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ABSTRACT

We report the results of our intensive intranight optical monitoring of 8 opti-

cally bright ‘radio-intermediate quasars’ (RIQs) having flat or inverted radio

spectra. The monitoring was carried out in R-band on 25 nights during 2005-

09. On each night only one RIQ was monitored for a minimum duration of ∼

4 hours (the average being 5.2 hours per night). Using the CCD as an N-star

photometer, an intranight optical variability (INOV) detection threshold of ∼

1–2% was achieved for the densely sampled differential light curves (DLCs) de-

rived from our data. These observations amount to a large increase over those

reported hitherto for this rare and sparsely studied class of quasars which

can, however, play an important role in understanding the link between the

dominant varieties of powerful AGN, namely the radio-quiet quasars (RQQs),

radio-loud quasars (RLQs) and blazars. Despite the probable presence of rela-

tivistically boosted nuclear jets, inferred from their flat/inverted radio spectra,

clear evidence for INOV in our extensive observations was detected only on

one night. Also, flux variation between two consecutive nights was clearly seen

for one of the RIQs. These results demonstrate that as a class, RIQs are much

less extreme in nuclear activity compared to blazars. The availability in the

literature of INOV data for another 2 RIQs conforming to our selection crite-

ria allowed us to enlarge the sample to 10 RIQs (monitored on a total of 42

nights for a minimum duration of ∼ 4 hours per night). The absence of large
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amplitude INOV (ψ > 3%) persists in this enlarged sample. This extensive

database has enabled us to arrive at the first estimate for the INOV Duty Cy-

cle (DC) of RIQs. The DC is found to be small (∼ 9%), increasing to ∼ 14%

if the two cases of ‘probable’ INOV are included. The corresponding value is

known to be ∼ 60% for BL Lacs and ≈ 15% for both RLQs and RQQs, if they

too are monitored for & 4 − 6 hours in each session. Our observations also

provide information about the long-term optical variability (LTOV) of RIQs,

which is found to be fairly common and reaches typical amplitudes of ≈ 0.1-

mag. The light curves of these RIQs are briefly discussed in the context of a

theoretical framework proposed earlier for linking this rare kind of quasars to

the much better studied dominant classes of quasars.

Key words: galaxies: active — galaxies: jets — quasars: general

1 INTRODUCTION

Although sparsely studied so far, radio-intermediate quasars (RIQs) can serve as an impor-

tant tool for probing the relationship between the radio-loud quasars (RLQs), blazars and

radio-quiet quasars (RQQs, also termed as radio weak quasars). Ever since the discovery of

quasars, the dichotomy in their radio loudness has been debated as an outstanding issue,

since about ∼ 10% of optically selected quasars are found to be stronger emitters in the

radio band compared to the remaining population (Sandage 1965; Strittmatter et al. 1980;

Kellermann et al. 1989, 1994; Stocke et al. 1992). Following Kellermann et al. (1989) who

made VLA observations of optically selected Palomar-Green Bright Quasar Survey (BQS)

objects, radio loudness is usually quantified in terms of a parameter ‘R’, the ratio of con-

tinuum flux density at radio (5 GHz) and optical (4400 Å) wavelengths. The histogram of

R found in their study shows a large peak at R . 0.1 − 3 and a second, weaker peak at

R ∼ 100 − 1000. Accordingly, quasars falling in the range 3 < R < 100 can be termed

as “Radio Intermediate Quasars (RIQs)” (e.g., Miller, Rawlings & Saunders 1993; see also,

Diamond-Stanic et al. 2009). Although it has been argued that RLQs are merely the tail of

a broad distribution of quasar radio strengths and not a separate population (e.g., Cirasuolo

et al. 2003) careful analysis of the largest available samples strongly indicates that there is

⋆ E-mail: arti@aries.res.in



INOV of RIQs 3

indeed a bimodal distribution in R (Ivezić et al. 2002, 2004) and that the radio loud fraction

increases with rising optical luminosity but decreases with increasing redshift (e.g., Jiang et

al. 2007; Rafter, Crenshaw & Wiita 2009).

The observed radio luminosity of a RIQ is typically well above the value dividing the

Fanaroff-Riley type I (FRI) and type II (FRII) radio galaxies [logP20cm (W/Hz) ≃ 25.0]

(Falcke, Gopal-Krishna & Biermann 1995b), but probably not so once the possibility of

relativistic flux boosting is taken into account (e.g., Wang et al. 2006). It has been long been

suggested that RIQs are Doppler boosted counterparts of RQQs, such that the relativistic

jet is closely aligned to the line of sight. This was mainly inferred from the radio versus [O

III] line intensity diagram for optically selected quasars and also from the high brightness

temperature of the radio emission from RIQs, as well as their usually flat or inverted radio

spectra and substantial radio flux variability (Miller, Rawlings & Saunders 1993; Falcke,

Gopal-Krishna & Biermann 1995b; Falcke, Patnaik & Sherwood 1996a; Xu et al. 1999; cf.

Barvainis et al. 2005; Falcke et al. 2001).

Implicit in this paradigm is the presence of relativistic jets in RQQs. This premise has

received considerable support from deep radio imaging, which has revealed faint kpc-scale

radio structures in several RQQs (e.g., Kellermann et al. 1994; Blundell & Rawlings 2001;

Leipski et al. 2006). In addition, Blundell, Beasly & Bicknell (2003) have reported evidence

for a highly relativistic parsec scale radio jet in the RQQ PG1407+263. Independent support

for the possibility of RQQs possessing relativistic jets has come from the observations of in-

tranight optical micro-variability in RQQs (e.g., Gopal-Krishna et al. 2000, 2003; Gupta and

Joshi 2005; Czerny et al. 2008) and in their weaker cousins, Seyfert 1 galaxies (Jang & Miller

1995, 1997; Carini, Noble & Miller 2003). At least a modest amount of relativistic beaming

in the jets of radio weak quasars has also been inferred from the detection of compact cores

on VLBI scales and radio variability on month-like to year-like timescales, indicating mini-

mum brightness temperatures in a broad range from 108–1011 K (e.g., Ulvestad, Antonucci

& Barvainis 2005; Barvainis et al. 2005; Wang et al. 2006). However, there is at present little

clarity about the nature of jets in RQQs vis-á-vis those in RLQs and blazars whose jets

are widely attributed to spinning super massive black holes (SMBHs) (Blandford 1990 and

references therein; Wilson & Colbert 1995), or more massive SMBHs accreting at smaller

fraction of the Eddington rate (e.g., Boroson 2002). A number of authors have drawn an

analogy between the radio emission of quasars and X-ray binaries and have attributed the

main difference between RLQs and RQQs to different accretion modes changing the nature
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of their jets (e.g., Körding, Jester & Fender 2006). Stellar mass black holes are known to

slide into a state where radio emission is strongly suppressed or quenched (e.g., Corbel et al.

