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The Nef protein of HIV-1 removes the immune costi-

mulatory proteins CD80 and CD86 from the cell surface

by a unique clathrin- and dynamin-independent, actin-

based endocytic pathway that deploys coupled activa-

tion of c-src and Rac. In this study, we show that,

similar to major histocompatibility complex class I

(MHCI), Nef subsequently reroutes CD80 and CD86 to

the Golgi region. However, not only are CD80/CD86

internalized by a different mechanism from MHCI but

also the vesicular pathway of Golgi delivery for CD80/

CD86 is distinct from that employed for MHCI. While

MHCI passes through early endosomal and sorting

compartments marked by Rab5/early embryonic anti-

gen 1 and ADP ribosylation factor 6, respectively, CD80

and CD86 enter endocytic vesicles that do not acquire

conventional early endosomal markers but remain

accessible to fluid probes. Rather than being delivered

to preexisting Rab11-positive recycling compartments,

these vesicles recruit Rab11 de novo. Rab11 activity is

also necessary for the delivery of CD80/CD86 in these

transitional vesicles to the Golgi region. These data

reveal an unusual pathway of endocytic vesicular traf-

fic to the Golgi and its recruitment in a viral immune

evasion strategy.
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The pleiotropic Nef protein of HIV-1 contributes signifi-

cantly to viral pathogenicity (1–3). In addition to functions

such as preventing apoptosis of infected cells and induc-

ing bystander T-cell activation (4–7), Nef is also reported

to contribute to immune evasion by removing major

histocompatibility complex (MHC) class I (MHCI) and

MHC class II (MHCII) from the surface of infected macro-

phages (8).

We have recently reported that in cells of the myeloid

lineage, Nef binds to and mediates endocytosis of CD80

and CD86, leading to defective antigen-presenting cell

function (8). The Nef-mediated endocytic mechanisms

operating on CD80 and CD86 are distinct from those

mediating MHCI internalization. First, mutations in Nef

preventing MHCI downmodulation do not affect CD80

and CD86 endocytosis (8). Furthermore, Nef-mediated

removal of CD80 and CD86 from the cell surface, unlike

MHCI removal, is not sensitive to cholesterol depletion or

phosphatidylinositol kinase (PIK) inhibition by wortmannin

(Wm). Instead, the removal of CD80/CD86 involves

a two-pronged strategy involving c-src and Rac (9). On

the one hand, Nef expression triggers phosphorylation

of c-src, leading to downstream activation of the small

guanosine triphosphatase (GTPase) Rac through a GTP

exchange factor called Tiam (9). In another arm of this

pathway, Nef specifically binds to the cytosolic tails of

CD80 and CD86 to mark them for Rac-mediated endocy-

tosis (9). None of these molecular elements is shared by

the mechanism involved in Nef-mediated removal of cell

surface MHCI.

Despite this difference in the molecular programs

mediating Nef-triggered endocytosis, MHCI and CD80/

CD86 appear to be relocated to the same intracellular

compartment (8). The relocation of MHCI by Nef is

thought to be mediated not by enhanced endocytosis

per se but by rerouting of MHCI molecules in their

constitutive recycling program to deliver them to the

Golgi region as the final destination (10–12). This delivery

is dependent on ADP ribosylation factor 6 (Arf6),

although whether it requires the Arf6 molecule directly

or simply occurs in a vesicular compartment marked by

Arf6 is not yet clear (13).

In this study, we show that Nef-mediated removal of CD80

and CD86 follows a different endocytic pathway from that

taken by MHCI. Unlike MHCI, Nef-marked CD80/CD86

enters distinct vesicular compartments that do not pos-

sess conventional early endosomal markers. Furthermore,

CD80/CD86-containing vesicles acquire the small GTPase,

Rab11, without being associated with the normal recycling

compartment. Finally, the CD80/CD86 cargo is eventually
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delivered from transitional vesicles to the Golgi region by

a Rab11-dependent mechanism.

Results

HIV-1 Nef relocates cell surface MHCI, CD80

and CD86 to the Golgi

We have previously shown that in Nef-expressing human

U937 monocytic cells, MHCI, CD80 and CD86 are inter-

nalized by a unique dynamin-independent endocytic mech-

anism (8,9). To identify the intracellular compartment

where MHCI, CD80 and CD86 were relocated to in Nef-

expressing cells, we transfected U937 cells with an

expression vector containing the nef gene from an HIV-1

subtype C clinical isolate (8) fused in-frame to the EGFP

gene. At 24-h post-transfection, cells were examined by

confocal microscopy. Figure 1 shows that Nef–enhanced

green fluorescent protein (EGFP) is colocalized with

endogenous MHCI, CD80 and CD86 in intracellular organ-

elles marked by Golgi markers, GM130 and caveolin-2,

while no colocalization of organelles containing both Nef–

EGFP and accompanying MHCI, CD80 or CD86 was

observed with endoplasmic reticulum (ERp72), endosomal

Figure 1: Nef redistributes CD80 and CD86 to the Golgi. U937 cells expressing either control EGFP or Nef–EGFP were fixed and

stained for the various molecules shown. Scale bar represents 10 mm. Insets are magnified (�2) and show grayscale images for each color

as well as for merged images from the appropriate regions.
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[early embryonic antigen 1 (EEA1) and Rab5] or lysosomal

markers [Rab7 and lysosome-associated membrane

protein-1 (LAMP1)].

