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Abstract. In this paper we consider an analogue of the problem of Erdds and Woods for
arithmetic progressions. A positive answer follows from the abc conjecture. Partial results are
obtained unconditionally.

1. For a positive integer n, we denote u(n) for the greatest square
free divisor of n i.e.

u(n)=[]p,
pin

P(n) for the greatest prime factor of n and w(n) for the number of
distinct prime divisors of n. We understand that u(1) = P(1)=1 and
(1) =0. Erdés and Woods (see [ 1] for related literature) conjectured
that there exists a positive integer k with the following property: if x, y
are positive integers such that, for 1 <i <k, the two numbers x + i and
y +i have the same prime factors, then x = y. The solution of this
problem would be of interest in logic. The only known example of
positive integers (x, y, k) with 1 < x < y,k >2 and

ux+i)=u(y+i) forl<i<k (1)
arise from
u2* —2)=u2"2*-2)), u"—1)=u2"-2)+1), (h>2)

1991 Mathematics Subject Classification: Primary 11B25. Secondary 11386, 11N25.
. Key words: Greatest prime factor, divisors, arithmetic progression, Erdds Woods, abc
conjecture, linear forms in logarithms.




296 R. BALASUBRAMANIAN et al.

and
w(75)=u(1215)=15, u(76)=u(1216) = 38.

It is proved in [1] that the relations (1) imply that

logk < ¢, (log x loglog x)*/?  for x > 3, ()]
y — x> exp(c,k(logk)*/loglogk) for k>3, 3)

and
y —x > (kloglog y)sloslosyogloglogn ™ for > 27, @)

where c,,c,,c; are effectively computable absolute positive con-
stants.

In this paper, we consider an analogue of the problem of Erdos
and Woods for arithmetic progressions. For each quadruple
(x, y,d,d’) of positive integers satisfying

(x,d)#(y,d’) and ged(x,d)=ged(y,d")=1, )
wedenote by K = K(x, y, d, d’) the largest positive integer K for which
u(x+id)=u(y+id) for0<i<K-1. 6)

For instance K(2,2,1,7) =3 and K(8,4,1,23) =3, corresponding to
the arithmetic progressions

(2,3,4) and (2,9, 16) (resp. (8,9, 10) and (4,27, 50)).
We observe
ged(x + id, y + id') = ged(x + id,d'x — dy)
which, together with (6) and d'x — dy # 0, implies that
P(x+id)=P(y+id)<|dx—dy| for0<i<K-1.

On the other hand, we apply estimates on linear forms in logarithms
to d’'(x+id)—d(y +id') for showing that P(x +id)= P((x +id)(y +id'))
tends to infinity with i, see [ 1, p. 228]. Thus, we secure the existence of
the maximal integer K. We show that a positive answer to the
arithmetic progression analogue of the problem of Erdés and Woods

follows from the abc conjecture of Masser and Oesterlé, see LANG
[3, Chap. IV §7, p. 196].

Conjecture abc: For each € > 0 three exists a constant k(g) > 0 such
that if a,b,c are three positive rational integers with a+b=c and
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ged(a,b,c) =1, then
u(abc) = k(g)c! .

The following two consequences of abc conjecture will be proved
in Section 2.

Proposition 1. Assume the abc conjecture is true. Then for each pair
(d,d’) of positive integers, the set of pairs (x,y) satisfying (5) and
K(x,y,d,d’) > 2 is finite.

Proposition 2. Assuming the abc conjecture holds, the set of quadru-
ples (x,y,d,d’) satisfying (5) and K(x, y,d,d’) > 4 is finite.

It would be interesting to know whether there exist examples with
K(x,y,d,d')=4.

In Section 4, we shall prove inequalities analogous to (2), (3) and
(4). We shall always assume that x, y,d and d' are positive integers
satisfying (5). Further, we put

d'x—dy

ged(d,d)

By (5), we observe that A#0 and A =|x — y| whenever d =d’. We
prove the next result under the assumption

A=

P(x+id)=P(y+id) forO<i<k. )
This is a weaker assumption than
u(x+id)=u(y+id’) forO<i<k 8)

already considered. If (7) holds, we observe P(x + id)|A for 0 <i<k
which imply that P(x +id)<A for 0<i<k. If (8) holds, then
u([ J¥Z4(x + id)) divides A and in particular, u([ [}Z (x + id)) < A.

Proposition 3. Assume (7). There exists an effectively computable
absolute constant c, such that for k > c,, we have
Y S ©)
We write
xi=x+k—1d, y,=y+(k—-1d, x=max(y,,x,,e)
If x is very large as compared with k, we sharpen (9) as follows.
Proposition 4(a). If (7) holds with k > 3, then
log A > csklogloglog y, (10)
where c5 > 0 is an effectively computable absolute constant.
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(b) Assume (8) with k = 3. Then
log A > cqkloglog (11)
for some effectively computable absolute constant cg > 0.