2001; Maccarone, Gallo & Fender 2003). In this general picture RIQs could well be relativis-

tically beamed counterparts of the RQQ jets. In alternative schemes, the radio weakness of

RQQs is attributed to a rapid deceleration of the jet on subparsec scale, caused perhaps by:

strong interaction with the torus material (e.g., Falcke, Malkan & Biermann 1995a; Falcke,

Gopal-Krishna & Biermann 1995b); mass loading with the debris of stars tidally disrupted

by the SMBH (Gopal-Krishna, Mangalam & Wiita 2008); ejection velocities less than the

escape velocity (Ghisellini, Haardt & Matt 2004); or a high photon density environment

produced by the quasar (Barvainis et al. 2005).

If indeed, RIQs are relativistically boosted counterparts of RQQs, observing the former

provides an opportunity to better detect RQQ jets and compare their properties with the

better studied, more powerful radio jets of RLQs. For instance, it would be interesting to

enquire if the postulated relativistic beaming of RQQ jets manifests itself as blazar-like

behaviour in RIQs. Indeed, this seems to be the case for the most prominent example of

the RIQ class, namely III Zw 2 (see below). However, essentially no such information is

currently available for RIQs as a class even though they, despite being numerically rare,

are a potentially very important link between the major AGN classes powered by nuclear

activity, namely RQQs, RLQs and blazars. The present study is a first attempt to bridge

this gap in a statistically significant manner.

In terms of radio properties, RIQs form a distinct subclass. Their dominant feature

is a radio core (compact on arcsecond scale) of a flat, variable radio spectrum (Falcke,

Patnaik & Sherwood 1996a; Kukula et al. 1998; also, Kellermann et al. 1994; Ulvestad

et al. 2005). The aforementioned view that they are relativistically boosted RQQ jets has

found strong support from the discoveries of long-term, large amplitude (up to a factor

of 20) radio variability of the RIQ III Zw 2 (B0007+106; Teräsranta et al. 1998) and of

superluminal motion in its radio core (Brunthaler et al. 2000, 2005), both being canonical

attributes of blazars. Unfortunately, equivalent observational data are severely lacking for

other known RIQs. It may further be emphasized that III Zw 2 (z = 0.089) has in fact been

classified as Seyfert 1 (Arp 1968; Osterbrock 1977) hosted by a spiral galaxy (Hutchings &

Campbell 1983; Taylor et al. 1996). Thus, an interesting question is which, if any, blazar-like

characteristics are associated with RIQs of high optical luminosity (MB < −23.5), which

are bona-fide QSOs and hence more likely to be associated with massive elliptical galaxies.
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Promising indications come from the recent finding that for the radio spectra of the RIQs

found in the SDSS are typically flat or inverted (consistent with the postulated relativistic

beaming of their jets) and, moreover, radio flux variability (near 1 GHz) on year-like time

scales is actually comparably common for RIQs and RLQs (Wang et al. 2006). For both

these reasons, RIQs appear to be promising candidates for INOV, albeit it is unclear if the

mechanism responsible for long-term variations is also responsible for INOV.

In recent years, INOV has been increasingly recognized as a signature of blazar-like jets.

Extensive observations have shown that INOV with large amplitude (with variations, ψ,

exceeding 3%) occurs almost exclusively in blazars and, furthermore, the duty cycle (DC)

of INOV in blazars is very high (> 50%), provided the monitoring duration exceeds about

4 hours (e.g., Carini 1990; Gopal-Krishna et al. 2003; Stalin et al. 2004a, 2005). To exploit

this clue we have carried out an INOV survey of a fairly large and representative sample of

8 RIQs, further augmented by the INOV data available in the literature for another 2 RIQs

that meet the selection criteria adopted for our sample of 8 RIQs. Thus, the enlarged sample

consists of 10 optically bright and intrinsically luminous, core-dominated RIQs. Cosnsid-

erable evidence exisits for relativistic beaming in these RIQs. Falcke, Mathew &

Biermann (1995a) find J1336+1725 to be radio variable, but not J1701+5149.

For J1259+3423 multi-epoch flux measurements are not known to us, hence its

variablity status is unknown at present. The remaining 7 RIQs in our sample are

all found to be radio variable (Wang et al. 2006, Falcke, Sharwood & Patnaik

1996). Thus, at least 8 of the 10 RIQs are known to shown radio variability.

Furthermore, spectral information is available in the literature for 8 out of the

10 RIQs and each case the radio spectrum is found to be either flat or inverted

(see Table 1). All this suggests that the radio jets in essentially all there RIQs

are at least modestly Doppler boosted. .

2 THE RIQ SAMPLE

Since detection of any blazar-like jet characteristics in RIQs is our main objective here, we

have focused on the RIQs for which credible evidence for relativistically boosted jet emission

exists (at least in the radio band). This leads us to largely excluding the steep-spectrum

RIQs, which also exist (e.g., Mart́ınez-Sansigre et al. 2006). Thus, our sample contains only

RIQs having flat or inverted radio spectra (at least a flat-spectrum radio core), in addition
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to satisfying the usual criterion, namely, K-corrected ratio R∗ of 5 GHz to 2500 Å fluxes,

falling in the range 3 < R∗ <100 (Section 1; Miller, Rawlings & Saunders 1993). Moreover,

in order to attain an INOV detection threshold of ∼1–2% using a 1–2 metre class telescope

equipped with a CCD detector, we have confined ourselves to optically bright RIQs (mB

< 18.0 mag). Finally, in order to minimize contamination from the host galaxy (Cellone,

Romero & Combi 2000), our sample was restricted to intrinsically luminous AGNs with MB

< −23.5 mag (see also Stalin et al. 2004a). Based on these well defined basic criteria, our

sample (Table 1) was assembled in the following manner:

(a) Seven RIQs with adequate brightnesses and good nearby comparison stars originally

were selected from the list of 89 RIQs prepared by Wang et al. (2006) based on the detection

of radio flux variability among SDSS quasars; they are thus presumed to have a flat/inverted

radio spectrum. Out of these, three RIQs (J140730.43+545601.6, J162548.79+264658.7 and

J210757.67−062010.6) could not be monitored due to observing time constraints, leaving

the remaining 4 RIQs in our sample.

