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Abstract. In this paper we first discuss refinement of the Ramunujan asymptotic expansion
for the classical hypergeometric functions F(a,b;¢;x), ¢ < a+ b, near the singularity x= 1.
Further, we obtain monotonous properties of the quotient of two hypergeometric functions
and inequalities for certain combinations of them. Finally, we also solve an open problem of
finding conditions on a, b > 0 such that

2F(—a,b;a+b;r*Y<(2—r*)F(a,b; a +b;r?)

holds for all r&(0, 1).

Keywords. Hypergeometric functions; gamma function; elliptic integrals.

1. Introduction and main results

The Gaussian hypergeometric series (function) is defined by

Flabod= 5 “00NZ

i=o (cn) n!

>

where a,b,c are complex numbers with ¢#0, —1,—2,..., (4,0)=1 for a#0 and
(an+1)= (a+n)an—1)=al@a+1)---(a+n) for n=0,1,2,.... In the exceptional
case c= —p,p=0,1,2,..., the function F(a,b;c;z) is defined if a= —m or b= —m,
where m=0,1,2,... and m<p. The series F(a,b;c;z) converges for |z| <1, and
F(a,b; c; z) can be continued analytically into the complex plane cut at [ 1, o) (see [16]).
The function F (a, b; c; z) has a unique role among the special functions, since it is related
to many other classes of special functions such as Bessel, Chebyshev, Legendre,
Gegenbauer and Jacobi polynomials. Recall that F(a,b;c;z) is called zero-balanced
when ¢ = a+ b. In the special cases a=1/2 or — 1/2, b=1/2 and ¢ =1, we have

: 11 11
‘%(x)=zzr_F(55§;1:x2>p (go(x)mzzc-F(——Eq‘-z-;l;x:Z), 0<x<1,

and these functions are known as Legendre’s complete elliptic integrals of the first and
second kind, respectively. Set A (x) = A (x') and &' (x) = £(X'), X' = /1 — x2.

The basic identities due to Landen ([12], # 163-01, 164-02) (see also [11], p. 12 and
[16], p. 507) .

2\/r 1—r 1+r\
%(m)=(l+r)%(r), 9{(1_*_7.)"—'—'( 3 )%(7’)
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2/ L mF(1/2,1/%1:1—-1r7) , i
’“”"2“(1+r>"m)_2 FAR1/257) | (1) pe

Several inequalities dealing with 22" (r), 7 (r), & (r), &'(r) and p(r) have been derived in
recent papers, and therefore it is natural to seek suitable restriction on the parameters
a, b so that these inequalities are valid for the hypergeometricfunction F(a, b;a + b; x2).
We observe that the generalized p-function defined by

F(a,b;a+b;1——r2)
F(a,b;a + b;r?)

m(r) = (1.2)

has brought new attention for obtaining additional applications of Ramanujan theory
in the theory of modular equations [10]. Even though, in this paper, we are not going
into the details of all such possible generalizations, we will point out some such results
at the end of the paper.

Throughout the paper B(a, b) denotes the Euler beta function

T(a)T(b) -
T(a+b)

B(a,b) = (1.3)

provided the gamma function quotient is well defined. Further, we also use the notation

B(c,a+b—c)

D(a,b,c)= Ba.b)

(1.4)

The motivation for the present study derives from the recent development on the
Gauss—Ramanujan asymptotic formula reformulated in [1,15]. if c=a+¥b, then as
x—1 with 0 < x < 1 we have the Ramanujan asymptotic formula ([9], p. 33-34) (see
also [6], [13], Theorem 19) '

Hmhw+hﬂ=EézﬁR—bmr—m+0«b—wmg1—mn, (1.5) Wﬁ
where ’ ’ :
R:=R(a,b)= — (@) —(b) — 2. Y (@) =T"(a)/T'(@), (1.6)

and y denotes the Buler—-Mascheroni constant defined by
y= lim ( Y kTt —-logn) =0-57721566....
n—>x k=1

If ¢ < a -+ b, then as x — 1 with 0 < x < 1 the asymptotic formula (see [16, p. 299]) is
given by