From the next result, we shall deduce a lower bound for x and y in
the special case d =d'.

Proposition 5. Let k > 2. For ¢ > 0, assume that
x>d'te y>dtte (12)
If (8) holds, then

. d'x dy 2 -1
min {log<m>, log<m>} = c,(logk)*(loglogk)™*,

where ¢, > 0 is an effectively computable number depending only on .
If d = d', the assertion of Proposition 5 simplifies to
min (log x, log y) > ¢, (log k)*(loglog k) .

The proof of Proposition 3 is elementary and the proofs of
Propositions 4 and 5 depend on the theory of linear forms in logar-
ithms.

2. The proofs of Propositions 1 and 2 depend on the following
result.

Lemma A. Assume the abc conjecture holds. For 0 < ¢ < 1 and for
positive integers x,d with gcd (x,d) = 1, we have

u(x(x + d)(x + 2d)) > x(e)(x + d)*~24d~* (13)
and
u(x(x +d)--(x + 4d)) = Eg—) (x + 2d) 3. (14)

Proof. We consider the three relatively prime positive integers
a=(x+d?—d* b=d? c=(x+d)>
We observe that a + b= c and
u(abc) = u(dx(x + d)(x + 2d)) < du(x(x + d))(x + 2d)).
Then, the inequality (13) follows immediately from abc conjecture.
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For inequality (14), we observe that
a=x*x+3d), b=(x+d)(x+4d)? c=2x+2d)>

satisfy a + b = c and write § = gcd(a, b). If dis even, then xis odd, 6 = 1
and we deduce from the abc conjecture that

2u(x(x +d)---(x + 4d)) = u(2x(x + d)---(x + 4d)) >
> Kk(e)2! ~5(x +2d)3

which implies (14). If d is odd, then 6|16 and we apply the abc conjecture
to

x2(x+3d)d"t, (x+d)(x+4d)*67Y, 2x+2d)3°1
for concluding that

u(x(x + d)---(x + 4d)) > rc(&:)<§>l _E(x +2d)3 %> f_gi)(x +2d)3 %,

O

Proof of Proposition 1. We assume that K > 2. Then, we derive
from (5) and (6) that u(x(x + d)(x + 2d)) = u(y(y + d’)(y + 2d’)) divides
|d'x — dy|. Now, we derive from (13) with e = 1/4 and d’'x — dy # 0 that

k(1/4)max {(x +d)*?d~ ', (y + d')*?d' "'} < |d'x — dy|
which implies that max (x, y) is bounded by a number depending only
ondandd'. |

Proof of Proposition 2. We assume that K > 4. Then, as in the
proof of Proposition 1, we derive from (14) with ¢ = 1/6 that

KO max {(x + 2412, (y + 2497} <|d'x — dy)
which implies that there are only finitely many possibilities for x, y,d
and d'. O

3. Inthis section, we shall prove lemmas for Propositions 3-5. We
start with the following very useful Lemma.

Lemma 1. For positive integers x and d with gcd(x,d) = 1, we put
S={x,x+d,...,x+(k—1)d}. Let p be a prime which divides the
number

x(x +d)---(x+(k—1d)=]]n

neS
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Choose an i, €{0,1,...,k — 1} such that
|x +i,d|, ' =max(|n|,*,nes).
Then
[T Ix +idl, > 1k — D],

i#ip
Proof. For i #i, we have
Ix+id|, =i —ipl,
hence
Il |x +id|, =i, (k —1 =i )], = |(k — 1)!], O

i#ip

Remarks. 1. This argument is due to SYLVESTER [5, Ch. 72,
p.698].
2. Since

Ix+id|,=|lem(x,x +d,...,x + (k —1)d)|,
we deduce that for positive integers x and d with ged(x,d) =1, the
number x(x + d)---(x + (k — 1)d) divides
(k—Dem(x,x +d,...,x + (k —1)d).
3. If wedenote by S, the subset of S obtained by deleting from S all
i, with p <k, then
I Inl, ! divides (k — 1)!.

neS; p<k

Compare with Erdos’ result which is quoted in [1, Lemma 2.3].

Lemma 2. For positive integers x and d withged (x,d) =1, let S, be
a subset of {x,x +d,...,x + (k — 1)d}. Denote by t the number of all
integers ne S, such that P(n) < k. Then
logk

Tskm'i'n(k)

/
where s is the least element of S,.