(b) Four RIQs were chosen from Table 1 of Falcke, Sherwood & Patnaik (1996b) on

the criterion of having a flat/inverted radio spectrum, based on their quasi-simultaneous

measurements at 2.7 and 10 GHz (α > −0.5; Sν ∝ να).

(c) One RIQ (J1259+3423) was contributed by the sample observed by Carini et al.

(2007).

(d) One RIQ (J1701+5149) was included in our sample, despite its being reported a as

steep-spectrum type (Falcke, Sherwood & Patnaik 1996b), because it was later resolved and

found to possess a core with a flat spectrum, with α8.4
4.8 ≃ −0.2 (Kukula et al. 1998; see also,

Hutchings, Neff & Gower 1992).

Lastly, we note that the RIQ J0832+3707 is included in the our sample inspite of its being

nearly 1-mag fainter than the adopted threshold (MB < −23.5 mag), since it is found to be

stellar in the FBQS survey (White et al. 2000). However, its exclusion from the sample would

have no significant impact on our conclusions. Table 1 lists our sample of 10 RIQs. Columns

are as follows: (1) source name (an asterisk indicates that the source was monitored by us);

(2) right ascension; (3) declination; (4) apparent B-magnitude; (5) absolute B-magnitude;

(6) redshift; (7) optical polarization; (8) radio luminosity at 5 GHz; (9) radio spectral index;

(10) radio loudness parameter R computed by us; (11) reference code. We have used a
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concordance cosmology with Hubble constant H0 = 71 km sec−1 Mpc−1, ΩM = 0.27 and

Ωλ = 0.73 (Komatsu et al. 2009) and compute the luminosity distance using Hogg (1999).

3 OBSERVATIONS

3.1 Instruments used

The observations were mainly carried out using the 104-cm Sampurnanand telescope (ST)

located at Aryabhatta Research Institute of observational sciencES (ARIES), Naini Tal,

India. It has a Ritchey-Chretien (RC) optics with a f/13 beam (Sagar 1999). The detector

was a cryogenically cooled 2048 × 2048 chip mounted at the Cassegrain focus. This chip has

a readout noise of 5.3 e−/pixel and a gain of 10 e−/Analog to Digital Unit (ADU) in the

usually employed slow readout mode. Each pixel has a dimension of 24 µm2, corresponding to

0.37 arcsec2 on the sky, thereby covering a total field of 13′ × 13′. We carried out observations

in a 2 × 2 binned mode to improve the S/N ratio. The seeing usually ranged between ∼1′′.5

and ∼3′′.0, as determined using 3 fairly bright stars on the CCD frame; plots of the seeing

are provided for all of the nights in the bottom panels of Figure 1 (see Section 4).

Some of the observations were carried out using 200-cm IUCAA Girawali Observatory

(IGO) telescope located at Girawali, Pune, India, which is a RC design with a f/10 beam at

the Cassegrain focus1. The detector was a cryogenicallly cooled 2110×2048 chip mounted at

the Cassegrain focus. The pixel size is 15 µm2 so that the image scale of 0.27 arcsec/pixel

covers an area on 10′ × 10′ on the sky. The readout noise of CCD is 4.0 e−/pixel and the

gain is 1.5 e−/ADU. The CCD was used in an unbinned mode. The seeing ranged mostly

between ∼1′′.0 and ∼3′′.0.

The other telescope used by us for monitoring the RIQs is the 201-cm Himalayan Chan-

dra Telescope (HCT) located at Indian Astronomical Observatory (IAO), Hanle, India. It is

also of the RC design with a f/9 beam at the Cassegrain focus2. The detector was a cryo-

genically cooled 2048 × 4096 chip, of which the central 2048 × 2048 pixels were used. The

pixel size is 15 µm2 so that the image scale of 0.29 arcsec/pixel covers an area of about 10′

× 10′ on the sky. The readout noise of CCD is 4.87 e−/pixel and the gain is 1.22 e−/ADU.

The CCD was used in an unbinned mode. The seeing ranged mostly between ∼1′′.0 to ∼4′′.0.

1 http://www.iucaa.ernet.in/%7Eitp/igoweb/igo−tele−and−inst.htm
2 http://www.iiap.res.in/∼iao
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All the observations were made using R filter as in this band these CCDs have maximum

response. The exposure time was typically 12–30 minutes for the ARIES and IGO observa-

tions and ranged from 3 to 6 minutes for observations from IAO, depending on the brightness

of the source, phase of moon and the sky transparency for that night. The field positioning

was adjusted so as to also have within the CCD frame 2-3 comparison stars within about a

magnitude of the RQQ, in order to minimize the possibility of getting spurious variability

detection (e.g., Cellone, Romero & Araudo 2007). For all three telescopes bias frames were

taken intermittently and twilight sky flats were obtained.

3.2 Data reduction

The preprocessing of images (bias subtraction, flat-fielding and cosmic-ray removal) was

done by applying the regular procedures in IRAF3 and MIDAS4 software. The instrumental

magnitudes of the RIQ and the stars in the image frames were determined by aperture

photometry, using DAOPHOT II5 (Stetson 1987). The magnitude of the RIQ was measured

relative to the nearly steady comparison stars present on the same CCD frame (Table 3). This

way, differential light curves (DLCs) of each RIQ were derived relative to 2 or 3 comparison

stars. For each night, the selection of optimum aperture radius was done on the basis of

the observed dispersions in the star-star DLCs for different aperture radii starting from the

median seeing (FWHM) value on that night up to 4 times that value. The aperture selected

was the one which showed minimum scatter for the steadiest DLC found for the various

pairs of the comparison stars (e.g., Stalin et al. 2004a).

4 RESULTS

4.1 Differential Light Curves

Figure 1 shows the intranight DLCs obtained for RIQs monitored in the present study. We

later combined each intranight DLC for a particular RIQ and produced its long term optical

variability (LTOV) DLC relative to the same set of steady stars that we had used for making

the intranight DLCs. These LTOV DLCs are shown in Fig. 2. In Table 2, we summarize the

observations for the entire sample of RIQs including the two RIQs added from the literature.

