
Modeling the Benefits of Mixed Data and Task Parallelism

Soumen Chakrabarti* James Demmelt Katherine Yelick”

Abstract

Mixed task and data parallelism exists naturally in many
applications, but utilizing it may require sophisticated

scheduling algorithms and software support. Recently,

significant research effort has been applied to exploiting
mixed parallelism in both theory and systems communities.
In this paper, we ask how much mixed parallelism will

improve performance in practzce, and how architectural

evolution impacts these est imat es. First, we build and

validate a performance model for a class of mixed task

and data parallel problems based on machine and problem

parameters. Second, we use this model to estimate the gains
from mixed parallelism for some scientific applications on

current machines. This quantifies our intuition that mixed

parallelism is best when either communication is slow or

the number of processors is large. Third, we show that, for
balanced divide and conquer trees, a simple one-time switch

between data and task parallelism gets most of the benefit
of general mixed parallelism. Fourth, we establish upper
bounds to the benefits of mixed parallelism for irregular task

graphs. Apart from these detailed analyses, we provide a
framework in which other applications and machines can be
evaluated.

1 Introduction

Mixed parallelism exists naturally in many applications. In

adaptive mesh refinement (AMR) algorithms, there is task

parallelism between meshes and data-parallelism within a
mesh [2]. In computing eigenvalues of nonsymmetric ma-
trices, the sign function algorithm does divide and conquer
with matrix factorization at each division [3]. In timmg-

level circuit simulation there is parallelism between separate

subcircuits and parallelism within the model evaluation of
each subcircuit [26]. In sparse matrix factorization, multi-
frontal algorithms expose task parallelism between separate

dense sub-matrices and data parallelism within those dense
matrices [16]. In global climate modeling [19], there are

‘Computer Science Division, U. C. Berkeley, CA 94720 Supportecl
in part by ARPA/DOD (DABT63-92-C-O026), DOE (D E- FG03-
94 ER25206), and NSF (CCR-921026O, CDA-8722788 and CDA-
9401156). The information presented here does not necessarily reflect
the position or the policy of the Government and no official endorse-
ment should be inferred. Email. {soumen,yelick} @es.berkeley edu

tcomputer Science Division and Mat hernat ics Depart ment,
U. C. Berkeley, CA 94720. Supported in part by NSF (ASC-9005933,
CDA-9401156), ARPA contract DAAL03-91-C-O047 via a subcontract
from the University of Tennessee, ARPA grant DM2SE04120 via a
subcontract from Argonne National Laboratory, and DOE grant DE-
FG03-94ER25206. Email: demmel~cs.berkeley. edu

Permission to nmke digitd/hm-ci copies of ail or p:lrt uf this m:lteri~l with-
out fee is granted prowded tlmt the copies :u-c not m:l~ie or distributed
for profit or commercial advantage, the ACh4 copyrigllt/server
notice, the title of the publication and its d:de :lpp~M, and notice 1sgiven
that copyright is by permission of the Associ~tion L]r Computing Mwhinery,
Inc. (ACM). To copy olherwise, 10 repul>lish,to post on servers or to
redistribute to lists, requires specific pm-missi~)n :uKi/or fee.
SPAA’95 Santa Borlmra CA USAc’ 1995 ACh4 O-8979 1-717-0/95/07,$3,50

large data parallel computations performed on grids repre-

senting the earth’s atmosphere and oceans, and task paral-
lelism from the different physical processes being modeled.

Several researchers have proposed support to take
advantage of this mixed parallelism. In the theory area,

the best known on-line scheduling algorithm for mixed

parallelism is 2.62-optimal [4, 11], and the best off-line

algorithm is 2-optimal [25, 17]. In the systems area, the
Paradigm compiler [20], iWarp compiler [24], and NESL

compder [6] all support limited forms of mixed task and data
parallelism, and there are plans to merge data Fortran D
with Fortran M [12] and PC++ with CC++ [15] to support

mixed parallelism.

In this paper, we step back from these algorithmic and

systems issues and address the question of how much benefit
should be expected, and what impact architectural evolution

has on these estimates. Specifically, we consider the relative

efficiency of executing a task graph with parallelizable
tasks using mixed parallelism vs. pure data parallelism.
In a purely data parallel execution, the tasks in the task

graph are executed one at time using all the processors
for each. In mixed parallelism, each task is spread over
a subset of processors. We are generous in our treatment
of mixed parallehsm in that tasks are modeled as having no
setup or switching cost, and optimal scheduling is assumed.
By using a performance model derived from a variety of
numeric;l applications, we conclude that the speedup of

mixed over data parallelism is often modest, depending

on the application and machine. Furthermore, much of

the efficiency of mixed parallelism can be achieved with

a much simpler scheduling strategy which we call swtch. ed
paralleksrn, m which either data or task parallehsm 1s used
at a given time. Switched parallehsm has been found

empirically useful m FFT, sorting and certain eigenvalue

solvers. Here we analyze how close switched parallelism can
be to optimal efficiency.

Our modeling approach has two parts. First, we model
the efficiency profile of a single parallelizable task. Second,

we introduce simple forms of task parallelism and see how

well this supplements the data parallelism within the tasks.
For both cases we provide analytical and experimental
estimates for the maximum possible performance gains

obtained using mixed parallelism. In doing this, we make
various reasonable assumptions about the tasks and the

task graph. Our modehng approach may be of independent
int crest, because the basic recipe can easily accommodate

dlfierent model components.

The paper is organized as follows. Section 2 presents and

justifies our model m the context of our problem domain.
In Section 3, we estimate the performance benefits of mixed
parallelism for a batch of independent tasks. We show that
over all possible batches with various task sizes, a balanced

batch with identical tasks shows off mixed parallelism to the
greatest potential benefit, so it suffices to study this case in
detail. Next we consider task graphs with dependencies in

Section 4. For balanced divide and conquer trees, we present
simulation estimates of data parallel, switched parallel, and

74

mixed parallel execution efficiencies. For irregular graphs,

we get some general but relatively weaker upper bounds on

the maximum marginal improvement by mixed parallelism

over data parallelism. In Section 5 we present experience

with a recent mixed pwallel application. Section 6 suggests

extensions and Section 7 draws conclusions.