We next ascertained that cell surface MHCI, CD80 and

CD86 internalized by the activity of Nef were relocated

from the cell surface to the Golgi (GM130-marked com-

partments) by tracking antibody-labeled surface molecu-

les. For this, Nef-transfected U937 cells were labeled with

fluorochrome-tagged antibodies against cell surfaceMHCI,

CD80 or CD86 and examined by confocal microscopy. By

12-h post-surface labeling, MHCI, CD80 and CD86 mol-

ecules had disappeared from the surface of Nef-express-

ing cells but not from control EGFP-expressing U937 cells.

They were relocated in GM130-bearing compartments

along with Nef–EGFP (Figure 2A). As additional confirma-

tion of the intracellular destination of Nef-induced CD80

and CD86, we disrupted the morphology of the Golgi using

the fungal toxin, Brefeldin A (14). Colocalization with the

Golgi marker, GM130, persisted in cells even where the

organization of the Golgi was disrupted by Brefeldin A

(Figure S1A). Furthermore, greater than 75% of the

internalized fluorescence intensity of MHCI, CD80 and

CD86 was colocalized with GM130, 12-h post-internaliza-

tion (Figure S1B), consistent with the Golgi as the site of

intracellular delivery of CD80 and CD86.

Internalization of MHCI exhibited relatively rapid kinetics

and could be visualized as early as 1-h post-surface

labeling, while downregulation of CD80 and CD86 was

relatively slower and was clearly evident only by 4 h

(Figure 2B; quantification in Figure S2).

Nef redistributes surface MHCI and CD80/CD86

to the Golgi by distinct pathways

Using the approach outlined above, we examined inter-

mediate stages of internalization of MHCI, CD80 and CD86

in Nef-expressing cells and assessed their colocalization

Figure 2: Nef traffics internalized

MHCI, CD80 and CD86 to the

Golgi. A) U937 cells were transfec-

ted to express EGFP or Nef–EGFP,

followed, 8 h later, by labeling cell

surface MHCI, CD80 or CD86 with

biotinylated antibodies on ice. Cells

were then shifted to 378C and cul-

tured further for periods indicated

before being fixed and stained for

GM130, followed by confocal micros-

copy. Insets are magnified (�2) and

show grayscale images for each

color as well as for merged colors.

B) U937 cells expressing Nef–EGFP

were labeled for cell surface MHCI,

CD80 or CD86 as in (A) above and

cultured further for indicated times

before being fixed and stained for

GM130 and imaged by confocal

microscopy. Insets are magnified

(�2) and show grayscale images

for each color as well as for merged

colors. Scale bar, 10 mm.
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with a range of vesicular and endosomal markers (Figure

3A–G). While internalized vesicles containing MHCI, CD80

or CD86 colocalized with the Nef protein at all times,

distinct patterns of transient marker colocalization

emerged for MHCI versus CD80 and CD86.

The majority of internalized MHCI molecules in Nef-

expressing cells colocalized with vesicles carrying Rab5

and EEA1 (Figure 3A) by 30 min. By the end of 2 h, MHCI-

carrying endosomes had lost these markers and showed

some degree of colocalization with Arf6 (Figure 3A). No

detectable overlap of internalized MHCI vesicles was

observed with the late endosomal marker, Rab7, or the

recycling endosomal marker, Rab11 (Figure 3B). By 3 h

onwards, MHCI-carrying endosomes progressively lost

Arf6 and accumulated in Rab6- and GM130-marked com-

partments (Figure 3C). At early time-points, internalized

MHCI molecules also colocalized transiently with a short

pulse of endocytosed transferrin (Tf) (Figure 3D), whereas

cointernalized fluorescent dextran (Dex), which predom-

inantly marks late endosomes, did not show any significant

colocalization (Figure 3D).

Figure 3: Vesicular pathway for Nef-mediated trafficking of internalized MHCI. A) Transfected U937 cells expressing Nef–EGFP

were labeled for MHCI with fluorophore-conjugated antibodies at the cell surface and incubated for various times as indicated. For

detection of Arf6, U937 cells were cotransfected with plasmids expressing Nef–HA and Arf6–EGFP. At each time-point shown, surface

label was stripped and cells were permeabilized and stained for EEA1 or Rab5. Cells were then imaged by either high-resolution wide-field

fluorescencemicroscopy or confocal microscopy. B) U937 cells coexpressing Nef–HA alongwith EGFP–Rab11were labeled forMHCI with

fluorophore-conjugated antibodies at the cell surface and incubated for various times as indicated. For detection of Rab7, U937 cells