F(a:b;c;x)N'D(a:b:C)(l—x)c—a—bﬁ @%

where D = D(a, b, ¢) is defined by (1.4). Refined versions of the Ramanujan asymptotic

relation (1.5) were obtained in [1,15] (c=a+ b) and a generalization to the case
¢ < a-+ b was given in [15]. We summarize these as follows. : r
1.7. Theorem. [1,15] Fora,b,c >0, let B= B(a, b), R = R(a,b)and D = D(a,b,c) be as

above. Then the following statements are true:
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() The function f,(x)= (1 — F(a,b;c;x))/log(1 — x) is strictly increasing from (0, 1)
onto (ab/(a+b), 1/B).
(i1) The function f,(x) = BF (a,b;a + b;x) + log(1 — x) is strictly decreasing from (0, 1)
onto (R, B).
(iii) The function fy(x) = BF(a,b;a + b; x) + (1/x)log(1 — x) is increasing from (0,1) onto
(B—~1,R)if ae(0,c0) and be(0,1/a].
(iv) The function f,(x) is decreasing from (0,1) onto (R,B—1) if ae(1/3,00) and
b=(1+a)/(3a—1).
(v) The function f,(x) = xF (a,b;a + b; x)/log(1/(1 — x)) is decreasing from (0,1) onto
(1/B,1) if a€(0, o0) and be(0,1/a].
(vi) The function f,(x) is increasing from (0,1) to the range (1, 1/B) if ae(1/2, 00) and
b=a/2a—1).
(vil) Fora>b and c <a+ b, we have

(1) The function g(x) = F(a, b;c; x)/(1 — x) =%~ x (0, 1), is strictly increasing with
range (1,D)if ¢ >a or c <b.
(2) The function g(x) is strictly decreasing from (0, 1) onto (D,1)ifb<c<a.

We observe thatfor ae (0, co) and b € (0, 1/a], Theorem 1.7 gives the following precise
form of the Ramanujan approximation:

R(a,b) < B(a,b)F(a,b;a + b; x) + log(1 — x)

1—
<R(ab)+-—=

log1 L for xe(0,1).

x —X

For the proof of Theorem 1.7, an important fact used in [1,15] was that all the

coefficients of F(a, b;a + b;x) should be positive. If, in the series F(a, b; a + b; x), we

choose a to be any complex quantity such that Rea > 0 and b is the complex conjugate

of a, then all the Maclaurin coefficients of the series F (a, b; a + b; x) remain positive for

x€(0, 1). Since this case has not been handled in [1, 157, we first state our results, which
are not covered in [1, 15], for this case.

1.8. Theorem. Let a be a complex quantity such that Rea> 0 and ¢ > 0.

(i) The function g,(x)= F(a,ac;x)/(1 — x) ™ is increasing from (0,1) with range
(1,D(a,a,c)) if 0 <c<2Rea. Increasing may be replaced by strictly increasing .
whenever ¢ # a.

(i) The function g,(x)=(F(a,a c;x) —1)/((1 — x)*~2Rea — 1) is increasing from (0, 1)
onto

|lal? _
(c(2Rea —c)’ Da.a, c))

if 0 <c<2Rea. Increasing may be replaced by strictly increasing if we also have
c#a.

1.9. Theorem. Let B(a,b) and R(a,b) be defined by (1.3) and (1.6), respectively. Let
a,b,c >0, 0r b=a with a as a non-zero complex number and ¢ > 0. Then we have:

(1) If c>max{0,a+b+ab}, the function f(x)=(1— F(a,b;c; x))/log(l —x) is
decreasing from (0, 1) onto (0, ab/c).
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(i) If aeCandc=2Rea >0, the functionf(x) = (1 — F(a, a; ¢; x))/log(1l — x) is strictly
increasing from (0,1) onto. (|a|*/2Rea, 1/B(a, @), and if 0 < ¢ < 2Rea, it is strictly
increasing from (0, 1) onto (|a|*/2Rea, o).

(iii) For aeC such that Rea > 0, the function g(x) = B(a,a) F (a,a; 2Rea; x) + log(1 — x)
is strictly increasing from (0, 1) onto (R(a, d), B(a, a)).

1.10 Theorem. Define F(x) = F(a, b;c;x). Let a,b,c >0, or b = a with a as a non-zero
complex number and ¢ > 0. Then we have the following:

(@) If cla+ b+ 2) > ab —2, the function F"(x)/ F’'(x) is increasing for x € (0, 1).

(i) If c(a + b+ 1) = ab, the function F'(x)/ F (x) is increasing for x € (0, 1). Strict inequal-
ity in each of the above two cases on c implies that the corresponding function is
strictly monotone for x (0, 1).