3 Image Reduction and Analysis Facility

4 Munich Image and Data Analysis System

5 Dominion Astrophysical Observatory Photometry software
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For each night of observation we list the object name, date of monitoring, telescope used,

duration of the observation, number of data points (Npoints) in the DLC, average rms of

the pairs of star-star DLC, the INOV amplitude (ψ) and Ceff , an indicator of variability

status and the reference for the INOV data. The classification ‘variable’ (V) or ‘non-variable’

(N) was decided using the parameter Ceff , basically defined following the criteria of Jang

& Miller (1997). We define C for a given DLC as the ratio of its standard deviation, σT ,

and ησerr, where σerr is the average of the rms errors of its individual data points and η

was estimated to be 1.5 (Stalin et al. 2004a,b, 2005; Gopal-Krishna et al. 2003; Sagar et al.

2004). However, our analysis for the present dataset yields η = 1.3 and we have adopted this

value here. We compute Ceff from the C values (as defined above) found for the DLCs of

an AGN relative to different comparison stars monitored on a given night (details are given

in Sagar et al. 2004). This has the advantage of using multiple DLCs of an AGN, relative

to the different comparison stars. The source is termed ‘V’ for Ceff> 2.576, corresponding

to a confidence level of >99%. We call the source a ‘probable variable’ (PV) if Ceff is in

range of 1.950 to 2.576, corresponding to a confidence level between 95% to 99%. Finally, the

peak-to-peak INOV amplitude is calculated using the definition (Romero, Cellone & Combi

1999)

ψ =
√

(Dmax −Dmin)2 − 2σ2 (1)

with

Dmax = maximum in the AGN’s DLC

Dmin = minimum in the AGN’s DLC

σ2= η2〈σ2
err〉.

4.2 The INOV duty cycle (DC)

The INOV DC for our entire sample of RIQs (Table 2) was computed following the definition

of Romero, Cellone & Combi (1999) (see, also, Stalin et al. 2004a):

DC = 100

∑n
i=1Ni(1/∆ti)
∑n
i=1(1/∆ti)

% (2)

where ∆ti = ∆ti,obs(1+ z)−1 is the duration of monitoring session of a RIQ on the ith night,

corrected for the RIQ’s cosmological redshift, z; Ni was set equal to 1 if INOV was detected,

otherwise Ni = 0. Note that since the duration of monitoring of a given source was not

the same on all the nights, the computation has been weighted by the actual duration of

monitoring, ∆ti.
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Although the data taken from the literature was in some cases in V band instead of R

band, for the present purpose we do not distinguish between the V and R bands. In this

manner, we computed the INOV DC for our entire data set of 42 nights. It was found to be

only ∼ 9%, which increases to ∼ 14% if the two cases of probable INOV are also included

(Table 2). Note that even for ‘P’ and “PV” cases, the INOV amplitude always remained

modest, with ψ < 3%.

As noted in Table 1, optical polarization measurements are available for 6 of our total 10

RIQs and in each case Pop < 1%, while the value that nominally defines the highly polarized

AGNs is Pop > 3% (e.g., Impey & Tapia 1990); therefore at least these 6 RIQs lack a strong

blazar-like synchrotron component in the optical band despite having flat/inverted radio

spectrum (Table 1). It is worth recalling that for single epoch measurements about 90% of

radio selected BL Lacs show Pop > 3%, while about half of the X-ray selected BL Lacs evince

that same high polarization level (Jannuzi, Smith & Elston 1994). Therefore only rarely will

an intrinsically highly polarized object be observed as a lowly polarized object.

5 NOTES ON INDIVIDUAL SOURCES

RIQ J0748+2200: We monitored this RIQ on four nights spanning about a year. Formally

significant variations with ψ ∼ 2.3% and 1.4%, were seen on 23 Jan. 2007 and 30 Jan. 2008,

respectively. Note that this RIQ has a contaminating nearby faint object ∼ 8′′.0 offset along

PA ∼ 229◦. Still we have carried out aperture photometry, following the argument (Howell

1990) that for moderately clustered objects, i.e., those separated by >2×FWHM from the

companion, the technique of optimum extraction based on aperture growth curve method

can be taken as a viable alternative to the traditional crowded point source photometry.

The mild variability noticed on 23 Jan. 2007 might be an artefact of rather poor seeing

(which varied between to 2′′.5 and 3′′.5). Indeed the seeing variation (plotted at the bottom

of the DLCs in Fig. 1) does seem partially correlated with the observed variation of the

RIQ-star DLCs. Therefore, we prefer to designate this RIQ as probably-variable (PV) on

this night (despite Ceff = 2.58). A high statistical significance was also estimated for the

INOV seen on 30 Jan. 2007, when the RIQ brightened by ∼ 1.4% (Fig. 1). Although in this

case too, the brightening coincides with the time when the seeing changed from 2′′.0 to 2′′.5

(between UT 18.0 to 19.5 hours), we do not see any general correlation between the varia-

tions of seeing and the source magnitude and there is also a very high value of Ceff = 5.1
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for this night. Taking this into account we have designated this RIQ as variable (V) on this

night (Table 2). But on the longer-term, this RIQ showed no variability, with ψ < 0.02 mag

over the time span of ∼ 1 year (Fig. 2). Note, however, that the comparison star S1 showed

a brightness dip by ∼ 0.03 mag over that period.

RIQ J0832+3707: We monitored this RIQ on four nights spanning seven weeks. No

INOV was detected; however, this RIQ remains thus far our best case of internight vari-

ability, showing a fading by ∼ 0.06 mag between 21 Feb. 2007 and 10 Mar. 2007 and a

brightening of ∼ 0.02 mag by the following night (Fig. 2).

RIQ J0836+4426: This RIQ did not show INOV on any of the three nights it was

monitored over the time span of 45 days. In the longer-term, it showed a fading by 0.05

mag, between 22 Jan. 2007 and 10 Feb. 2007, followed by a ∼0.02 mag brightening at the

time of its last observations on 9 Mar. 2007. Here too, the S1 varied by about 0.04 mag

between the first and second dates it was observed.