2 The model

The performance gain from using mixed parallelism instead
of pure data or task parallelism is a function of the machine

parameters and the workload, which we visualize as a
task graph with vertices representing parallelizable tasks.

The parallel subroutines represented by these vertices,

together with machine parameters like network latency and
bandwidth, define how scalable these parallelizable tasks
are. We thus reduce the factors affecting performance to

the following.

1. The scalability (equivalently, efficiency or speedup)

profile of the parallelizable tasks. Throughout this

paper, all vertices are assumed to run the same parallel
subroutine (or have the same efficiency profile) but on
different problem sizes. This is a reasonable model for

a variety of divide and conquer problems.

2. The structure of the task graph, which gives an Idea of

the degree of task parallelism available to supplement
data parallelism. By “structure” we mean the task
vertices and directed precedence edges of the graph

and the problem sizes at the vertices.

Accordingly, our model has two components. In Section 2.1
we model a single task profile, and in Section 2.2 we model

the task graph.

2.1 The efficiency of data parallelism

We let e(N, P) be the parallel efficiency of solving a problem
of size N on P processors. If the serial running time is

~(N), the parallel running time r-(iV, P) on P processors
is r(iV, P) = ~(iV)/(P . e(N, F’)). e(N, F’) depends on
the algorithm, and relative speeds of computation and

communicant ion. Despite e’s possibly complex dependence

on all these parameters, we will show that for a number
of algorithms of interest, e(N, P) is accurately modeled by

a simple two-parameter function of the problem size per
processor, N/P.

By Amdahl’s law, we expect e to be a decreasing
function of P, with e(., 1) = 1. So our intuition is that

e(N, P) should be an increasing function of N/P. We
will let em < 1 be its asymptotic value for large N/P.

The next question is how e(N, P) approaches em. There
are, of course, an infinite number of functions to model
this, but we shall propose a simple model that we will

empirically validate. Roughly speaking, the model captures
programs having an area-to-volume relationship between
communication and computation, which abounds in parallel

scientific applications.

2,1.1 The asymptotic model

The efficiency of a data parallel task of size N on P

processors is modeled as

{

1 ifP=l

e(N, P) = em

1 + uP/N
ifP>l (1)

The parameter a measures how fast the efficiency ap-

proaches its asymptotic value em. As shown in figure 1 the
efficiency reaches half its asymptotic value when N/P = cr.

Thus, the smaller the value of o, the more efficient the imple-

mentation is for a fixed problem size. The parallel running
time T(N, P) is

r(N, P) =
%?(++;)

(2)

Equation (2) says that adding processors has diminishing
returns, much like Amdahl’s law. However, since no sequen-
tial and perfectly parallel components can be identified, the
asymptotic model is not identical to Amdahl’s law.

Ie(fV, P)

1 ..

eMl...

Figure 1: The proposed efficiency model for data parallelism
within a single task.

2.1.2 Validation

We validated our model using experimental data. In figure 2,

we consider three ScaLAPACK programs: LU, QR and

Cholesky factorization, and three machines: the Delta,
Paragon and iPSC/860 [8]. Each graph plots performance in

GFLOPS per processor versus N/P, including experimental
data (the circles), as well as the prediction of the asymptotic
model. The iPSC/860 experiments were run with 128

processors, and the Paragon and Delta experiments were run

with both 128 and 512 processors. Each graph includes an

estimate s.inf of the per-processor GFLOPS as N/P -+ m

and an estimate of u (sigma). The asymptotic model is a

good fit for the actual efficiency profiles: the mean relative

error is 6–1 l~o.

Estimates of u are important for performance analysls

as well as runtime scheduling decisions, as we shall see
later. To this end, we collect values of a for some parallel

scientific libraries [8], using existing analytical performance
models [9, 10]. For each of these routines, we have avadable
the communication and computation time as functions of
problem size, number of processors, network latency, and

network bandwidth. Using these given functions, we first

estimate the parallel running time r-(N, P) for a given
machine and problem, then fit Equation (1) to it. The

results are presented in Table 1.

2.2 Task graph model

The second part of our model has to address the task graph

structure. In the theory literature, irregular and even on-
hne task graphs are handled, but the algorithms are optimal
in the asymptotic sense with constants in the range 2–

2.6, in the worst case. Unfortunately, a constant factor

75

Machine

Alpha+ATMl

A1pha+ATM2
Alpha+ Ether
Alpha+FDDI
CM5
CM5+VU
Delta
HPAM (FDDI)
iPSC/860
Paragon
SP1
T3D

CY

3.8 X 105

3.8 X 105

3.8 X 105

3.8 X 105
450

1.4 x 104

4650

300
5486

7800

2.8 X 104

2.7 X 104

960

213
4

103

87
13

74

9

50
9

M/P

64

64

64

64
32

32

16
64

16

16

64

64

nMM
13X104

6500

2.5 X 105

4.1 x 104
53

9100

7400
154

5490

633

4250

1544

ULU
5.7 x 10b

5.6 X 106

6.9 X 106

5.9 x 106
490

3.1 x 105

1.5 x 105

9300
1.5 x 105

125 X 105

4.8 X 105

4.2 X 105

CBS
3.4 x 10b

3.4 x 106
4,2 X 106

3.6 X 106
2234

1.9 x 105

93X104

5400

92x104

7.7 x 10*

29x105

25x105

USF
2.7 X 10b

2.7 X 106

3.4 x 106
2,9 X 106

3826

1.53 x 105

7.2 X 104

4250

7.3 x 10*

6 X 104

24x105

2 x 105

Table 1: Estimates of a for different machines and moblems m the asvmm50tic model The Al~has use PVM as messazinp
software. ATM1 = current generation; ATM2 = projected next generation. HPAM = a cluster of HP workstations connected