expressing Nef–EGFP were stained for Rab7. At each time-point shown, surface label was stripped and cells were permeabilized and

stained for Nef. Cells were then imaged by either high-resolution wide-field fluorescencemicroscopy or confocal microscopy. C) U937 cells

transfected with Nef–EGFP were labeled for MHCI with fluorophore-conjugated antibodies at the cell surface and incubated for various

times as indicated. At indicated time-points, surface label was stripped and cells were permeabilized and stained for Rab6 or GM130. Cells

were then imaged by either high-resolution wide-field fluorescence microscopy or confocal microscopy. D) Nef-expressing U937 cells

were pulsed with fluorophore-labeled Tf or Dex for 10 min, immediately after surface labeling for MHCI. At indicated time-points, surface

label was stripped and cells were imaged by either high-resolution wide-field fluorescence microscopy or confocal microscopy. Images of

Nef-expressing cells were quantified for the fraction of internalized MHCI colocalizing with the various markers shown. Data are plotted as

the extent of colocalization over time (mean � SE, n ¼ 100 cells). Scale bar, 10 mm.
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However, surface-labeled CD80 and CD86 molecules

followed an altogether different route under the influence

of Nef. First, using an acid-strip procedure, which removes

>90% of the surface label, neither CD80 nor CD86 was

detectably internalized until at least 2-h post-surface

labeling (Figure S2). Second, upon internalization, at no

time-point did CD80/CD86-bearing vesicles show any

detectable colocalization with Rab5, EEA1 or Arf6 (Figure

4A). CD80- and CD86-containing vesicles also did not

acquire the late endosomal marker Rab7 (Figure 4B).

Instead, by 4 h, these vesicles acquired the small GTPase

Rab11 (Figure 4B), a recycling endosome marker (15).

Finally, by 6 h, CD80 and CD86 were delivered to Rab6-

and GM130-positive Golgi compartments (Figure 4C).

When these cells were pulse labeled with endocytosed

probes, fluorescent Tf or Dex, at 3 h after surface labeling

with anti-CD80/CD86 antibodies, internalized CD80 and

CD86 molecules showed no colocalization with Tf,

although they were accessible to endocytosed Dex at

early time-points (Figure 4D). Together, these results

suggest that Nef redirects MHCI from early endosomal

compartments to the Golgi consistent with previous

studies (13), whereas CD80 and CD86 are internalized to

the Golgi by a different endocytic route.

Nef-induced CD80/CD86-containing vesicles recruit

cytoplasmic pool of Rab11

To examine the pathway that delivers Nef-marked CD80/

CD86 to the Golgi, we focused on the transient colocaliza-

tion of CD80 and CD86 with Rab11 just prior to delivery

to the Golgi. The colocalization with Rab11 could be the

result of fusion with bona fide Rab11-positive recycling

endosomes or by independent recruitment of Rab11 to the

transitional vesicles, which are formed by a distinct dyna-

min-independent pathway (9). To differentiate between

these two possibilities, U937 cells were transfected with

either a control ECFP gene or the nef gene fused in-frame

to ECFP gene and surface labeled with tagged anti-CD80

or anti-CD86 antibodies to track endocytosed CD80/CD86.

These cells were then pulsed with labeled Tf to mark the

entire recycling pathway and subsequently examined by

confocal microscopy (Figure 5A). If the colocalization of

Rab11 and CD80/CD86 occurred in Tf-marked recycling

endosomes, delivery of CD80/CD86 vesicles to the Golgi

must involve fusion with the recycling endosomes. How-

ever, a lack of colocalization with the Tf-marked recycling

pathway would indicate de novo recruitment of Rab11

separately from the recycling compartment. The data

were quantified to examine the extent of colocalization

(Figure 5B). Vesicles showing colocalization of Rab11

and CD80/CD86 (Figure 5A, cyan vesicles in insets;

and Figure 5B) showed practically no overlap with the

Tf-marked Rab11-positive recycling endosomal compart-

ments (Figure 5A, yellow vesicles in insets; and Figure

5B). Furthermore, in control cells expressing EGFP,

79 � 10% of the Rab11 structures colocalized with

endocytosed Tf, whereas in Nef-transfected cells, only

52 � 7% was colocalized with Tf. The remaining Rab11

structures that did not contain Tf were associated with

Nef and endocytosed CD80 (or CD86)-marked compart-

ments. This indicated that CD80 and CD86 vesicles were

not delivered to Rab11-positive recycling endosomal

compartments and, instead, acquired Rab11 in an inde-

pendent recruitment event, prior to accumulation in the

GM130-labeled Golgi compartments.

The colocalization of Rab11 with Nef-containing endocytic

vesicles suggested an interaction between Nef and Rab11.

We examined this possibility by immunoprecipitating Nef

from transfected U937 cells and looking for the coprecipi-

tation of Rab11 by western blotting. Rab11 was found to

be associated with Nef (Figure 5C), although it is not yet

clear if this association is functionally significant for Rab11-

mediated delivery of CD80/CD86 cargo to the Golgi.