RIQ J0907+5515: We monitored this RIQ on two consecutive nights, but found no

INOV down to a limit of 0.02 mag. Also, no variability was detected between the two nights.

RIQ J1259+3423: Out of the three nights we monitored this RIQ, it is classified as

“probable variable” on the night of 20 Apr. 2007. Earlier, Carini et al. (2007) monitored it

for four nights during 1998. While they did not detect significant intranight fluctuations,

internight variability of ∼ 0.2 magnitude was detected by them over the course of 60 hours.

In our observations spanning six days, this RIQ showed no internight variability.

RIQ J1336+1725: This RIQ remained non-variable on all the three nights it was mon-

itored by us in the course of three years. In the longer term, it has shown a moderate fading

by ∼ 0.03 mag over a year (Fig. 2).

RIQ J1539+4735: Based on the three nights’ monitoring over the time span of 18 days,

no significant INOV or LTOV was detected (Figures 1 & 2). It had earlier been monitored

by Jang (2005) for a single night but, again, no INOV was detected (Table 2).
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RIQ J1719+4804: We monitored this RIQ on three nights over a month, but no INOV

was detected. Likewise, internight change was also not found between 29 Apr. 2006 and the

following night. However, a brightening by 0.04 mag was observed between 30 Apr. 2006

and 30 May 2006 (Fig. 2). Jang & Miller (1995) monitored this RIQ on two nights during

1994, for durations of 3.3 and 3.8 hours. They report confirmed INOV on the former night

(Table 2). Even though their monitoring durations fall marginally short of our criterion, we

have included their data in the present study (Table 2).

For the two RIQs not covered in our monitoring programme, the summary of INOV and

LTOV results, taken from the literature, is as follows:

RIQ J1312+3515: This RIQ was monitored by Carini et al. (2007) for three nights but

no INOV was detected (Table 2). They do not comment on any longer-term fluctuations over

the four-days’ time span covered by their observations. Although INOV remained undetected

also in the three nights’ monitoring of this RIQ by Sagar et al. (2004) (Table 2), a 0.10 mag

fading was found between the first two epochs of their monitoring programme, separated by

two years.

RIQ J1701+5149: This RIQ was monitored on four nights by Carini et al. (2007), but

no INOV was seen (Table 2). Also, significant fluctuations were found to be absent both on

inter-night or longer timescales. This RIQ was also monitored by Jang (2005) who detected

a confirmed INOV (Ceff = 3.1, Table 2).

6 DISCUSSION AND CONCLUSIONS

The results reported here for a well defined, representative sample of flat/inverted spec-

trum RIQs provide a large increase over the existing information, both in terms of sample

size and observing time. Thus, they permit the first good estimate of the INOV characteris-

tics of RIQs and allow their comparison with those of the major AGN classes that are widely

separated in the degree of radio loudness. The INOV mechanism for the major AGN classes

continues to be debated (Section 1). For the (jet-dominated) blazars, INOV is believed to

be associated with irregularities in the non-thermal Doppler boosted jet flow, impacted by

shocks (e.g., Blandford & Königl 1979; Miller, Carini & Goodrich 1989; Marscher 1996). In

contrast, the instabilities or perturbations within the accretion disc might contribute very
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significantly to the INOV in the case of RQQs (e.g., Wiita et al. 1991; Mangalam & Wiita

1993), particularly since any contribution from the jet must be weak.

To put the question of INOV of RIQs in perspective one may recall the known INOV

characteristics of blazars (e.g., Heidt & Wagner 1996; Dai et al. 2001; Romero et al. 2002;

Xie et al. 2002; Sagar et al. 2004; Stalin et al. 2005) and RQQs (e.g., Gopal-Krishna et al.

1993, 2003; Jang & Miller 1995, 1997; Stalin et al. 2005; Carini et al. 2007). The major

findings of these studies are that blazars tend to vary more frequently and more strongly

(ψ > 3%) on intranight timescales, in stark contrast to RQQs and even to non-blazar RLQs,

which show only mild INOV (i.e., ψ < 3%; Stalin et al. 2004b). Moreover, for monitoring

durations in excess of ∼ 4 hours, the INOV duty cycle is & 60% for BL Lacs (Carini 1990;

Miller & Noble 1996; Romero et al. 2002; Gopal-Krishna et al. 2003; Stalin et al. 2005),

mostly with large INOV amplitudes (ψ > 3%; Gopal-Krishna et al. 2003) but the duty cycle

is only . 15% for RQQs (Jang & Miller 1995, 1997; de Diego et al. 1998; Romero et al.

1999; Gopal-Krishna et al. 2003; Stalin et al. 2004b), or even core dominated RLQs (Stalin

et al. 2004b; Ramı́rez et al. 2009).

Thus, the key result from the present study is that the INOV duty cycle for RIQs is small

(∼ 10%), and clearly not greater than that known for RQQs and non-blazar type RLQs.

Although exact values of computed DCs will depend upon the sample and analysis technique,

the key difference in INOV frequency is between blazars and both radio loud and radio quiet

non-blazar classes (Stalin et al. 2004b, 2005) as also confirmed recently by Ramı́rez et al.

(2009). Moreover, on no occasion (among the 42 nights) do we have the evidence for an

INOV amplitude exceeding 3% level, even though each of the 10 RIQs was monitored for

at least ∼ 4 hours in every session (Sect. 1; Table 2). Specifically, the monitoring durations

in our programme ranged between 3.9 hours to 7.6 hours, with an average of 5.2 hours.

As emphasized by Carini (1990), the duration of monitoring in a given session can play a

substantial role in determining the INOV status of an AGN, such that the probability of

confirmed INOV detection in BL Lacs is found to increase from 50% to 80% if the duration

of monitoring is raised from ∼ 3 hours to ∼ 8 hours. A similar dependence on monitoring

duration has been noticed for RQQs, where the chances of INOV detection increases to

∼ 24% if the monitoring is done for ∼6-7 hours (de Diego et al. 1998; Carini et al. 2007).