. u.

by FDDI with a prototype active message implementation. The programs are matrix multiplication (MM), LU factorization
(LU), backsolve (BS), and sign function (SF, discussed later) em = 1 for all problems in this table. Parameters a (latency)
and /3 (inverse bandwidth) are normalized to a BLAS-3 FLOP, and the model E fit to data generated from analytical models

[9, 10, 23]. The curves were fit for 2< P <500 and 100< n = N1/2 <10000. An estimate of memory per processor in
megabytes is given in the column marked M/P. Estimates for ~ and @ are in part from [23, 27, 18, 1].

of this magnitude (which we will call “packing loss”) may

substantially mask the benefits which would otherwise be

obtained from mixed parallelism. Furthermore, we know of
no tighter analysis of this constant for a given graph. We

are thus faced with the following problem. Data parallelism
is easy to load balance and schedule, but has scalability
limits (expressed by our e(N, P) model). Task parallelism

has ideal efficiency but shows load imbalance.

We circumvent this problem by considering how mixed
parallelism will perform in very favorable circumstances,
namely in regular divide and conquer trees. Our assump-

tions are listed below.

● The task graph is a complete tree with branching

factor d ~ 2.

● The d child tasks of a task of size N are all of size N/c,
where c > 1.

● The work required to do a task of size N is ~(N) = N“,

where a ~ 1.

We call such regular trees that have a root size of N as
(N, a, c, d) trees. This is a very simple model, and so we
need to understand the limits of its applicability. First,
task communication is not accounted for. But for a > 1,

task communication cost is generally of lower order than

the node cost f(N) (e.g., O(N) vs. 0(N312) in the case of
many dense matrix operations). Thus, we expect our model

to overestimate the benefits of mixed parallelism, provided

problems are large enough. Therefore, a prediction of little
benefit from mixed parallelism for a particular problem 1s
likely to be trustworthy, while a prediction of great benefit
from mixed parallelism must be further analyzed. Second,
for evaluating efficiency gains with high accuracy, only
regular trees could be considered.

In Section 4.2 we develop a comparatively weak bound
to the benefits of mixed parallelism for irregular graphs. In
spite of the above restriction, we demonstrate interesting
effects of the tree shape and size on the optimal scheduling

strategy.

3 Batch problems

We will use the efficiency models of the last section to

determine the best way to allocate processors to a single
task, and then to a batch of L independent, identical tasks.

We argue that the benefit of mixed over data parallelism
is largest when the independent tasks are identical, rather

than being of different sizes. Finally, we give a simple nem-

optlmal heuristic for switched execution of a batch of tasks
of various sizes

3.1 Balanced batch problems

For a single task with sequential running time f(N), the

choice 1s only between 1 and P processors, and the running

time is

‘(N) x min{+(++fi) ‘}

For a batch of L mdependent tasks, each of size N, the
sequential running time t 1 of all L tasks is Lf(N). The
data parallel running time tD, where we run each task in
data parallel fashion one after the other, is just L times the

above expression. We let tTdenote the task parallel running
time, where we assign one processor per task. Finally, we
let t&fdenote the mixed parallel running time, the optimal

running time over all possible assignments of processors to

tasks. Let eD, es, and e~ be the corresponding overall
efficiencies.

By allocating only one processor per task, we can get

parallel execution time (L/P~ f(N). Since the work lower
bound is Lf(N)/P, pure task parallelism is optimal when
L ~ P (modulo rounding effects, which we ignore here and

elsewhere). Thus, we need only consider the case L < P.

Also assume L divides P. The following is easily seen,

Lemma 3.1 When L dzvides P, the rwnntng time for

L independent tasks of st.ze N in the asymptotic model

Uswag Ophd mixed parallehsm I,s tJ,f =

min {1,& (~ + ~) }, and the running t,me us~~]a~

parallelwm is tD = Lf(N) x min{l, & (~ + fi)}.

The next corollary says how much faster mixed parallelism
can be than data parallelism

76

i860–lu
,--- -----

0.02

E

*
--- .-

&
m
:0,01
~
c1

nnml L.. .“. . . .:. . ..J
“.”””

: s_inf = 2.222552e-02:

: sigma = 1:726267e+05

o
0 2 4 6 8

NIP
para-lu x 105

0.04

0.03
&
g
cJ0.02

%

0.01 “E
o

., ..?.. ..
0

s_irif = 3.699196e-02 I
sigma = 1.747440e+05

c1 1 2 3
NIP

delt-lu x 106

g
~

sigma = 2.305176e+05

o 5 10 15
NIP

X105

Imm-ar
0.025

ET

0.02 ‘ .2

%0.015 ‘ ,,

b

g 0.01

0.04 .’

“Fnnc; ~

0
$ 0.03
&
q
& 0.02 -

Of’j,<::=,,;4......
2 3

NIP
de[t-qr x 106

““’r-———~

mw-cn
0.015

?
8
ii

:s_inf= l.599606e–02 :
(: sigma = 1.320634e+05

0’ I

o 2 4 6 8
NIP

para–ch x 105

0.04 ! 1r oo~
0.03

0:””:”””
~ o.
g o
:0.02

u

0.01
s_inf = 3.355150e-@2
sigma = 1.022670e+05 1

i

“o 1 2 3
NIP

delt–ch x 106

0“025 ~

0.03 .
g
LO

/

.0
0

g 0.02 .“’” ‘ ““
L
u “J”’: !: :-

Oo:hd ooo:~
o 5 10 15 0 5 10 15

NIP
X105 NIP

X105

Figure 2: Validation of the asymptotic model using data from the ScaLAPACK implementations of LU, QR, and Cholesky

(CH) factorization programs. The machines are iPSC/860 (i860), Paragon (para) and Delta (deIt). In each graph, s.-inf k the
per-processor GFLOPS as N/P + co, and sigma is the a in the

,. . .
asymptotic mociel.