Delivery of CD80/CD86 cargo from transitional

endocytic vesicles to the Golgi is Rab11 dependent

We next determined if Rab11 is required for the delivery of

endocytosed CD80 and CD86 to the Golgi compartment.

For this, U937 cells were cotransfected to express both

Nef–enhanced cyan fluorescent protein (ECFP) and green

fluorescent protein-tagged versions of either the wild-

type (WT) or a dominant-negative (DN) mutant of Rab11

(Rab11aS25N) (16) (Figure 6A). The data were quantified

to examine the extent of colocalization of CD80 and CD86

and Golgi markers (Figure 6B). In cells expressing Nef and

WT-Rab11, CD80 and CD86 continued to be delivered to

GM130-marked regions (Figure 6A,B). However, expres-

sion of DN-Rab11 prevented the delivery of CD80 and

CD86 to GM130-bearing compartments (Figure 6A,B),

without inhibiting the internalization of cell surface CD80

or CD86. In DN-Rab11-expressing cells, CD80 and CD86

accumulated in vesicular structures distinct from the Golgi

(Figure 6A).

To confirm the involvement of Rab11, we used Rab11a-

and Rab11b-specific small interfering RNAs (siRNAs) in

cotransfection assays with Nef. An equimolar mixture of

Rab11a- and Rab11b-specific siRNA reduced the cellular

levels of Rab11 but not of related proteins Rab4, Rab5 and

Rab7 (Figure 6C). While the silencing of endogenous Rab11

resulted in a redistribution of endocytosed Tf-containing

endosomes (data not shown), it consistently abrogated

trafficking of internalized CD80/CD86 vesicles to the Golgi

(Figure 6D). However, it had no effect on the net amount of

Nef-mediated internalization of CD80 and CD86 (Figure 6E).

Thus, Rab11 activity is required for the delivery of internal-

ized CD80 and CD86 to the Golgi region but not for

internalization. This effect is specific for the processing of

CD80 and CD86 by Nef because Rab11 depletion had no

effect on the Nef-mediated delivery of MHCI to the Golgi

region (Figure S3). Together, these results suggest that

Rab11 is specifically recruited to the Nef-marked CD80/

CD86 endosomes to deliver them to the Golgi region.
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Figure 4: Vesicular pathway for Nef-mediated trafficking of internalized CD80 and CD86. A) Transfected U937 cells expressing Nef–

EGFP were labeled for CD80 or CD86 with fluorophore-conjugated antibodies at the cell surface and incubated for various times as

indicated. At each time-point shown, surface label was stripped and cells were permeabilized and stained for EEA1 or Rab5. Cells were

then imaged by either high-resolution wide-field fluorescence microscopy or confocal microscopy. B) U937 cells coexpressing Nef–HA

alongwith either EGFP–Rab11 or EGFP–Arf6 were labeled for CD80 or CD86with fluorophore-conjugated antibodies at the cell surface and

incubated for various times as indicated. For detection of Arf6, U937 cells were cotransfected with plasmids expressing Nef–HA and Arf6–

EGFP. At each time-point shown, surface label was stripped and cells were permeabilized and stained for Nef. Cells were then imaged by

either high-resolution wide-field fluorescence microscopy or confocal microscopy. C) U937 cells transfected with Nef–EGFP were labeled

for CD80 or CD86 with fluorophore-conjugated antibodies at the cell surface and incubated for various times as indicated. For detection of

Rab7, U937 cells expressing Nef–EGFP were stained for Rab7. At indicated time-points, surface label was stripped and cells were

permeabilized and stained for Rab6 or GM130. Cells were then imaged by either high-resolution wide-field fluorescence microscopy or

confocal microscopy. D) Nef-expressing U937 cells were pulsed with fluorophore-labeled Tf or Dex for 10 min, immediately after surface

labeling for CD80 or CD86. At indicated time-points, surface label was stripped and cells were imaged by either high-resolution wide-field

fluorescence microscopy or confocal microscopy. Images of Nef-expressing cells were quantified for the fraction of internalized CD80 or

CD86 colocalizing with the various markers shown. Data are plotted as the extent of colocalization over time (mean � SE, n ¼ 100 cells).

Scale bar, 10 mm.
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PI3K activity is required for sorting of CD80/CD86

vesicles to the Golgi

PI3K plays an essential role in endocytosis by generating

phosphatidylinositol phosphates that in turn serve as docking

signals for Rab GTPases on endosomal membranes (15).

Inhibition of PI3K hasmultiple effects, since it is an important

regulator of phosphoinositides on the endomembrane sys-

tem (17). We therefore tested if PI3K was also important in

the recycling endosome-independent recruitment of Rab11

to the Nef-induced transitional vesicles containing CD80/

CD86. As we have previously reported, the PI3K inhibitor

Wm did not inhibit the endocytic removal of CD80 or CD86

from the cell surface (8). However, treatment of U937 cells

coexpressing Nef–ECFP and Rab11–EGFP with Wm

(100 nM) resulted in sequestration of CD80 and CD86 into

vesicles that did not fuse with the Golgi (Figure 7A,B).