It is conceivable that the INOV duty cycle of ∼ 9 − 14% estimated here for RIQs may go

up marginally when longer monitoring sessions become possible, but this is unlikely to alter

our main conclusions.
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The simplest explanation for the difference in variability is to assume that all quasars do

possess nuclear radio jets, with the differences in both observed INOV DCs and amplitudes

explained by different Doppler boosting arising from both different viewing angles and dif-

ferent shock velocities (e.g., Gopal-Krishna et al. 2003). Another possible explanation for the

low INOV DC would involve dilution of jet’s optical emission by the expected accretion disc

emission; however, this is unlikely to be important here, since all the RIQs in our sample

lie at small redshifts (z < 1.5; Table 1) whereas the bulk of the continuum emission of the

disk would be expected to arise in the far-UV and would only move in the R-band for z > 2

(e.g., Bachev et al. 2005; Carini et al. 2007). Furthermore, since all but one of these RIQs

have MB < −24.5, the chance of the host galaxies’ stellar continua diluting the INOV when

compared to the other classes of QSOs is also very small.

Were the INOV properties of AGNs to depend primarily on the beamed radio emission,

one would expect stronger and more frequent INOV for our sample of RIQs, as compared

to that found for RQQs. Such an expectation would be in tune with the widely held notion

that RIQs are Doppler boosted counterparts of RQQs, as inferred from their high brightness

temperature (TB), prominent radio cores and low extended fluxes at radio wavelengths,

measured using milli-arcsecond resolution radio images available for a few RIQs (Section 1).

The INOV data reported here do not accord well these broad expectations, since we have

found the INOV of RIQs to be as mild as that known for RQQs.

Thus, the RIQ PG0007+106 (III Zw 2) remains the only well established case for which

a blazar-like, large and rapid flux variability has been detected (both at radio and optical

wavelengths, Sect. 1). In particular, the source was found by Jang & Miller (1997) to vary by

up to 0.1 mag on each the two nights they monitored it for 4-hour duration. Interestingly, the

observed high level of activity would not have been anticipated, given that this object was

found to show a very low optical polarization: Pop = 0.28 ± 0.19%, (Berriman et al. 1990).

The RIQ III Zw 2 underwent a slow fading by ∼0.8 mag between 1978 to 1981, after which

it displayed rapid flares of increasing amplitude, brightening by 0.92 magnitude in 27 days

during November 1985 and then fading by 0.95 mag in the following week (Pica et al. 1988).

Such large variability, along with the observed INOV (see above) is clearly characteristic of

OVV type blazars. In the longer term, its optical light curve has shown a four-fold variation

in 25 years (Salvi et al. 2002) and, likewise, a 20-fold brightening within 4 years has been

recorded at radio wavelengths (Aller et al. 1985). All these variability properties firmly place

this object in the blazar category (Kukula et al. 1998; Aller et al. 1999; Teräsranta et al.
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2005). In contrast, none of the 10 RIQs in our representative sample qualify for the blazar

classification, on the basis of the currently available data summarized above.

The present observations are also useful for measuring any long-term optical variabil-

ity (LTOV) occurring on month-like or longer timescales. For the vast majority of RIQs,

which are represented by the present sample and which are hosted by luminous (very likely

elliptical) galaxies, we find the optical variability to be very common on month/year-like

time scales, with typical amplitude approaching 0.1-mag level in R-band. This RIQ specific

result is in accord with the findings reported by Webb & Malkan (2000) for more common

AGN types. For roughly half the AGNs they found optical variability amplitudes of 0.1 –

0.2 mag (rms) on month-like time scale. A similar pattern is reported by Barvainis et al.

(2005), based on their 10-epoch VLA radio variability survey of a large sample consisting of

RQQs, RIQs and RLQs. They found no statistical difference between the degrees of radio

variability displayed by these three major subclasses of quasars. Thus, both intranight and

long-term optical variability properties, together with the other afore-cited evidence from

the literature, demonstrate that as a class RIQs display much lower activity levels than

do blazars, which would be rather surprising if they are a strongly relativistically beamed

subset of RQQs, a possibility widely discussed in the literature.

The possibility that these RIQ sources possess intrinsically moderate radio jets and are

not strongly Doppler boosted (in either radio or optical band) therefore must be considered.

In that case either roughly comparable amounts of jet fluctuations, or even disc dominated

variability, could explain the similar INOV and LTOV properties of RIQs and RQQs. The

low optical polarizations seen for RIQs in our sample (Table 1) also seem consistent with

a lack of strong relativistic beaming, though the case of III Zw 2 discussed above calls for

caution in reaching this inference. A key observational difference between these RIQs and

the RQQs is the predominance of flat or inverted radio spectra for the former group, which

is generally not the case for RQQs (e.g., Kukula et al. 1998) and which was argued to imply

(at least somewhat) boosted jets in the RIQs.

One conceivable explanation then for the relative lack of INOV in RIQs would be that,

because of bending of their jets on the innermost scales, their optically emitting inner por-

tions are misdirected and hence concealed from us (despite the beaming) and only the more

extended radio emitting outer parts of the jets happen to be pointed towards us. Verify-

ing this alternative would require sensitive VLBI observations. However, an implication of

this scenario is that one would expect to find some cases of blazar-like optical variability
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in radio-quiet AGN whose radio emitting (but not optical emitting) sections of the jet are

misaligned from us. The few searches made so far for radio-quiet BL Lacs have either been

negative (e.g., Stocke et al. 1990; Londish et al. 2007) or have produced a only a small

fraction of candidate BL Lacs that have low, but not extremely low, upper limits to their

radio fluxes (Collinge et al. 2005). Finally, it may be noted that despite the vast increase in

the intranight monitoring data, as reported here, the total number of nights used for their

monitoring is still modest (42 nights) when compared with those devoted to blazars and

even RQQs. Since a few convincing cases of RIQs showing modest intranight or internight

variability have nonetheless been found, it would be worthwhile to continue such observa-

tions in the search for examples of blazar-like strong INOV activity among RIQs, similar to

that detected so far only for the nearest known RIQ, III Zw 2.
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Table 1. Sample of 10 RIQs used in the present study