(ii)) If o, f >0 and c >max{0,a + b — B,aab/B}, the function (1 — x)’ F*(x) is strictly
decreasing for xe(0,1).

(iv) If «,f>0 and c <min{0,a+ b — B, 0ab/B}, the function (1 — x)f F*(x) is strictly
increasing for xe (0, 1).

The special case c=av+ b of the following result has been used in [7] to solve
a conjecture in [2], Problem 10, p. 80 and therefore, Theorem 1.11 will be a useful
extension.

1.11. Theorem. Deﬁne F(x)=F(a,b;c; x).

(1) Suppose that a and b are related by any one of the following:
(i) a,b>0andcza+b,
(ii) a,be(—1,0)and ¢ >0,
(i) ae C\{0} and 0+ ¢ > max{0,2Rea}.
Then, for K =max{(ab+(a+b—c))/(c + 1), ab + 2(a + b — c)}, the inequality
x[(1 = x)F"(x) — F'(x)] < K[F(x)— 1]
holds for x € (0, 1).
(2) Suppose that a and b are related by any one of the following:
(i) a,b>0and0<c<a+b,
(ii) aeC\{0} and 0 < c <2Rea.
Then, for K =min{(ab+(a+b—c))/(c + 1), ab+2(a+ b — ¢)}, the inequality
x[(1=x)F"(x) — F'(x)] 2 K[F(x)— 1]
holds for x € (0, 1).

The proofs of Theorems 1.8~1.11 will be given in § 3.

The authors [2,4,5] proved several functional inequalities involving the hyper-
geometric function F(a, b; c; x) with a, b, ¢ real. The aim of such functional inequalities
derived in these papers was to obtain certain generalized inequalities which were
modeled after various inequalities for combinations of %~ (r) and &(r). In this connec-
tion, we again consider the situation where a is a complex quantity, b = @ and c is a real
quantity such that ¢ % 0, — 1, —2,.... The case ¢ = 2Req with Rea > 0 is more interes-
ting because this choice covers also the behaviour of (7). Thus, itis natural to look for

v
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the extension in the neighbourhood of (1/2, 1/2, 1) which deals with the case 2" (r). Now
we state our next result, which gives new functional inequalities.

1.12. Lemma. Letabe acomplex quantity suchthat Rea > 0 and F(x) = F(a,a;2Rea; x).
Then we have the following:

(i) If 3(Rea)® + 6Rea + 2 > (Ima)? then the function F"(x)/F'(x) is strictly increasing

for xe(0,1).

(ii) If 3(Rea)” + 2Rea = (Ima)? then the function F "(X)/F (x) is strictly increasing for x (0, 1).

(iti) Fora, > 0suchthat o|a|* < 2BRea, the function(1 — x) F*(x) is strictly decreasing
for xe(0, 1). ,

(iv) If 3(Rea)’ +2Rea > (Ima)* then the inequality F"(x)F(l — x)< F"(1 — x)F(x)
holds for xe(0,1/2].

(v) If Rea >0 then the inequality x[(1 — x)F"(x) —F(x)]<|al?[F(x) — 1] holds for
x€e(0,1).

Proof. The cases (i)~(iii) follow from Theorem 1.10 whereas (iv) and (v) follow from
Theorem 1.11. oo

1.13. Theorem. Let a be a complex quantity such that 0 < Rea < 1 and that satisfies the
condition
3(Rea)* + 2Rea = (Ima)?.
If
()= F(a,a;2Rea; 1 —r?)
" "~ F(a,G;2Req;r?)
then the functionm(\/1 — e ") is decreasing and convex forte(0, 00). In other words, the

Junction 1/m(r) is increasing and convex for re (0, 1). In particular, we have the following
inequality:

(1.14)

1 1 2

= , 1.1
m(r) * m(s) > m(\/rs) (L.15)
or, equivalently,
m(r) +m(s) 2 2m(/1 — /1 —1?)(1 = 7)) | (1.16)

hold for all r,se(0, 1).

Proof. In the proof of Lemma 2.4 in [[7], if we use Lemmas 2.1, 1.12 and Theorems 1.10
and 1.11, then after some computation we can easily see that the function

F(e™) . _ .
G(r)= m, with  F(x) = F(a,a;2Rea; x)
is decreasing and convex for ¢ > 0 whenever a is such that 0 < Rea < 1 and
3(Rea)* + 2Rea = (Ima)?.