Furthermore, there was a loss of the normal recruitment of

Rab11 to the Nef-induced transitional vesicles carrying CD80/

CD86 cargo, accompanied by an altered distribution of Rab11

from a punctate to a diffuse pattern (Figure 7A). As shown

previously, Tf delivery to early endosomes (18) and MHCI

delivery to the Golgi (13) are also impaired (data not shown).

These data indicate that Nef-mediated delivery of CD80

and CD86 to the Golgi occurs by a de novo pathway

distinct from the MHCI Golgi relocation pathway and that

the transitional vesicles require recruitment of the active

GTPase Rab11 aswell as PI3K activity to relocate the cargo

to the Golgi region.

Discussion

Our results show that in addition to MHCI, Nef mediates

the removal of the major cell surface immune costimula-

tory molecules, CD80 and CD86, to the Golgi region in

monocytic cells. Although the relocation of CD80/CD86

superficially resembles MHCI downmodulation in that Nef

relocates all three proteins from the cell surface to the

Golgi region, the route taken by CD80 and CD86 differs

dramatically from that traversed by MHCI. At early time-

points during internalization, MHCI as well as CD80 and

CD86 are associated with Nef-bearing peripheral endocytic

vesicles. However, these vesicles show distinctly different

patterns of molecular markers depending on whether they

contain MHCI or CD80 and CD86 even if their ultimate

target is the Golgi region. Internalized MHCI initially

colocalizes with endocytosed Tf and early endosomal

markers, EEA1 and Rab5, suggesting that it transits

through early endosomes. This is in keeping with the

earlier interpretation that this is the normal endocytic

pathway of MHCI for constitutive recycling (13). Under

normal conditions, MHCI exits these compartments, over-

lapping with a transient association with Arf6 in recycling

endosomes. It is likely that at this point, as previously

suggested (13), MHCI is rerouted by Nef to the Golgi.

However, vesicles bearing CD80 and CD86 and internal-

ized in Nef-expressing cells do not colocalize with typical

early endosomal markers such as Rab5, EEA1, endocy-

tosed Tf and Arf6 as well as late endosomal markers such

as Rab7. Instead, unlike MHCI-containing vesicles, they

are accessible to a pulse of endocytosed fluid cargo and

acquire the recycling endosomal marker, Rab11. Because

CD80- and CD86-containing endocytic vesicles lack the

cointernalized recycling marker Tf or the early endosomal

marker Rab5, we propose that Rab11 recruitment is

de novo from the cytoplasm rather than by fusion with

recycling endosomes. Furthermore, while the recruitment

of Rab11 to Tf-positive recycling endosomes is refractory

Figure 5: De novo recruitment of Rab11 by Nef. A) U937 cells

were cotransfected for expression of Nef–ECFP or control ECFP

(cyan, grayscale) and EGFP–Rab11 (green). Cells were surface

labeled with anti-CD80 or anti-CD86 (blue) antibodies at 8-h post-

transfection and incubated for 4 h with fluorophore-labeled Tf.

Cells were subsequently imaged by confocal microscopy. Nef or

control ECFP is shown as grayscale images. Vesicles showing

colocalization (blue vesicles, inset) of Rab11 and CD80 (top half) or

CD86 (bottom half) show no overlap with vesicles showing

colocalization of Tf and Rab11 (yellow vesicles, inset). Scale bar,

10 mm. B) Images of control ECFP- or Nef–ECFP-expressing cells

from above were quantified for the fraction of internalized Tf,

CD80 or CD86 colocalizing with various markers as shown (mean

� SE, n ¼ 50 cells). C) Lysates from mock-transfected or Nef-

transfected U937 cells were immunoprecipitated with anti-Nef

antibody and western blotted with anti-Rab11 antibody.
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to inhibition of PI3K activity (19), Rab11 recruitment to the

vesicles carrying CD80 and CD86 is drastically impaired by

treatment with Wm. Although, at this stage, a transient

‘kiss and run’ encounter with a bona fide Rab11-bearing

recycling compartment cannot be completely ruled out.

Recruitment of Rab11 is necessary for delivery of CD80/

CD86 to the Golgi region, because eliminating Rab11

activity inhibits Nef-mediated localization of CD80 and

CD86 to Golgi-like regions, but not their internalization.

This pathway appears to be a novel mechanism subverted

by the virus because conventionally, the role of Rab11 is

expected to regulate partitioning of recycling endosome

and lysosome-directed cargo selection (20). This subver-

sion may be mediated by the recruitment of Rab11 into a

complex nucleated by Nef because we have observed that

Nef and Rab11 can be coimmunoprecipitated. Although

during the endocytic trafficking of shiga toxin, Rab11 plays

a role in efficient trans Golgi network (TGN)/Golgi delivery

of the toxin from recycling endosomes, in contrast to Nef-

mediated CD80/CD86 delivery to the Golgi, expression of

WT, DN and dominant-active mutants of Rab11 causes only

a small decrease in TGN/Golgi delivery of the toxin (21).