IAU Name RA(J2000) Dec.(J2000) B MB z P
¶
op(%) P

§
5GHz

αradio logR∗† References
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

J0748+2200∗ 07 48 15.4 +22 00 59.6 17.18 −27.2 1.059 - 2.9 × 1025c - 1.106 (1)
J0832+3707∗ 08 32 25.3 +37 07 36.7 16.61 −22.1 0.091 - 1.1 × 1023c −0.50 1.142 (1)
J0836+4426∗ 08 36 58.9 +44 26 02.4 15.09 −25.9 0.249 - 1.7 × 1024c +0.14 0.422 (1)
J0907+5515∗ 09 07 43.6 +55 15 12.5 17.81 −25.2 0.645 - 2.4 × 1025c - 1.788 (1)
J1259+3423∗ 12 59 48.7 +34 23 22.8 17.05 −28.0 1.375 0.65a 6.0 × 1025c +0.06 1.090 (2)
J1312+3515 13 12 17.7 +35 15 20.8 15.64 −24.6 0.184 0.31b 2.7 × 1024d 0.00‡ 1.312 (3)
J1336+1725∗ 13 36 01.9 +17 25 14.0 16.23 −26.5 0.554 0.18b 2.7 × 1025e −0.31‡ 1.330 (3)
J1539+4735∗ 15 39 34.8 +47 35 31.0 15.81 −27.7 0.772 0.90b 2.6 × 1025e +0.19‡ 1.439 (3)
J1701+5149 17 01 25.0 +51 49 20.0 15.49 −25.8 0.292 0.54b 1.1 × 1023f −0.2∗ 0.914 (3)
J1719+4804∗ 17 19 38.3 +48 04 13.0 14.60 −29.8 1.083 0.40b 2.6 × 1026g +0.49‡ 0.863 (3)

¶ References for the optical polarization: (a) Stockmann et al. (1984) (b) Berriman et al. (1990)
§ The radio luminosity at 5 GHz (W/Hz/Sr) is calculated using high resolution fluxes available from the literature. The

references are: (c) Becker, White & Helfand (1995); (d) Falcke, Patnaik & Sherwood (1996a); (e) Kellermann et al. (1989);
(f) Blundell & Beasly (1998); (g) Helmboldt et al (2007). If measurements were at a different frequency, then the luminosities
were converted into 5 GHz luminosities assuming the core spectral index αC = 0.0 (Sν ∝ να) wherever the spectral index of

the source was not known.
†R∗ is the K-corrected ratio of the 5 GHz to 2500 Å flux densities (Stocke et al. 1992); references for the radio fluxes are

Véron-Cetty & Véron (2006), NVSS (Condon et al. 1998) and FIRST (Becker, White & Helfand 1995).
‡ From Falcke, Sherwood & Patnaik (1996b) which were derived using the quasi-simultaneous observations at 2.7 and 10.0

GHz with Sν ∝ να while the remainder have been calculated using non-simultaneous obsevartions available in NED.
∗ From Kukula et al. (1998) using observations of the core at 8.4 and 4.8 GHz.

Reference in Col. (11): (1) Wang et al. (2006); (2) Carini et al. (2007); (3) Falcke, Sherwood & Patnaik (1996b)
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Table 2. Summary of observations and the INOV paramters

Source DATE Tel. used Filter Duration Npoints σ ψ Ceff Status∗ References
dd.mm.yy (hours) (%) (%)

J0748+2200 23.01.07 ST R 6.4 23 0.17 2.3 2.58 PV§ (a)
J0748+2200 19.02.07 ST R 5.9 22 0.26 0.7 0.40 N (a)
J0748+2200 29.01.08 IGO R 4.9 17 0.09 0.5 0.76 N (a)
J0748+2200 30.01.08 IGO R 5.5 18 0.10 1.4 5.10 V§ (a)

J0832+3707 23.01.07 HCT R 4.6 27 0.15 1.2 1.76 N (a)
J0832+3707 21.02.07 ST R 4.2 19 0.15 1.5 1.58 N (a)
J0832+3707 10.03.07 IGO R 4.0 08 0.16 0.8 0.63 N (a)
J0832+3707 11.03.07 IGO R 4.0 08 0.30 0.6 0.28 N (a)

J0836+4426 22.01.07 ST R 5.2 22 0.12 0.9 0.74 N (a)
J0836+4426 10.02.07 IGO R 3.9 13 0.35 1.1 1.08 N (a)
J0836+4426 09.03.07 IGO R 4.2 14 0.26 2.1 1.54 N (a)

J0909+5515 04.02.08 IGO R 4.2 22 0.20 1.2 0.68 N (a)
J0909+5515 05.02.08 IGO R 6.4 11 0.17 0.5 0.36 N (a)

J1259+3423 11.05.98 V/R 5.8 N (b)
J1259+3423 12.05.98 V/R 6.9 N (b)
J1259+3423 19.04.07 ST R 5.0 19 0.22 1.0 0.81 N (a)
J1259+3423 20.04.07 ST R 5.9 25 0.25 1.9 2.50 PV (a)
J1259+3423 24.04.07 ST R 3.9 20 0.25 1.1 0.59 N (a)

J1312+3515 27.02.00 V/R 4.0 N (b)
J1312+3515 29.02.00 V/R 6.0 N (b)
J1312+3515 02.03.00 V/R 5.0 N (b)
J1312+3515 08.03.99 ST R 6.7 39 N (c)
J1312+3515 01.04.01 ST R 4.6 32 N (c)
J1312+3515 02.04.01 ST R 5.2 41 N (c)

J1336+1725 11.04.05 ST R 7.0 27 0.18 0.9 0.65 N (a)
J1336+1725 08.05.05 ST R 3.9 16 0.31 1.4 1.95 N (a)
J1336+1725 13.04.08 ST R 6.9 17 0.19 1.3 1.02 N (a)

J1539+4735 21.04.01 R 5.0 1.20 N (d)
J1539+4735 27.05.09 ST R 5.8 26 0.31 1.6 0.99 N (a)
J1539+4735 02.06.09 ST R 6.5 28 0.22 1.4 0.48 N (a)
J1539+4735 14.06.09 ST R 4.4 20 0.26 1.2 0.53 N (a)

J1701+5149 04.06.99 V/R 5.8 N (b)
J1701+5149 05.06.99 V/R 4.9 N (b)
J1701+5149 06.06.99 V/R 5.1 N (b)
J1701+5149 07.06.99 V/R 5.7 N (b)
J1701+5149 26.06.02 R 5.3 1.00 3.1 V (d)

J1719+4804 01.08.94 V/R 3.3 0.90 2.6 V (e)
J1719+4804 05.08.94 V/R 3.8 1.10 N (e)
J1719+4804 11.06.98 R 7.6 0.90 N (d)
J1719+4804 29.04.06 ST R 4.5 22 0.15 0.8 1.62 N (a)
J1719+4804 30.04.06 ST R 5.0 26 0.13 0.6 1.20 N (a)
J1719+4804 30.05.06 ST R 4.6 24 0.17 0.6 0.66 N (a)

∗ V = Variable; N = Non-variable; PV = Probable Variable
§ see text for explanation (section 4.2)

References for INOV data: (a) Present work; (b) Carini et al. (2007); (c) Sagar et al. (2004); (d) Jang (2005); (e) Jang &
Miller (1995)
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Table 3. Positions and magnitudes of the RIQs and the comparison stars used in the present study∗.