Corollary 3.2 When task parallelism is not optimal, the

relative improvement of using mixed parallelism over pure
data parallelism for the batch problem is

eM $+1
——

~++
(3)

eD

Example 3.3 We apply this analysis to complex matrix
multiplication, which was reported as a benchmark for the
Illinois Paradigm compiler [20]. The task is MM, the

machine is the CM5 without vector units, and L = 4.
From figure 1 we obtain u = 53 and em = 1 for this
problem. To attain a relative improvement e of mixed over

data parallelism, i.e. e~ /e&f <1 – e, we need the problem
size to be small. Specifically, if each MM involves n x n
matrices, we can substitute the numbers into (3) and see

that n needs to be less than roughly J53P(3 – 4e)/4e for
this improvement. E.g., if P = 64 and e = 0.5, then n <42,

a tiny problem indeed. It is interesting that the experiments
reported in [20] for the CM5 use P E {64, 128} processors

and n = 64. On the Paragon with P = 512 and u = 633}

to ensure eD /eJf < ().5 as above, we will need roughly that

n < 569, which is still not large by the standard of many
scientific applications: a matrix of this size fills only O.03~o
of the Paragon’s total memory. ❑

The conclusion is that MM data parallelizes too well to
benefit much from mixed parallelism on a machine as
balanced (i.e. with as low a /3) as the CM5 without
vectors units. Better hunting grounds for cases where
mixed parallelism helps significantly are more unbalanced
machines (high /3) and problems with less scalable data

parallel components.

Example 3.4 Changing the problem to BS in the la6t
example and changing the machine to a 16 processor SP1,
we see that n < 1386 must hold for eD/e&J ~ 0.5. This
is a relatively realistic size. Mixed parallelism improves the

efficiency from roughly 3370 to 66~0. c!

;?7

3.2 Unbalanced batch problems

So far we have considered batches of tasks of identical size

N. Here we argue that permitting tasks of different sizes
makes data parallelism only closer in performance to optimal
mixed parallelism, because, if there are a few large tasks

that dominate the work content of the batch, the margm for
improvement over pure data parallelism will be small.

To prove this, suppose we have a batch of L > 1 tasks,

the z-th task of size N,. Suppose all tasks have the same
efficiency profile e(N,, F’), and that the sequential processing
time for task i is j(iV,), where ~(z) = x“ as before. We will
need the following theorem for our proof.

Theorem 3.5 (H61der’s Inequality) Let x~, yk > 0 for

I<k<L, p>l, andqbe such that ~+~=1.77zen

Let the pure data parallel running time be tD, the optimal
switched execution time be t.s, and the optimal mixed

parallel running time be t~ (t~ < ts < tD). We will
show that, among all possible batches, a balanced batch
poses the worst instance for data parallelism and thus
provides the greatest potential for improvement through

mixed parallelism. Of course, certain quantities have to
remain invariant over the space of maximization. Two

invariants are possible:

1. The total work ~, ~(N,) = F, a constant.

2. The total size xi iV~ = N, a constant.

We will consider both variations.

Lemma 3.6 With tD, tM, and f defined as above,

PROOF. Immediate, using t~ > ~ ~k f(N,k). ■

The remaining exercise it to bound from above the paren-

thesized term in the above RHS.

Theorem 3.7 Subject to either- mwarzant,

PROOF. Here we will do a continuous analysis, assuming

N,’s are real, rather than integers. Also assume N, > 1 to

avoid problems near zero.

For constant F, the quantity in parentheses is maximized

when all f (N~) = F/L. This follows since z/ f‘1 (z) =

x l–lfa which is convex for a > 1.

For constant N, using p = a/(a – 1) and q = a in

Theorem 3.5, we obtain

k k

Since ~k N: > L(N/L)a = Na/La-l, we have

This value is achieved when all Nk are set to N/L. ❑

It can be verified that the claim also holds for functions of

the form ~(x) = z log x, etc., so the claim is quite broadly
applicable.

3.3 Switching heuristic for unbalanced batch

In the previous section we bounded the maximum possible

gain in efficiency of mixed over data parallelism. In this
section we analyze an intuitive heuristic for a simpler
execution model: execute some of the largest tasks m data
parallel fashion, and pack the remaining small tasks mto a
task parallel phase.

The input instance is a set of’ independent tasks, Task z

has size N, and sequential running time f, = ~(N,) which
increases with N,. Assume all N, are large enough that
(1/P + o/N,) < em (otherwise these small tasks would

clearly be better off in the task parallel phase). The time

to run task i in data parallel mode is T, = f(N,) (1/P +

c/N,)/ew, which increases with N%. The problem is to

decide for each whether to execute it in data parallel mode

or task parallel mode.

Let Pack(P, S) be the makespan (length of schedule)
generated by packing tasks from set S in task parallel
mode into P processors. There are heuristics that return

Pack ~ (1 + c) packopT for any given e > 0, within time

that is polynomial in ISI [22]. It is easy to see that
PackopT ~ ~ ~~cs ~~ + max,cs fe. Consider the following

heuristic.

Prefix-Suffix

Sort tasks in decreasing order: N1 > NZ > ~..> NL.
Forl<t<L+l

Define P[Z] = ~ ~<j<t Tj (p[l] = o).
Define S[Z] = Pac~(P, {z, ,.. ,, L}) (s[L + I] = 0).

Pick 1 ~ Z* < L + 1 such that P[z*] + s[i*] is minimal.

Run tasks 1, ..., Z* – 1 in data parallel mode.
Run tasks z*, L in task parallel mode.

Suppose tasks i,. . . . L have to be scheduled using switched
parallelism, given the constraint that the largest task z has
to be in the task parallel phase. Let s* [i] be the constrained
opt imal switched makespan.

Lemma 3.8 PackoP~(P, {i, ., L}) ~ 2 s“[i].

PROOF. Because s*[z] ~ max{(f, + + fL)/P, f,}. ❑

Theorem 3.9 For any gwen e >0, algorithm Prefix-Suffix

can, in polynomial tzme, produce a schedule of length at most

2 (1+ e) times OPT, the optimal makespan.