Proof. By deleting at most n(k) elements from the set
{neS,, P(n) < k}, we derive from Lemma 1 that s*~*® < k* and the
assertion follows. O
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The next lemma of SHOREY and TIUDEMAN [4] is on the existence of
a prime divisor exceeding k of an element of {x,x+d,...,x+
+ (k — 1)d}.

Lemma 3. For integers x> 1,d >2 and k > 3 with gcd (x,d) = 1,
we have

P(x(x+d)---(x+(k—1)d)) >k
unless
x=2, d=7, k=3.
We apply Lemma 3 to derive the following estimate for A.

Lemma 4. Let k> 6. For positive integers x,y,d,d satisfying
max(d,d’) > 1, (5) and (7), we have

2A > k2. (15)

Proof. Weassume thatd’ > 1 and we prove (15). The prooffor (15)
when d > 1 is similar. By Lemma 3 and k > 3, there exists i, with
0<iy, <k such that p= P(y +iyd’) > k. Then, we see from (7) that
p = P(x + iyd). Consequently, we derive from (5) that p|A. If i, < k/2,
we observe that k — 1 — i, > (k/2) — 1 > 2 for deriving from Lemma 3
that

P((y+(ip+Dd)-(y+k—=1d)) =k —iy>k/2.
If iy > k/2 > 3, we apply again Lemma 3 to obtain
Py(y+d)-(y+(@,—1d)) =i, + 1> k/2.

Consequently, there exists i, with 0<i, <k and i, #i, such that
p' =P(y +i,d)> k/2. As above, we derive that p'|A. Since p > k and
iy # i, we observe that p # p’. Consequently pp’| A which implies that
A>pp' > K22 O

We denote by ¢t the number of all integers ne{x,x +d,...,x +
+ (k — 1)d} such that P(n) < k. We observe that ¢ is also the number of
all integers ne{y,y +d',...,y +(k —1)d’} such that P(n) <k when-
ever (7) holds. In the next result, utilise Lemma 2 to sharpen (15) for
large k.

Lemma 5. Let ¢ > 0. Assume that positive integers x, y, d, d’ satisfy
(5) and (7). There exists an effectively computable number cg depending
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only on ¢ such that for k > cq, we have
A?k(l_e)k. (16)

Proof. Without loss of generality we may assume ¢ < 1/3. By (3),
we may suppose that max(d,d’) > 1 so that (15) is valid. We may
assume that k exceeds a sufficiently large effectively computable
number depending only on &. By (5), we observe that dy # d’'x. We
prove the lemma when dy > d'x and the proof for the other case is
similar. Then

A <dy. 17)

If y>k3? we derive from Lemma 2 with x=y, d=d and
S,={y,y+d,...,y+(k—1)d'} that

t< <§+e>k. (18)

If y <k3?, then we see from (15) and (17) that 2d > k'/2. We apply
again Lemma2 with S,={x+[¢k/2]d,...,x+(k—1)d} and
t < (ek/2) + 7 for deriving (18). Thus, the estimate (18) is always valid.
There are at least k — ¢ elements of {x,x +d, ..., x + (k — 1)d} whose
greatest prime factors exceed k. Further, we observe from (7) that the
product of these pairwise distinct at least k — t primes divide A. Thus

A> K+t
From (18) we deduce
A> kA3=ak (19)
If d > k*'°, we repeat the previous argument: we apply Lemma 2 with
S, = {x+ [ek/21d, .., x +(k — 1)d}

and deduce

1<6+n(k) and t<%+r<ak;

since A > k¥~*, this implies (16).
If d < k¥6, then from (17) and (19) we obtain

y> kk/é—-a,

and we use once more Lemma2 with x=y,d=d and
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S,={n,y+d,...,y+(k—1)d’} to derive

6
ts——————l _68+n(k)

which again yields (16). |

Finally, we state a particular case of an estimate of GYORY [2] for
integer solutions of Thue—Mahler equations. For distinct integers
o,,0, and a;, we put

F(X,Y)=(X —a,Y)(X -, Y)(X — 0, Y).

Let H(F) be the maximum of the absolute values of the coefficients of
F. Let p,,..., p, be distinct prime numbers with P = max(p,,..., p,)
and A some non-zero rational integer. Then

Lemma 6. All solutions of the Thue—Mahler equation
F(x,y)= Ap{---p{’
in integers x,y,z,,...,z,with ged(x, y) =1, z, >0,..., z, > 0 satisfy
log(max(|xl,|y])) < (s + 1)°* VP*(1 +log(|A| H(F))),
where C is an effectively computable absolute constant.