The remaining part of the proof of the theorem follows easily by the same arguments
which we have used for the proof of Theorem 1.9 in [7]. Thus we complete the
proof. oo
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2. Preliminary lemmas

Before establishing the main theorems, we need to prove some technical lemmas.

2.1. Lemma. [15] Suppose that the power series f(z) =X a,z" and g(z) = £ ,b,z"
both converge for |z| < 1 and that a,€ R, b, >0 for all n > 0. Then f (x)/g(x) is increas-

ing(strictly) (decreasing (strictly)) for x€(0,1) if a,/b, is increasing (strictly) (decreasing
(strictly)) for n = 0.

A more general form of Lemma 2.1 has been presented in [15] and is one of the
crucial facts in the proof of some of our main results.

2.2. Lemma. For acC\{0} and A >0, let Q(n) be defined by

_@,n)*(n+ A4)
0= Rean@n’ "=

(1) If A, a are related by any one of the following conditions:
(i) A=|al? and aeC\ {1},
(ii) 4 <|a|* and ae C\ {0},
then the sequence {Q(n)} is strictly increasing to the limit 1/B(a,a). (Q(n)=1if a= 1))

Q) IfA=2la?/2—]a—=1%and|a—1|< \/5, then the sequence {Q(n)} is decreasing
to the limit 1/B(a,a).

Proof. Define ¢(n) =n(|a]* — A) + (4 + 1)|a|® — 2 ARea. From the definition of Q(n)
it is easy to verify by simple computation that

Qn+1)>Q0m<=dm >0, for n=1.
(i) If A=|a|?> and aeC\{1} then for all n=> 1 we have ¢(n) =|a|*|a — 1> >0, and
therefore the sequence {Q(n)} is strictly increasing for n > 1.
(ii) First we assume that A <|a|?* and |a—1|> \/5 Then the coefficient of n in the
expression ¢(n) is positive and therefore, for all n > 1, we have
o) >¢(1)=2lal* ~ A2 —~|a—11*)>2]al* > 0.

(1) Suppose that 4 <|a|* and |a—1|< \/5 Then in this case ¢(1)>0 provided
A<2lal*/(2—|a—1|?), which is clearly true because of the assumption 4 < |al?.
From these two observations, it follows that the sequence {Q(n)} is strictly increasing
forn>1. ,

(2) Suppose that 4 =2[al*/2—|a—1*) and |a—1|< \/5 Then we note that the
condition on A implies that 4 > |a|*, and therefore the coefficient of nin the expression
¢(n) is negative so that

dm<Pp(l)=2]al* - A2 —|a—1]*)=0.
Since
Qn+1)<Qm< () <0,
the conclusion in this case follows from the fact that ¢(n) <O foralln> 1.
To find the limit of the sequence, we rewrite Q(n) as

() = |al? l(@a+1,n—=1) |(a,n)|?
2Rea(2Rea+ 1,n—1)(1,n—1) "~ (2Rea,n)1,n)’
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Now we recall the following well-known result that follows easily from the Stirling formula:

I'(c) . _
,m(a,n)(b,n)_ ———_I“(a)l“(b) if c+1l=a+b

nl—»oo(c,n)(l,n)— 0 if c+1>a+b. (2.3)
o if c+l<a+b

Finally, from (2.3), we deduce that lim, ,  Q(n)=1/B(a, d). 00O

- When a=1/2in parts 1 (i) and 2 of Lemma 2.2, we find that for each n > 1,

1 < (1/2,n)\? < 1
n(n+2/7) (1,n) n(n+1/4)°
which improves both sides of the well-known Wallis inequalities that appear in ( [14],
p. 192, 3.1.16):

1 (1/2,mn) 1

Vrn+1/2) = (1,n) <\/7—1:;'

Thus, Lemma 2.2 generalizes and improves the Wallis inequality in terms of complex
parameters introduced through hypergeometric functions. Another generalization of
Wallis inequality has recently been obtained in [1,15].