Our data are thus consistent with a trafficking model

wherein Nef functions in early endosomes to redirect

MHCI to the Golgi, whereas it functions at the cell surface

to generate entirely new CD80/CD86-containing vesicles

(9), which then recruit Rab11 in a PI3K-dependent fashion

to direct them to the Golgi region.

Materials and Methods

Plasmids, cell culture and reagents
The F2-nef gene from an Indian HIV-1 subtype C primary isolate subcloned

into the bicistronic mammalian expression vector pIRES2-EGFP (Clontech)

Figure 6: Rab11 recruitment controls sorting of internalized CD80 and CD86 to the Golgi. A) U937 cells were cotransfected for

expression of EGFP–Rab11-WT or EGFP–Rab11-DN (blue) as indicated along with Nef–ECFP (cyan). Cells were subsequently stained for

CD80 or CD86 (red) as well as GM130 (green) 24 h after transfection and imaged by confocal microscopy. Insets show grayscale images

for Nef (cyan) and WT/DN-Rab11 (blue). Note that DN-Rab11 prevents Golgi delivery of internalized CD80 or CD86, which accumulates in

large cytoplasmic vesicular structures separate from an intact perinuclear GM130-labeled Golgi. Scale bar, 10 mm. B) Images of Nef-

expressing cells from above were quantified for the fraction of total CD80 or CD86 internalized (right panel) and the fraction of internalized

CD80 or CD86 colocalizing with GM130 (left panel) (mean � SE, n ¼ 50 cells). C) U937 cells were cotransfected with an equimolarmixture

of Rab11a- and Rab11b-specific siRNA or a control siRNA along with a marker Thy-1-expressing plasmid. Magnetic sorting of Thy-1þ cells

was followed by western blot analyses of cell lysates with the indicated antibodies. D) U937 cells were cotransfected for expression of

Rab11a siRNA or control siRNA as indicated along with Nef–ECFP. Cells were subsequently stained for CD80 or CD86 (red) as well as

GM130 (green) and imaged by confocal microscopy. Insets show grayscale images for Nef in the indicated cells. Scale bar, 10 mm. E)

Images of Nef-expressing cells from above were quantified for the fraction of internalized CD80 or CD86 colocalizing with GM130

(mean � SE, n ¼ 50 cells).
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or expressed as a nef–egfp fusion gene in the plasmid pEGFP-N3 (Clontech)

have been described earlier (8). Rab11 and its mutant isoformwere the kind

gift from Dr Nigel Bunnett (University of California, San Francisco, CA,

USA), Arf6–EGFP from Dr Julie Donaldson (National Institutes of Health,

Bethesda, MD, USA) and the Thy-1-expressing plasmid from Dr Thomas

Mitchell (University of Louisville, Louisville, KY, USA). The Rab11a- and

Rab11b-specific siRNAs as well as the control siRNA were commercially

obtained (Dharmacon). The nef–ecfp fusion gene was generated by ligating

the F2-nef gene into appropriate restriction sites of pECFP-N1 (Clontech).

U937 monocytic cells were maintained in RPMI-1640 medium, with fetal

calf serum, antibiotics and lipopolysaccharide (0.5 mg/mL) for maintenance

of high MHC, CD80 and CD86 levels. Transfections were done using

Fugene6 (Roche), according to the manufacturers’ protocols, with 10 mg of

plasmid DNA for 1 � 106 cells.

The following reagents were used: fluorophore-labeled Dex [tetramethyl-

rhodamine (TMR)-Dextran; Molecular Probes], Tf (Molecular Probes) and

Wm (Sigma). Monoclonal antibodies (mAbs) used were against Rab5,

Rab11, EEA1, Rab6, GM130, ERp72, LAMP1 and caveolin-2 (Transduction

Laboratories); Rab7 (Santa Cruz Biotech) and p38MAPK (Cell Signaling Tech-

nologies). Anti-MHCI (W6/32) was either purified from culture supernatants or

used as W6/32–biotin conjugates (Serotec). Purified anti-CD80 and anti-CD86

mAbs (eBiosciences) were labeled by either Cy5 (Amersham) or Alexa dyes

(Molecular Probes). Labeled secondary detection reagents used included goat

anti-mouse immunoglobulin G (IgG) (Fc)-phycoerythrin (PE), donkey anti-rat IgG

(Fc)-PE (Jackson ImmunoResearch), rat anti-mouse Thy-1 (BD PharMingen),

streptavidin–Alexa568 and streptavidin–Alexa633 (Molecular Probes). For stud-

ies with hemagglutinin peptide (HAp)-tagged molecules, intracellular staining

was done using an anti-HA mAb (Cell Signaling Technology).