4. Proof of Proposition 3. We may assume that k exceeds a suffi-
ciently large effectively computable absolute constant. We prove the
result when dy > d'x and the proof for the other case is similar. Then
(17) is valid. For the proof of (9), we argue as in the proof of Lemma 5
for observing that it suffices to show that

t < (k) + 3. (20)

Let ¢=1/25. If y>k2*9% we derive from Lemma?2 that
t < n(k) + 1. Thus, we may assume that y < k*/2+* which, together
with (16) and (17), implies that d > k*/2~29% Now, we apply again
Lemma 2 for §, = {x +d,...,x + (k — 1)d} to conclude (20). O

Proof of Proposition 4. We write c, ..., c, 3 for effectively comput-
able absolute constants. By applying Lemma 6 to F(x,d) and F(y,d’)
where F is the binary form X(X + Y)(X + 2Y), the estimate (10)
follows from (7) and the estimate (11) follows from (8) whenever k is
bounded. Therefore, we may assume that k exceeds a sufficiently large
effectively computable absolute constant. Further, we may suppose
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that
k <logy (1)

otherwise Proposition 4 follows from Proposition 3. We assume that
X2 = X, and the proof for the other case is similar. We write

y+id =MM; for0<i<k

where P(M,) < k and every prime factor of M; exceeds k. By Lemma 2
and (21), the set of i with 0<i<k and M;=1 has at most
n(k) + 2logk elements. Define I={i;0<i<k, M;>k?*°}. Using
Lemma 1, we deduce that there is a subset J of I with Card J > Card
I — n(k) and

ITI1ly+id|; <kl

ieJ p<k

The left-hand side is nothing else than [[;,; M;, hence is at least
k20€ard] Therefore

k k
Card J < 20 and Card I < n(k) + 20"

Therefore, we find integers i; with 1 < j < p and p = [9k/10] in [0, k)
such that

M, <k*,M;>k forl<j<p.

Furthermore, we may suppose that there are at least [3k/4] integers
j such that

P(M;) < (log x)'3,

otherwise Proposition 4 follows from (7). We arrange these integers as
iy <ip<--<i, with y’'=[3k/4]. Let j be an integer in the range
1< j<yu —2; we apply Lemma 6 to F(y,d’), where F is the binary
form

FX,Y)=(X+ in)(X + ij+1 Y)(X + ij+2Y)a
with
A= MijMij+1Mij+2’ §= w(M;]M;}Hngn
to conclude that

(M) 2 co(loglog x)(logloglog x) !
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for at least [k/8] integers j with 1 < j < y'. Therefore
P(M}) > cyologlogy (22)
for at least [k/8] integers j with 1 < j <y’ and
o
Y w(M;) > c,,k(loglog )(logloglog )~ *. 23)

i=1

If (7) holds, we derive from (22) that
(erologlog 2 < [ POy <A
j=
which implies (10). If (8) holds, we obtain from (23) that
(log x)™* < u( ﬁl ME,) <A
j=

and (11) follows. O

Proof of Proposition 5.
Put D =ged(d,d’) and W=Y*_ w(y +id’). We prove Proposition
5 under the assumption d'x < dy, i.e. we prove

1og(éof)>c7<logk)zaoglog k. (24)

The proof of Proposition 5 for the other case d'x > dy is similar. We
may assume that k exceeds a sufficiently large effectively computable
absolute constant, otherwise (24) follows immediately. Then, we
derive from Proposition 3 and d'x < dy that

dy

D

We may assume that d/D < k™®, otherwise (24) follows from (12).
Thus

=3 < A<

y > kk~2mk=3, (25)
Let 0 <¢, < 1. We assume that
loglogy

and we shall choose ¢, a suitable effectively computable absolute
constant for arriving at a contradiction. From this contradiction, we
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see from (12) and (25) that

1og<%§) >logx >¢,(logk)*(loglogk)~! —logk,

implying (24).

For aninteger i with 0 < i < k, we denote by w'(y + id’) the number
of prime divisors of y + id’ which are greater than k. From (8) we
deduce w'(y + id’') = w'(x + id). Since

kOt < x 4+ id < x + (k — 1)d,
we deduce from (26) that
ot i loglogy
g .
@y +id)< e, logloglogy
Also, for 0 <i <k, we have
g loglog y
< —
log P(y +id') <logk fogloglogy’

Now, in view of (12), we apply the theory of linear forms in logarithms
as in the proof of Proposition 4.11 of [1] for deriving

and
W loglogy

ZC1s logloglog y’

where c,, and c, 5 are positive effectively computable absolute con-
stants. Finally, we choose &; =(2¢,5)~* to obtain from the estimates
for W that

loglogy

Clsmo—g—fog—y < 201410g10g k,

which, by (25), is not possible if k is sufficiently large. O
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