PROOF Given an optimal schedule, we can locate the

largest task 1 executed in task parallel mode. Prefix-Suffix
produces a schedule of length p[i”] +s[i*] < p[l] +s[1] = p[t] +

Pack(P, {1,..., L}) ~ p[t]+(l+e) PackopT(P, {1,..,, L}) ~

p[l] +2 (1 +c) s’[1] ~ 2(1 +6) (p[l] +s”[/]) = 2(1 +c)OPT,
since OPT = p[l] + s’ [/]. ❑

4 Task graphs

In this section we evaluate the benefits of mixed parallelism

for task graphs where each vertex is a parallelizable task.
As mentioned before, we can make the tightest predictions
for balanced divide and conquer trees which do not show

a ‘[packing loss” because the tasks on each level are all
identical. Later we provide a weaker performance bound
for irregular task graphs.

The motivation to study divide and conquer problems
arises out of the relatively small degree of task parallelism

78

available in applications. Static task graphs, such as

those generated from control flow graphs by parallelizing
compilers, have a fixed small degree of task parallelism. For
example, the benchmarks in [20] have 4–7 fold effective task

parallelism and the signal processing applications in [24]

have a 2–5 fold task parallelism. The task parallelism in

climate modeling applications is typically no more than 4–

6. Divide and conquer is a natural parallel programming

paradigm with large amounts of task parallelism, since

the task graph (tree) is dynamically generated, and its

size depends on the problem size (unlike in the above
static examples). This can potentially supplement data
parallelism with more generous amounts of task parallelism.

4.1 Balanced trees

We begin by motivating our choice of task graphs outlined
in Section 2.2. We include some examples, and characterize

these example as (N, a, c, d) trees. In addition to mixed

and data parallelism, we study an intermediate form called
switched parallelism, which is easier to implement than

general mixed parallelism but has most of the benefits.
Finally, we compute the running times of full divide and

conquer trees using these three kinds of parallelism and

apply the results to our examples.

4.1.1 Applications

Eigenvalue algorithms. Eigenvalue algorithms exhibit

mixed parallelism. For example, a recent implementation of

a dense nonsymmetric algorithm [3] proceeds by successively
separating the matrix into two submatrices, the union of
whose eigenvalues are the eigenvalues of the original matrix.

The root node has size N = nz. If the separation is

perfect, each child is of size ~ x ~, or N/4. Performing

this separation requires 0(N312) FLOPS. This successive

separation process forms a binary tree with c = 2, d = 4,

and a = 3/2. (We scale time so that the constant in O(N312)
becomes one.) For symmetric matrices, an algorithm similar
in spirit is the beta-function technique of Bischof et d [5].

An eigenvalue algorithm of a different flavor, but still from
the divide and conquer category, is Cuppen’s method for

symmetric tridiagonal matrices, where we can actually split
the matrix exactly in half all the time [7, 21] (although the
costs of the children are not so simple).

Sparse Cholesky. We consider the regular but important
special case of the matrix arising from the 5-point Laplacian

on a square grid, ordered using the nested dissection

ordering [13]. In this case one may think of dividing the

matrix into 4 independent sub problems, corresponding to
dividing the square grid into 4 subsquares, each of half the

perimeter. The work erformed at a node which corresponds
$

to an nx n grid is O(n); most of this cost is a dense Cholesky
of a small n x n submatrix corresponding to the nodes on
the boundaries of the subsquares. Thus N = nz, a = 3/2,
c = 4 and d = 4. We will also see that the results go over to

matrices with planar graphs.

4.1.2 Parallel Scheduling Strategies

We will consider the following three strategies:

Data parallelism. The tasks in the tree are executed sequen-

tially, with the optimum number of processors (1 or 1’)
used for each task.

Mixed parallelism. Level .!?in the tree is treated as a batch

of de independent tasks each of size N/ce, and using
the optimal scheduling strategy of lemma 3.1.

Switched parallelism. This is a limited kind of mixed paral-

lelism, in which each task runs on 1 or P processors,

the machine switching between task and data paral-

lelism as needed. For balanced trees, we use data

parallelism down to some level in the tree, and then

switch to task parallelism. This switch will occur no

later than level log~ P, since at this level there will be

a frontier of P identical tasks, one for each processor

to work at unit efficiency. Thus, switched parallelism
will not be as efficient as optimal mixed parallelism,
but it is much simpler to implement, so if its efficiency
is nearly as good, it is an attractive option. Switched

parallelism is used, for example, by Bischof et al [5].

We will let tl, tIJ, t,w, t.s and t~ denote the running times
for sequential execution, data parallelism, mixed parallelism,

switched parallelism and task parallelism, respectively, and

el = 1, eD, e&f, es and eT denote the corresponding

efficiencies.

How to schedule switched parallelism. We may apply

Lemma 3.1 to choose the optimal level& at which to switch
from data to task parallelism:

While we cannot write down a closed form expression for
es, it is easy to evaluate numerically, as well as to examine

the limiting cases of N/P >> u and N/P << u. When

N/P >> a, the first term in the RHS dominates and so we

switch when 1> logd (Pe@), i.e. when the number of tasks

de at level 1 exceeds the maximum possible speedup Pe~.

When N/P << u, the second term in the RHS dominates

and so we switch when t > logcd (Nero/a).

How to schedule mixed parallelism. We may again
apply Lemma 3.1 to choose the optimal processor allocation
for each level of the tree. Analogous to switched parallelism,

there is a level &J at which one switches from mixed to task

parallelism:

As before, if N/P >> u then the first term in the RHS
dominates and so we switch when t > logCl (Pem). If

N/P << u, we switch when (? > logC (Nero/o). Notice that,
everything else being fixed, ts ~ i!JJ.

4.1.3 Comparing all the alternatives

We can collect all the preceding analyses into equations for
the execution times for the sequential program (t,), and
parallel programs with pure data parallel (t D), switched (f.)

and mixed (t~) strategies.

