 (2006), no. 1, 61-76.
6. Brandt, A.: The stochastic equation $Y_{n+1}=A_{n} Y_{n}+B_{n}$ with stationary coefficients, $A d v$. in Appl. Probab. 18 (1986), no. 1, 211-220.
7. Nicholls, D. F. and Quinn, B. G.: The estimation of random coefficient autoregressive models I, J. Time Ser. Anal. 1 (1980), no. 1, 37-46.
8. Orey, S.: Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand Reinhold Co., London-New York-Toronto, Ont., 1971.
9. Robinson, P. M.: Statistical inference for a random coefficient autoregressive model, Scand. J. Statist. 5 (1978), no. 3, 163-168.

Krishna B. Athreya: Departments of Mathematics and Statistics, Iowa State University, Iowa 50011, USA and Distinguished Visiting Professor, Department of Mathematics, IIT Bombay, Mumbai 400076, India

E-mail address: kba@iastate.edu
Koushik Saha: Department of Mathematics, Indian Institute of Technology Bombay, Mumbai 400076, India

E-mail address: ksaha@math.iitb.ac.in
Radhendushka Srivastava: Department of Mathematics, Indian Institute of Technology Bombay, Mumbai 400076, India

E-mail address: radhe@math.iitb.ac.in

[^0]: Received 2017-9-13; Communicated by Hui-Hsiung Kuo.
 2010 Mathematics Subject Classification. Primary 60J10; Secondary 62M10.
 Key words and phrases. Auto-regressive sequence, transition function, Harris recurrence, regeneration.

 * This research of Radhendushka Srivastava is partially supported by INSPIRE research grant of DST, Govt. of India and a seed grant from IIT Bombay.