Cell labeling and other treatments
U937 cells, grown on poly-D-lysine-coated coverslip-bottomed dishes, were

transfected with various plasmids and surface labeled 8 h later with either

biotinylated or primary labeled anti-MHCI, anti-CD80 or anti-CD86 anti-

bodies on ice for 30 min. Cells were then warmed to 378C and chased for

varying lengths of time.

To visualize the endosomal distribution of the fluorescent tracers, cell

surface label (fluorophore-labeled Tf or anti-MHCI, anti-CD80 or anti-CD86)

was removed by using a combination of low pH and high pH buffers

(ascorbate buffer, pH 4.5, 160 mM sodium ascorbate, 40 mM ascorbic acid,

1 mM MgCl2 and 1 mM CaCl2).

Confocal and wide-field microscopy and image

processing
Cells were fixed with 4% paraformaldehyde for 20 min at 378C and

permeabilized using 0.3% Tween-20 or 0.03% saponin in PBS for 20 min

at ambient temperature. They were then blocked with 2 mg/mL BSA in

PBS prior to incubation with antibodies in the same medium. Rabbit and

mouse primary antibodies were detected using fluorophore-labeled Fc-

specific anti-rabbit IgG or anti-mouse IgG.

Confocal imaging was performed either on a Bio-Rad MRC 1024 confocal

microscope (Bio-Rad Microsciences) or on a Zeiss LSM510 Meta con-

focal microscope (Zeiss). Confocal imaging on the Bio-Rad MRC 1024

confocal microscope was with factory set dichroics and an argon–krypton

laser using the LASERSHARP software with a step size of 0.2 mm and

a digital zoom of 3.4 corresponding to a pixel size of 0.12 mm. Iris size was

kept constant at 3.0 units, and 8-bit images were acquired with a�60 1.45

numerical aperture (NA) objective. For confocal imaging on a Zeiss

LSM510 confocal microscope equipped with argon, HeNe and HeCd

lasers, a step size of 0.1 mm and a digital zoom of 3.5 corresponding to

a pixel size of 0.10 mm was used. Pinhole size was kept constant at

272 units (optical section <2 mm and Airy units <3), and 12-bit images

were collected with a �63 1.45 NA objective.

High-resolution wide-field images were collected using Nikon TE 300

inverted microscope equipped with �60 1.4 NA and �20 0.75 NA

objectives, a mercury arc illuminator (Nikon) and a cooled charge-coupled

device camera (Princeton Instruments) controlled by METAMORPH software

(Universal Imaging). Optimized dichroics, excitation and emission filters

were used as described (22).

Quantitative colocalization analysis
Colocalization between internalized vesicles and endocytic markers was

quantified using two softwares, MULTISPOTS and MULTICOLLOC (9,23,24),

variations of custom-developed software, SPOTS and COLOC as described

previously (23–27). The criteria outlined below were applied to images

obtained from U937 cells labeled with antibodies against Rab5, EEA1, Arf6,

Rab6, Rab11 and GM130 or pulsed with endocytic tracers Tf and Dex for

10 min at 378C. High-resolution images of cells labeled with endocytic

tracers were obtained using a �60 1.4 NA objective on a wide-field

microscope at a pixel resolution of 0.15 mm/pixel. The images were

corrected for background fluorescence using the ‘produce background

Figure 7: PI3K activity is required for Golgi delivery of inter-

nalized CD80 and CD86. A) U937 cells expressing EGFP–Rab

11-WT and F2-Nef–HA were surface labeled with antibodies to

CD80 and CD86 at 8-h post-transfection. Cells were then cultured

for 4–5 h in presence of Wm (100 nM) and subsequently stained

for GM130. Insets show grayscale images for Nef (cyan) and WT-

Rab11 (blue). Wm treatment perturbs localization of Rab11 and

prevents Golgi delivery of internalized CD80 or CD86. Scale bar,

10 mm. B) Nef-expressing cells were quantified for the fraction of

internalized CD80 or CD86 colocalizing with GM130 in the

absence or presence of Wm (mean � SE, n ¼ 50 cells).
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correction’ image procedure in METAMORPH image analysis software using

the following parameters suitable for producing a local background image

while at the same time preserving the intensity of the endosomes (box

size ¼ 30 � 30 pixels, subsample ratio ¼ 10, percentile ¼ 0.2).

The background corrected images were then processed through MULTI-

SPOTS to identify endosomes using parameters defined by pixels above

a threshold (set by inspection for each image) and area (minimum ¼ 3 pixel,

maximum ¼ no upper limit). A trimming procedure was applied to isolate

and segregate individual endosomes based on the inclusion of pixels with

intensities greater than 0.3 of maximal intensity within a unit of connected

pixels having intensity greater than the set threshold. This was achieved by

an iterative procedure using a step size (0.01) for each iteration, which limits

for the number of iterations of the trimming procedure. The resultant image

contains a set of identified ‘spots or endosomes’ quantified in terms of net

intensity per spot and total pixel area per spot.