79

Notice how the essential difference between these expressions
is made by the position of the de term in the first sum.
Even after assuming the form N“ for ~(N), these have
cumbersome closed forms, but they can be evaluated using

few lines of MATLAB code, which we do for the simulation

studies that follow. They can also be numerically solved by

a runtime scheduler very quickly, compared to the bulk of

the tasks.

Our next step is to estimate the performance difference

between mixed and switched parallelism. We show that for
trees large enough at the root, switched parallelism does
very well, leaving lit tle room for improvement. The basic
intuition is that high up in the tree, a vertex has problem size
large enough that data parallelism is efficient, while lower

down, there are many problems to support task parallelism.

Lemma 4.1 For (N, a, c, d) divide and conquer trees in the

asymptotic model, the relatwe benefit of m~zed over suntched

parallelism is

4.1.4 Simulated performance

The space of programs, machines, and problem sizes is too
large to examine completely; therefore we take some slices

through this space that give insight into the benefits of

mixed parallelism for typical current architectures and our
suit e of scient ific programs. The following graphs are shown.

1.

2.

3.

4.

We fix P = 128, em = l,a=3/2, andc=d=4

(as in sparse Cholesky), and plot e~/e~ and es/e~
against a (log-scale) in figure 3. The memory per
node is assumed to be 64 MBytes, and the four plots

correspond to problem sizes that fill 25, 50, 75 and
100% of the memory. For typical values of a for various
machines see table 1.

For the same sparse Cholesky problem, we consider

four machines. In each case, the x-axis is P. N is such

that the memory is completely filled. We plot eM, es,

and eD against lg P in figure 4.

The setting is as above, except that typical values of P

are chosen for each machine and the x-axis is n = N112
(log-scale). See figure 5.

The setting is as in item (3), but the problem is the
sign functi~n program (c =“ 4’, d = 2). S~e figure 6, For

each task, as a reasonable estimate, there are 15 LU’S,
15 BS’S and 8 MM’s. For this compound data parallel
task, estimates of a for various machines are shown in
column SF of table 1 (em = 1), If Cuppen’s eigenvalue
algorithm is used, and the effect of “deflation” IS
small [7], the task tree has the same parameters as the
sign function example above, although a is different.

Comments. From table 1, typical values of u are all in
the 102 to 106 range. Throughout this range, switched
parallelism appears to make up for much of the deficit

in data parallel performance. The non-monotonicity in
figure 3 occurs because after u becomes absurdly large

(> 106), parallelism is no longer effective. In general, for
fine-grain MPP-class machines, mixed parallelism has little

marginal benefit, while for more coarse-grain networks of
workstations, switched parallelism is adequate. The choice
of strategy is dictated not only by a, N and P, but also
the size reduction factor c and branching degree d. This is

seen in figures 5 and 6: mixed parallelism gives less marginal
benefit over switched or data for small values of d and large
values of c (and vice versa). Figures 5 and 6 exhibit troughs
because at the lower end of problem sizes, absolute efficiency

of all the strategies are very small but close to each other.

4.2 Irregular graphs

In this paper we have mostly addressed regular problems.

For batches, we established that a balanced batch makes
data parallelism perform worst. Suppose we want to
estimate the performance gains from mixed parallelism
applied to an arbitrary task graph G. As mentioned before,
it depends on scalabihty of the data parallel vertices as well
as the amount of task parallelism. However, as we shall
see, irrespective of the task graph, the maximum possible
gains from mixed parallelism is related only to the number

of vertices L, and either the sum N of the problem sizes at
the vertices, or the total computation cost F of the graph

Theorem 4.2 The maztmum benejit from mzxed paral-
lelism for a task graph G wzth L vertices such that the sum

of problem sizes is N can be bounded as

eM— <
es = ‘ :(’+%%eD

an the asymptotic model usang P processors.

PROOF. Given an irregular graph G with some (unknown)

value of tD /tM, we will transform G into a batch G’ such

that the running time ratio t~/t’M> tD/tM. To do this

simply delete all dependency edges from G: clearly t~ = tD
and t~ ~ tJ!4. Next invoke Theorem 3.7, picking all Nk =
N/L or f‘1 (F)/L, depending on whether the invariant 1s

constant Nor constant F. Thus over the space of all possible

task graphs, the best one for mixed parallelism is a balanced
independent bat ch. ❑

We recall that we have given the mixed strategy the benefits
of ideal efficiency and no precedence edges. Thus the above
bound is overly optimistic. Even so, it is useful for deriving
heuristic bounds to performance in some irregular graphs,
E.g., Gilbert and Tarjan study nested dissection algorithms
to solve sparse systems on planar graphs [14], where a
problem of size N is divided into d = 2 subproblems,

where each part is no bigger than 2N/3. No matter what
strategy we use in the upper levels, we only need to go

down to roughly l(c) = A(1 – ~) ~ 1.71(] – ~)

levels before the largest leaf is of size at most m/P At
this point task packing is at most (1 + e) times optimal.

Given that there is not much need to go below this level,

L < P1 71, so the maximum benefit is bounded above

roughly by t,s/tJ,f~ tD/tM < 1+ UP2 72/N.

5 Experiments

Our analysls in this paper was in part motivated by plans to
implement a parallel divide and conquer program for finding
all eigenvalues of a dense non-symmetric matrix using the

80

n=l 6364 (25% mem)

01:: I
234567

logl O(sigma)

n=23170 (50% mem)
W?

0.6

0.4 .“”

0.2 ~~

o
234567

logl O(sigma)

n=26377 (75% mern)
lM w-~\

0.8

0.6

0.2 -“

o
234567

logl O(sigms)

n=3276f3 (1 OOOAmem)

Ii%

0.6 “

01:: I
234567

logl O(sigma)

Figure 3: Variation of efficiency with a in sparse Cholesky. The line with stars is absolute efficiency of mixed parallelism (eM).

The dashed line with circles is the relative efficiency es/e&f of switched parallelism. The solid line is the relative efficiency

eD/e&f of data parallelism.