3. Proofs of main results

3.1. Proof of Theorem 1.8. The idea of the proofis exactly as in [15] and so we just
sketch the proof. Consider the sequence {Q(n)}, where

__ lanp?
) = eRea —a
Using the ascending factorial notation (a,n+ 1) = (a,n)(a + n), we may rewrite Q(n)as
0(n) = lal* (a+Ln—1)G+1,n— 1)
~ [2Rea(2Rea+ 1,n—1)(1,n—1)

§ 2Rea(2Rea+ 1,n— 1)(1,n—1)
¢(2Rea—c)(c+1,n—1)2Rea+1—c,n— 1)

Using (2.3) we obtain the following:
1
: = . —c) = 7] 2 .
nlljl;) O(n) Ba.d) B(c,2Rea—c)=D(a,a,c) for c<2Rea
Further, we easily get that ‘
Qi+ 1)=Qm)<|c—al?>0

and therefore Q(n) is strictly increasing if and only if |¢ — a| > 0. We note that lc—al=0
ifand only if ais a positive real number and ¢ = a. Thus, the sequence Q(n) is increasing
to the limit D(a,d, c), as n — oo. In particular, for each positive integer n,

|al?

m < Q(I’l) < D(a,a, c). | (32)
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Next we consider

F(a,b;c;z)= Y a,z" and (1—2z) "=} B2"

nz0 nz0

and from the above series expansions we find that Q(n) = o, /B,. Further, in the series
expansion,

F(a,d;c;x)— D(a,a,c)(1 — x)¢~ 2Rea
_ < (lanl _ (QRea—c,n)\
- 5, (i ~plea0 TR0 )

all coefficients are non-negative (negative) according as Q(n) is increasing (strictly
increasing). Therefore, the conclusion is an immediate consequence of the monotonous
properties of Q(n) and Lemma 2.1. Thus we obtain that if 0 <c <2Rea, then the
function g, (x) = F(a,d;¢;x)/(1 —x) 7% is increasing from (0,1) onto the range
 (1,D(a,a,c)) and is strictly increasing if we also have ¢ # a.

Part (ii) foliows similarly. oo

3.3. Proof of Theorem 1.9. For n> 1, we define
_(an)b,n) 1
%= emmn’ P

Then for |z| < 1, we can write F(a,b;¢c;z) — 1 =X
Using (2.3), we easily obtain

and Q(n)= %-

n>1%,2" and — log(l—2)= Zn>1ﬁnz".

1

. B(a, b)
lim Q(n) = 0 if ¢c>a+b

oo if c<a+b.

if ¢c=a+b

Simple calculation yields that |
Qn+1)>Qm<na+b—c)+ab>0
and
On+1)<Qm<n(a+b—c)+ab<0.

From the above observations, it can be easily seen that the conclusion for each case
follows from the method of proof of Theorem 1.8, from the respective conditions on
a,b,c and from Lemma 2.1. Therefore we omit the details. i

3.4. Proof of Theorem 1.10. Let F(x)= F(a,b;c; x). From the definition of the hyper-
geometric series, we easily obtain the derivative formula for F(x):

b

fwm=%wm+Lb+nc+nm' (3.5)
and
(a,2)(b,2)

Fo="c

Fla+2,b+2;¢c+ 2;x).
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For convenience, we let F(x) =Xy ,A,x", F'(x)=ZX*_ B,x" and F"(x) = xr_,C,x".
Therefore, we can write

_(a,n)(b,n) _(a,n+1)(b,n+1) _(@n+2)(bn+2)
" lendn " (en+ (L 0 " (c,n+2)(1,n)

so that by a simple calculation we have

§£=(a+n+1)(b+n+1) and Eﬂ:n+a+b—~c+(c—a)(c_b).
B, (c+n+1) A, n+c

(3.6)

(1) Now we assume that either a,b, ¢ are all positive real numbers, or a is a non-zero
complex number such that b = @ and ¢ > 0. Therefore by a simple computation we can
easily find that

C, C,iy

_s__..__ <’ .

B, Bm@cb(n) 0 (3.7)
where

d(m)=n*+(2c+3)n+cla+b+3)+2—ab. (3.8)

We remark that the inequality (3.7) continues to hold if we replace both inequalities in
(3.7) by strict inequalities, respectively. Since ¢ > 0, the function ¢(n) is increasing for
n =0, and therefore, it follows that

¢ =) =c(a+b+3)+2—ab.

This observation shows that, if a,b,c are related by the condition cla+b+3)+
2 — ab >0 then the sequence {C,/B, } is increasing for all n > 0, and hence, by Lemma
2.1, it follows that the function F”(x)/F'(x) is increasing for x e (0, 1).