The two ‘spotted’ images of different fluorophore-labeled markers were

matched up against each other to identify the endosomes wherein the two

molecules were colocalized. Endosomes in a tracer image (e.g. CD80-

associated endosomes) were compared with endosomes in a reference

image (e.g. Rab11-containing endosomes) using MULTICOLOC, and endo-

somes with 50% or more area overlap were considered to be colocalized.

The resultant image displays all the spots that are colocalized using

a particular ‘tracer-reference’ image pair.

Cell outlines were drawn based on the phase contrast image of the cell, and

the net intensity of each fluorophore per cell was calculated in the spotted

as well as the colocalized images using procedures in METAMORPH. The

percentage colocalization was then calculated from the ratio of the net

intensity within a cell in the CD80/CD86/MHCI with the appropriate Rab5/

EEA1/Rab11/etc endocytic marker MULTICOLOC image to the net spot

intensity of the same cell in the MHCI/CD80/CD86 spots image. Maximum

extent of colocalization obtained by this method is 90% for the colocaliza-

tion of cointernalized Alexa568–Tf and Alexa647–Tf in the same cell. Per

cent colocalization is represented as a mean and standard error of the mean

obtained from three independent experiments with a minimum of 30 cells

per data point.

All images were processed for output purposes using ADOBE PHOTOSHOP

software (Adobe).

Immunoprecipitation and western blot analyses
Transfected cell lysates were immunoprecipitated with various antibodies

as described (9), and western blots for the indicated molecules were

performed after 12% SDS–PAGE of 50 mg protein/lane and transfer. The

secondary reagents were goat anti-mouse IgG–horseradish peroxidase

(HRP) (Cell Signaling Technologies) or donkey anti-rabbit IgG–HRP (Jackson

Immunoresearch). Blots were developed with the diaminobenzidine (DAB)

reagent (Bio-Rad).

Flow cytometry
Cells were stained with primary and secondary reagents on ice for 30 min,

as appropriate. For intracellular staining, cells were permeabilized with

0.3% Tween-20 or 0.03% saponin. Stained cells were analyzed on a BD-

LSR flow cytometer (BD Biosciences), and data from �100 000 cells were

routinely acquired for each sample. Data were analyzed using FLOWJO

software (Treestar). All data shown are representative of three to five

independent experiments.
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Supporting Information

Additional Supporting Information may be found in the online version of

this article:

Figure S1: Nef expression induces delivery of cell surface CD80 and

CD86 to GM130-marked compartments. A) Nef-induced internalization of

cell-surface-labeled CD80 and CD86 was observed in GFP–Nef-expressing

cells, 12 h after surface labeling with specific antibodies. Cells were

incubated in the presence of Brefeldin (þBfA) or absence of Brefeldin

(�BfA) for the last hour of the chase period. CD80 and CD86 antibodies

were stripped from the cell surface, the cells were fixed, then permeabi-

lized and stained for GM130 (blue), and the internalized antibodies (red)

were detected, all as described in experimental procedures. Scale bar,

10 mm. B) The extent of colocalization of internalized MHCI, CD80 and

CD86 with the indicated compartment markers was determined as detailed

in experimental procedures and shown as a fraction of the internalized

fluorescence intensity, 12 h after addition of antibodies to the cell surface

proteins. Note that MHCI, CD80 and CD86 are all extensively colocalized

with markers of the Golgi (GM130 and Cav2) but not with markers of the

endoplasmic reticulum (ERp72), the early endosome (EEA and Rab5) or the

late endosome (Rab7 and LAMP1).

Figure S2: Time–course for Nef-induced downregulation of MHCI,

CD80 and CD86. Cell surface levels of MHCI, CD80 and CD86 were

ascertained by quantifying the amount of surface-localized antibodies at the

indicated times post-surface labeling (t ¼ 0) with protein-specific anti-

bodies directed against MHC1, CD80 and CD86. The level of fluorescence

was quantified by flow cytometry, and the mean fluorescence intensity �
SE were obtained from three independent data sets for each time-point.

The data shown are representative of at least eight different experiments

[see also (1,2)]. Note that MHCI is relatively rapidly internalized at the cell

surface compared with CD80 and CD86.

Figure S3: Internalization and destination of MHCI are unaffected in

Rab11-siRNA-expressing cells.U937 cells were cotransfected for expres-

sion of Rab11a siRNA or control siRNA as indicated along with Nef–ECFP

(cyan). Cells were subsequently incubated with antibodies against MHCI

(left panels) for 12 h and stained for MHCI (red) as well as for GM130

(green) or incubated with fluorescent Tf (right panels) for 30 min, prior to

imaging by confocal microscopy. Insets show grayscale images for Nef

(cyan outline) in control/Rab11-shRNA-treated cells. Scale bar, 10 mm. Note

that MHCI continues to be delivered to the Golgi, whereas the distribution

of internalized Tf in Rab11a-siRNA-treated cells is drastically altered.

Please note: Wiley-Blackwell are not responsible for the content or

functionality of any supporting materials supplied by the authors. Any

queries (other than missing material) should be directed to the correspond-

ing author for the article.
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