0-2-L-LJ
012345678

Ig P

paragon
1

:::.

0.2 -’

I I

0:
012345676

Ig P

hpam
1,.

m

0.6
,:,

::: :“:

0.6 i: : :

1:::0.4 ,. .,..

I

l’:0.2 ‘ ~ ‘ I
01

012345678
Ig P

o! I
012345676

Ig P

Figure 4: Scalability of sparse Cholesky on four machines using mixed, switched, and data parallelism. e~ (starred), es /eM

(circled), and eD /e&f (solid) are plotted against lg P, always choo8ing N to fill all memory.

0
9 10 11 12 13 14 15 16

Ig n

paragon, P=512

“9 10 11 12 13 14 15 16
Ig n

hpam, P=l 6

7

-9 10 11 12 13
Ig n

;.. .

SP1,P=16
lQ

\:

0.8

0.6 . .

;/”;:: ;
0.2 .~:” :

)(

o
14 15 16 9 10 11 12 13 14 15 16

Ig n

Figure 5: The setting is as in figure 4, except that typical values of P are chosen for each machine and the x-axis is n = iV1/2
(log-scale). Maximum size limit is shown by the vertical bar, where memory per node is from table 1. The line with stars
is absolute efficiency of mixed parallelism (eM). The dashed line with circles is the relative efficiency es /eM of switched
parallelism. The solid line is the relative efficiency e~ /e&f of data parallelism.

81

cm5, P=128 paragon, P=512 hpam,P=16 sD1.P=16
IQ .”.:

\: /;
?g

\
0.8

\

0.6

,$

0.2 .~: !, -:..

;,+’::

@-~
9 10 11 12 13 14 15 16

K“Q:-::
/’.”:

0.8 ..,,.:.,, ;...:.

Ig n Ig n Ig n

?

;:. .

14 15 16 “9 10 11 12 13 14 15 16

Ig n

Figure 6: The setting is as in figure 5, except that the problem is changed to sign fhnction, with parameters c = 4, d = 2,

and a different value of u

sign function algorithm described earlier. The task tree

in this program is generated on-line as ‘[divide” tasks are

executed. Unlike in our simplified analysis, the scheduler

has to deal with an irregular frontier of ready tasks at any

time. Based on our analyses, we implemented a switching

scheduler along the lines of the irregular batch heuristic
Prefix-Suffix described earlier.

Prefix-Suffix-Ready

Initialize ready list with root task.
While ready list is non-empty

Call Prefix-Suffix.
If Z* = 1 (task parallel for all tasks)

Break out of while loop.

Remove a task from ready list.
Run a data parallel divide step.

Add children tasks to ready list.
Pack the remaining tasks into P processors.
Solve (conquer) the leaves independently on each processor.

Our prototype is coded on top of the ScaLAPACK scientific
library running on a variety of machines. Here we report
preliminary results on the Intel Paragon (Table 2). The

input matrix is filled with random double precision numbers
uniformly distributed in (– 1, 1). There is some anomaly
(the *) owing to discrete switching effect. The observed
gain from switched parallelism is somewhat larger than

our predictions because the leaves use a efficient sequential
algorithm different from the internal nodes, unlike the

assumption in our model. We should be able to obtain better

absolute performance by reducing some buffer copying
overheads currently necessitated by temporary restrictions

in ScaLAPACK.

6 Possible extensions

We made several simplifying assumptions in our analysis.
For the problems analyzed in detail, they were reasonable.

To expand the applicability of our approach, some exten-
sions can be made. The most important extension is to
tighten the bounds for irregular trees and DAGs. Other
minor concerns are in the modeling choices. As an exam-
ple, in Strassen’s matrix multiplication, f(N) = O(N), i.e.,
a = 1, so communication between tasks cannot be ignored.

Other problems worthwhile exploring are sorting and FFT.
In any case, the recipe for performance evaluation remains
the same; only estimates of parameters and the efficiency

profile equation may be tailored. Another extension could

~e to deai with non-homogeneous processor networks or non-

homogeneous tasks, for example where one task is much bet-

ter suited to one machine than another [19].

7 Conclusions

We have built a simple model to evaluate the utility of
mixed data and task parallelism, with the goal of identifying
how the communication cost and graph structure of the
program, and network performance of the machine, affect
the performance gain from using mixed parallelism. Our

work provides the following.

● A simple general model for the efficiency of data par-
allelism that is validated against detailed performance

models and empirical timing data.

. A simple formula for the benefits of mixed parallelism
over data parallelism for a batch of equal-sized tasks.

● An upper bound on the benefit of mixed over data
parallelism for tasks graphs of arbitrary shape and
arbitrary task sizes, assuming all tasks have the same
efficiency profile.

● A simple heuristic for scheduling an unbalanced batch

of tasks, which is 2 (1 + e)-optimal.

● Simple formulae for the efficiency of mixed, data, and
switched parallel for a regular divide and conquer task
tree.

● Examples to show that switched parallelism attains

most of the benefit of mixed parallelism for a variety
of interesting scientific problems.

These results have two implications. First, research results

on mixed parallelism should report the performance gain
over (at least) the space of parameters we have studied; the
gain at a particular value of N, P, or o may be misleading.

Second, to avoid unnecessary coding complexity andjor
runtime overhead, it is important to make rough estimates
of performance gains before picking data, task, mixed, or
switched parallelism.

Acknowledgements. Thanks to Jaeyoung Choi, Ren-
Cang Li, Xiaoye Li, Ken Stanley, Mike Mitzenmacher,
S. Muthukrishnan, and the anonymous referees.

82

[

10:
200
300
400
500
600
700
800
900

34.18 5.74
93.59 18.92

817 259
1211 366
1702 491
2205 912

&.!!-L&
Table 2: Relative performance of data and switched
parallelism in the sign function program. P = 24.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

R. Arpaci, D. Culler, A. Krishnamurthy, S. Steinberg,

and K. Yelick. Empirical evaluation of the CRAY-T3D:
A compiler perspective. In International $ympostum on

Computer Architecture. ACM SIGARCH, 1995.