(i) Again, by Lemma 2.1, it suffices to show that the ratio of the coefficients B,/A,1s
strictly decreasing for n > 0. By a simple computation, we note that the inequality

By By

n

A An+1

n

1s equivalent to
(n+c)n+c+1)>(c—a)(c—b)

Since ¢ > 0, the last inequality holds for all n >0 if it holds for n=0. Putting n=0
in the-last inequality we have c(c+1)>(c—a)(c—b), which is equivalent to
¢(1 +a+ b)> ab. Therefore the conclusion follows from Lemma 2.1 if a,b,c are
related by c(1 + a + b) > ab and we complete the proof. _

(iif) Consider the function f(x)=(1—x)*(F(a,b;c;x))*. Then using the derivative
formula for F(a, b; c; x), we have

X)) =1 =x)~ (F(a,b;c; x)F?

x [~/3F(a,b;c;x)+f'—‘j—b(1 —X)Fa+1,b+1Lc+ l;x):l.
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Using the series expansion for the square bracketed term of the above expression,

we can write
%) =(1—xy""(Flabcx))y*

- (avn)(bnn) ’ e n
X n=om’—n—)[aab—ﬁc+(a+b c ﬁ)n]x .

The conditions on ¢, i.e., &, B, a,b,c > 0 and aab < fc, imply that
aab—fc+(a+b—c+pPn<aab—Pfc<0

for all n>0. This observation shows that f'(x) <0 for xe(0,1) and therefore, the
function f is decreasing for x€(0,1).
(iv) Follows from part (iii) and from the fact that the given condition on ¢ implies that

aab—Pec+(a+b—c—F)n=0

for all n 0. oo

39. Proof of Theorem 1.11. (i) Define F(x)=F(a, b;c;x), where a,b,c>0 and
¢ > a + b. Then from the series expansions for F'(x) and F"(x), we easily compute that
(1 =x)F"(x) — F'(x)
Z (a,n+1D(b,n+1)
=0 (cn+2)(1,n

[n(a+b—c)+a+b+ab—c]x",

so that using the series expansion for F(x) and simplification, we find that the inequality
x[(1 —x)F"(x)— F'(x)] <K[F(x)—1] (3.10)
is equivalent to the inequality

2 (a,n)(b,n)
2 et 5 {6mix">0,
where
¢(n) =n*(c—a—b) +n(K — ab) + Kc,

and K is defined in Theorem 1.11. We divide the proof into two parts.
Let ¢ = a + b. Then in this case K = ab so that for all n>1 we have ¢(n) = cab=
(a + b)ab > 0 and therefore (3.10) holds since a,b > 0.

Next, we assume ¢ > a + b. Clearly for large n, ¢(n)>0. Now, for all n> 1, the
condition on ¢ and K gives

&'(n)=2n(c —a—b) + (K — ab) > 2(c —a—b) + (K — ab) >0,
so that ¢(n) is an increasing function of n. Therefore, using the condition on K, we
deduce that

on)=d(1)=K(1+c)+c—a—-b—ab=0

for n>1. This observation shows that the inequality (3.10) holds under the given
condition on K.

The other parts may be checked similarly. oo
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4. Concluding remarks

In this section we first state a few preliminary results in the form of a proposition which
extends Theorem 1.7 in ([3], eq. (18)), Theorems 1.1(2) and 2.1(6) in [4].
4.1. PROPOSITION

(i) Fora,b>0 and xe(0,1), we have

‘ 1 1
F(a,b;2b;x)<(1+x)2“F<a,a~—b+—2—;b+§;x2). (4.2)
(i) For aeR,b,ce(0,00)and xe(0,1),
F(a,b;c;x)+ F(—a,b;c;x) = 2.
(iti) For a,b,ce(0, ) and x€(0, 1) the function

F(a,b;c;x)— F (— a,b; c; x)
T

is strictly increasing and convex on (0, 1) and has the limit 2ab/c as x — 0.