Source RA(J2000) Dec.(J2000) B R B-R
(mag) (mag)

J0748+2200 07h48m15.s43 +22◦00′59′′.6 16.25 15.59 0.66
S1 07h48m03.s57 +22◦03′48′′.8 16.56 16.47 0.09
S2 07h48m01.s31 +22◦00′10′′.7 15.64 15.17 0.47
S3 07h47m58.s65 +22◦01′34′′.9 16.31 15.83 0.48
J0832+3707 08h32m25.s35 +37◦07′36′′.7 15.42 15.57 -0.15
S1 08h32m39.s63 +37◦12′17′′.7 16.85 15.16 1.69
S2 08h32m39.s78 +37◦11′56′′.5 17.02 15.59 1.43
S3 08h32m29.s94 +37◦11′30′′.2 16.05 15.34 0.71

J0836+4426 08h36m58.s91 +44◦26′02′′.4 15.46 15.44 0.02
S1 08h37m07.s62 +44◦25′57′′.9 15.87 15.05 0.82
S2 08h37m14.s23 +44◦21′33′′.5 17.27 15.73 1.54
S3 08h36m54.s69 +44◦22′50′′.1 17.22 16.11 1.11
S4 08h37m10.s75 +44◦22′14′′.7 15.60 14.29 1.31
J0907+5515 09h07m43.s64 +55◦15′12′′.5 17.27 17.38 -0.11
S1 09h07m33.s94 +55◦18′10′′.7 17.56 16.69 0.87
S2 09h07m33.s98 +55◦13′30′′.2 17.89 16.47 1.42
S3 09h07m42.s29 +55◦11′33′′.0 17.66 16.64 1.02
J1259+3423 12h59m48.s79 +34◦23′22′′.8 17.31 16.06 1.25
S1 12h59m43.s91 +34◦23′22′′.3 17.35 15.25 2.1
S2 13h00m18.s24 +34◦21′46′′.9 18.54 15.71 2.83
S3 13h00m20.s69 +34◦23′06′′.5 16.39 14.55 1.84
J1336+1725 13h36m02.s00 +17◦25′13′′.1 17.11 15.84 1.27
S1 13h35m59.s44 +17◦31′20′′.6 17.26 15.31 1.95
S2 13h36m21.s27 +17◦26′36′′.3 16.84 14.89 1.95
S3 13h36m17.s66 +17◦28′05′′.7 17.68 14.71 2.97
S4 13h35m31.s90 +17◦21′31′′.6 16.00 14.42 1.58
J1539+4735 15h39m34.s80 +47◦35′31′′.4 16.25 15.16 1.09
S1 15h39m11.s40 +47◦30′56′′.9 16.21 14.64 1.57
S2 15h39m13.s01 +47◦30′18′′.7 16.89 15.28 1.61
S3 15h39m42.s35 +47◦35′07′′.1 16.74 15.42 1.32
J1719+4804 17h19m38.s25 +48◦04′12′′.5 14.98 14.25 0.73
S1 17h19m14.s96 +48◦03′56′′.5 17.50 16.84 0.66
S2 17h19m18.s22 +48◦08′02′′.6 15.40 14.62 0.78
S3 17h19m13.s68 +48◦04′50′′.5 17.50 16.67 0.83
S4 17h18m56.s21 +48◦06′44′′.9 15.23 14.44 0.79

∗ From the United States Naval Observatory-B catalogue. Note that these magnitudes are only accurate up to 0.3 mag and
the uncertainity in position is 2′′(Monet et al. 2003).
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Figure 1. The intranight optical DLCs of the RIQs monitored in the present study. For each night, the source, the telescope
used, the date, and the duration of monitoring are given. The upper 3 panels show the DLCs of the source relative to 3
comparison stars while the attached lower 3 panels shows the star-star DLCs, where the solid horizontal lines mark the mean
for each steady star-star DLC. The bottom panel gives the plots of seeing variation for the night, based on 3 stars monitored
along the RIQ on the same CCD frame.



INOV of RIQs 25

 -0.38

 -0.40

 -1.28

 -1.30

 -0.90

 -0.92
 -0.62

 -0.64

 -0.24

 -0.26

  0.66

  0.64

18 20 22 24

3.00

2.00

 -0.38

 -0.40

 -1.20

 -1.22

 -0.80

 -0.82

 -0.56

 -0.58

 -0.16

 -0.18

  0.66

  0.64

16 18 20 22

2.00

1.00

 -2.04

 -2.06

 -1.18

 -1.20

  0.88

  0.86

 -0.60

 -0.62

  1.46

  1.44

  0.60

  0.58

16 18 20

2.00

1.00

 -0.24

 -0.26

  0.14

  0.12

  0.38

  0.36
  1.06

  1.04

  1.30

  1.28

  0.94

  0.92

16 18 20 22 24
3.00

2.50

2.00

1.50

 -0.24

 -0.26

  0.12

  0.10
  0.38

  0.36

  1.06

  1.04

  1.02

  1.30

  1.28
  0.94

  0.92

16 18 20 22
3.00

2.50

2.00

1.50

  1.20

  1.18

  0.68

  0.66

 -0.50

 -0.52
  1.32

  1.30

  0.14

  0.12

  0.64

  0.62

16 18 20 22
4.00

3.00

2.00

  1.20

  1.18

  0.68

  0.66

 -0.50

 -0.52
  1.32

  1.30

  0.14

  0.12

  0.64

  0.62

14 16 18 20

3.00

2.00

  1.18

  1.16
  0.70

  0.68

 -0.48

 -0.50

  1.32

  1.30

  0.14

  0.12
  0.64

  0.62

14 16 18 20
4.00

3.00

2.00

Figure 1. continued
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Figure 2. The LTOV DLCs of RIQs monitored in the present sample
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