S. B. Baden. Programming abstractions for dynamically
partitioning and coordinating localized scientific calculations
running on multiprocessors. SIAM Journal on Scientific and

Statistical Cornputmg, 12(1):145-157,1991.

Z. Bai and J. Demmel. Design of a parallel nonsymmetric
eigenroutine toolbox, Part 1. In Proceedzrkgs of the Sixth
SIAM Conference on Parallel Proceesmg for Scientific
Computing. SIAM, 1993.

K. Belkhale and P. Banerjee. An approximate algorithm

for the partitionable independent task scheduling problem.

In International Conference on Parallel Processing (ICPP).
IEEE, August 1990. Pull version in technical reports

UILU-ENG-90-2253 and CRHC-90-15, University of Illinois,
Urbana.

C. Bischof, S. Huss-Lederman, X. Sun, A. Tsao, and
T. TurnbulL Parallel performance ofasymmetric eigensolver
based on the invariant subspace decomposition approach.
In Scalable High Performance Computmg Conference, pages

32-39, Knoxville, TN, May 1994. IEEE.

S. Chatterjee. Compiling data-parallel programs for efficient
execution on shared-memory multiprocessors. Technical Re-
port CMU-CS-91-189, CMU, Pittsburgh, PA 15213, October
1991.

J. Cuppen. Adivide andconquer method for the symmetric
tridiagonal eigenproblem. Numer. Math., 36:177–195, 1981.

J. Demmel, J. Dongarra, R. van de Geijn, and D. Walker.
LAPACK for distributed memory machines: the next
generation. In Proceedings of the Sixth SIAM Conference on

Parallel Proceeding for Scientific Computmg. SIAM, 1993.

J. Demmel and K. Stanley. The performance of finding
eigenvalues and eigenvectors of dense symmetric matrices
on distributed memory computers. In Proceedings of

the Seventh SIAM Conference on Parallel Proceeding for

Scientific f70mputing. SIAM, 1994.

F. Desprez, B. Tourancheau, and J. J. Dongarra. Perfor-
mance complexity of LU factorization with efficient pipelin-
ing and overlap on a multiprocessor. Technical report, Uni-
versityof Tennessee, Knoxville, Feb 1994. (LAPACK Work-
ing Note #67).

A. Feldmann, J. Sgall, and S.-H. Teng. Dynamic scheduling
on parallel machines. In Foundations of Computer Science

(FOCS), pages 111-120, 1992.

I. Foster, M. Xu, B. Avalani, and A. Chowdhary. A
compilation system that integrates high performance Fortran
and Fortran M. In Scalable High Performance Computing
Conference, pages 293-300. IEEE, 1994.

A. George and J. Liu. Computer Solution of Large Sparse
Positive Definite Systems. Prentice-Hall Inc., Englewood

Cliffs, New Jersey, 1981.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

J. Gilbert and R. Tarjan. Theanalysis ofa nested dissection

algorithm. Numerwche Mathematik, 50:377–404, 1987.

X. Li and H. Huang. On the concurrency of C++.
In Proceedings ICCI ’93. Fifth International Conference

on Computing and Information, pages 215–19, Ontario,

Canada, May 1993.

J. W. H. Liu. The multifrontal method for sDarse matrix

solution: theory and practice. SIAA4Reviero, 34(1):82–109,
March 1992.

W. Ludwig and P. Tiwari. Scheduling malleable and
nonmalleable parallel tasks In Symposium on Dtscrete
Algorithms (SODA), pages 167-176. ACM-SIAM, 1994.

S. Luna. Implementing an efficient portable global memory
layer on distributed memory multiprocessors. Technical Re-

port UCB/CSD-94-810, University of California, Berkeley,
CA 94720, May 1994.

C. R. Mechoso, C.-C. Ma, J. Farrara, J. A. Spahr, and

R. W. Moore. Parallelization and distribution of a cou-

pled atmosphere-ocean general circulation model. Monthly

Weather Review, 121(7) :2062-2076, 1993.

S. Ramaswamy, S. Sapatnekar, and P. Banerjee. A convex
programming approach for exploiting data and functional

parallelism on distributed memory multiprocessors. In
International Conference on Parallel Processing (ICPP).
IEEE, 1994.

J. Rutter. A serial implementation of Cuppen’s divide
and conquer algorithm for the symmetric eigenvalue prob-
lem. Mathematics Dept. Master’s Thesis available by
anonymous ftp to tr-ftp.cs.berkeley. edu, directory pub/tech-
reports/cs/csd-94 -799, tile all. ps, University of California,

1994.

D. B. Shmoys and D. S. Hochbaum. Using dual approxi-

mation algorithms for scheduling problems: theoretical and

practical results. Journal of the ACM, 34(l): 144–162, Jan-
uary 1987.

K. Stanley and J. Demmel. Modeling the performance of

linear systems solvers on distributed memory multiproces-

sors. Technical report, University of California, Berkeley,
CA 94720, 1994. In preparation.

J. Subhlok, J. Stichnoth} D. O’Hallaron, and T. Gross.
Exploiting task and data parallelism on a multicomputer. In

Principles and Practice of Parallel Programming (PPoPP),
pages 13-22, San Diego, May 1993. ACM-SIGPLAN.

J. Turek, J. L. Wolf, and P. S. Yu. Approximate algorithms
for scheduling parallelizable tasks. In Symposium on Parallel
Algorithms and Architectures (SPAA), pages 323–332, 1992.

C.-P. Wen and K. Yelick. Parallel timing simulation on
a distributed memory multiprocessor. In International
Conference on CAD, Santa Clara, CA, November 1993. An
earlier version appeared as UCB Technical Report CSD-93-

723.

R. C. Whaley. Basic linear algebra communication subpro-
grams: Analysis and implementation across multiple parallel

architectures. Technical Report LAPACK working note 73,
University of Tennessee, Knoxville, June 1994.

83