Proof. (i) Recall the Gauss transformation

4
F(a,b;2b;zl—_|_ic—)-c—)5>=(1 +x)2“F<a,a—b+%;b+%;x2>, xe(0,1), 4.3)

where 2b #0, — 1, — 2,... (see [8], p. 111, eq. (5)) and also ([9], Entry 3 in ch. 11, p. 50).
Proof of (4.2) follows from (4.3) since x < 4x/(1 + x)? and since the function F(a, b; 2b; x?)
is increasing on [0, 1). :

(ii) Suppose that ae R and b, c (0, o). Now, we can write

. . _ v _(bn "
F(a,b;¢;x) + F(—a,b;c;x) — 2 = ngz ) [(a,n) + (—a,n)]x",
x€(0, 1). ‘ 4.4
Using the triangle inequality we see that
(=an)|=lal|—a+1]--|—a+n—1|<]al(la| +1)--(Ja| + n—1)
=(lal,n).
This observation shows that all the coefficients of the power series of the function (4.4) are
positive and therefore the conclusion follows.
(1if) Suppose that a,b,ce(0, o0). Now, we can write
Flabic;x) — F(—abygx) 2ab i (b,n)
X B c n=_7_(C,l’l)(1,l’l)

[@n)—(—amn]x"""

A (4.5)
As in the proof of part (ii), the triangle inequality immediately gives |(— a,n)| < (|al,n) =
(a,n) so that (a,n) —(—a,n)>0for a>0and all n>2. Thus, all the coefficients of the

power series of the function (4.5) are positive and the constant term is 2ab/c and the
conclusion follows. oo
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In ([5], Problem 9, p. 80), the authors state another problem which is based on the
inequality

26 <2—1)A (), O<r<l1.

4.6. Problem. Is it true that for a,b >0
2F(—abia+bir?) <@ =) Flabia+ bir?)?

Clearly, the above inequality is not true for a close to zero. The answer to Problem 4.6
will be divided into three different parts which are as follows.

4.7. Theorem. Let ac(0,1] and b > 0. Then a necessary and sufficient condition for
2F(—a,b;a+ b;r?)<(2—r?)F(a,b;a+ b;r*), re(0,1), (4.8)
is that ae(1/4,1] and be[a/(4a — 1), o).

Proof. For convenience, we let r? =t > 0. Writing (4.8) as
(1 —t/2F(a,b;a+b;t)— F(—a,b;a+ b;t) >0
and then using the series expansion for F(a, b; ¢;t), we easily see that inequality (4.8) is

equivalent to

B,t+ ¥ B,">0, (4.9)

n=2

where B, = (2ab/(a + b)) — 1/2 and, for n > 2,

B — (a,n—1)(b,n—1)
m .2(a + b,n)(1,n)

[(n—1)(n—2)

(—a,n)(b,n)
(a+b,n)(1,n)’

Suppose that a€(0, 1). Then the coefficient of t" for n > 2 is clearly positive and therefore
(4.9) holds if B, >0, which is equivalent to b(4a—1)>a. Since 0 <a< 1, the last
inequality requires that a has to be greater than 1/4 so that the condition on b becomes
b > a/(4a — 1). This proves the sufficient part.

Next we prove the necessity part. In this case, dividing the inequality (4.9) by t and then
taking the limit as ¢t — 0, it follows that the first coefficient B, has to be non-negative, i..,
b(4a—1) > a is a necessary condition for the truth of the inequality (4.8). oo

+(n—2)(a+b)+ 2ab] —

Our next theorem considers the case a > 1.

4.10. Theorem. Let ac(1,o0) and b > 0. If a,b are related by any one of the following

(i) ae(1,(3++/5)/4) and be[a/(4a— 1), o),
(ii) ae[(3++/5)/4, o) and be[a— 1, ),

then the inequality (4.8) holds.

A ——



Inequalities for hypergeometric functions 107

Proof. The idea and the notation are as in the proof of Theorem 4.7. Let a > 1 and B, be
defined as in Theorem 4.7. Then after some computation we find that B, > 0 for n > 2 is
equivalent to the inequality

H(a)>0, 4.11)
where
H@=2(a-1)b+n—-D[(a+1,n—2)—(—a+2,n— 2)]

+nla+1Ln—Dn+b—a—1)
(i) Suppose that the assumption (i) holds. Then the inequality

a
-1

da—1" ¢

holds and in particular B, >0 and b > a —1. It is trivial to see that fora> 1/2 and n =2,

the inequality

@+Ln=2)—(—a+2,n—2)>0

holds. The condition b >a — 1 and the fact that a> 1 imply that (4.11) holds so that
B, >0 for all n>2. This observation shows that if @ and b are related by (i) then the
inequality (4.8) holds.

(if) Assume that (ii) holds. Then in this case we have

a

<a-—1
4a—1 a

and since b > a — 1, we see that B, > 0 for n > 1 and the conclusion follows similarly.
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