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Abstract

Parallelism with irregular patterns of data, communica-

tion and computation is hard to manage efficiently. In

this paper we present a case study of the Grobner basis

problem, a symbolic algebra application. We developed

an efficient parallel implementation using the following

techniques. First, a sequential algorithm was rewrit-

ten in a transition axiom style, in which computation

proceeds by non-deterministic invocations of guarded

statements at multiple processors. Next, the algebraic

properties of the problem were studied to modify the

algorithm to ensure correctness in spite of locally in-

consistent views of the shared data structures. This was

used to design data structures with very little overhead

for maintaining consistency. Finally, an application-

specific scheduler was designed and tuned to get good

performance. Our distributed memory implementation

achieves impressive speedups.

1 Introduction

In this paper we present a case study of an irregular

symbolic algebra application, the Grobner basis prob-

lem.

Computing the Grobner basis of a set of multivari-

ate polynomials has applications in solving systems of

non-linear equations, implicitizing parametric equations

and automating geometry proofs. Efforts have been

made to develop parallel algorithms for this problem

on shared memory machines, but efficiency and scala-

bility have not been encouraging. Here we describe a
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distributed memory implementation of the Buchberger

[2] algorithm that equals and often surpasses shared

memory performance and scales to a larger number of

processors.

This symbolic algebra application is different in many

aspects from the most frequently parallelized numerical

scientific computations.

● It involves irregular data structures rather than

arrays.

● No well-marked computation and communication

phases can be identified.

● The amount of computation is unpredictable. The

problem resembles search in that running time may

vary widely depending on heuristic choice.

● The amount and pattern of communication is unpre-

dictable for conceivable parallelizations.

Our preliminary profiling experiments on a sequential

implementation (from CMU [7]) suggested that the

problem has significant parallelism: a large fraction of

running time is spent in relatively independent poly-

nomial arithmetic with hardly any data dependencies

preventing their parallelization.

The following list summarizes our contributions.

● A distributed memory algorithm has been developed

for computing Grobner bases.

● An efllcient program has been implemented. It runs

on the CM-5 distributed memory multiprocessor

(described in more detail in ~7).

● Properties of the problem have enabled the use of

distributed data structures with relaxed, software

controlled consistency mechanisms to minimize syn-

chronization and communication overhead.

● Processor utilization has been improved by applica-

tion level thread scheduling. Computations are ef-

fectively suspended by storing and retrieving state

information in an application level data structure.

● From a sequential algorithm, the parallel program

has been derived in a sequence of successively refined

transition axioms, starting from the most abstract

description and modifying it to a distributed memory

program.

The paper is organized as follows. We introduce the
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problem in 32. A non-deterministic specification of

the algorithm using transition azioms is developed and

refined in ~3. Design of the necessary distributed

data structures is described in !j4. Code organization

and scheduling to improve processor utilization are

addressed in ~5. A summary of implementation details

is in ~6. Performance for some standard benchmarks

is presented in \7. Related work is reviewed in !8.

Conclusions are drawn in !9.

2 Problem Statement

Roughly speaking, Buchberger’s algorithm is a symbolic

form of Gaussian elimination. Given a set of polyno-

mials, it produces another set of polynomials with the

same roots and additional properties that make it easier

to compute those roots. The new set, called the Grobner

basis, is analogous to a triangular set of linear equations,

which can be solved by substitution. The two basic

operations in computing a Grobner basis are to take

two polynomials and eliminate one of their terms, and to

simplify a polynomial by subtracting multiples of other

polynomials.

Polynomials are defined by a set of coefficients, such

as the rational numbers, and a set of variables. The

reader may safely consider the special case, used in the

examples, in which coefficients are rationals on which

exact arithmetic is performed. A more general formu-

lation is presented next; it occurs when the coefficients

form an arbitrary field and is important in some appli-

cations.

Let I< be a field and xl, . . . . x~ be variables, then

I@, . . . . Zn] denotes a ring of polynomials under stan-

dard polynomial arithmetic. To define a canonical form

for the polynomials, an (arbitrary) ordering is chosen on

the variables and extended to an ordering on monomials.

Either a lexicographic or total degree ordering is typi-

cally used on monomials. A polynomial is canonicalized

as a sequence of terms, each containing a coefficient and

a monomial, written in decreasing order of the monomi-

als. We can therefore speak of the leading or head term,

monomial or coefficient of a polynomial.

Example. Given variables z > y > z and lexicographic

ordering on monomials, polynomial p = 2z2yz3 –

7zy10 +Z is in canonical form with HTERM(p) = 2Z2yZ3,

HMONO(p) = x2yz3 and HCOEF(p) = 2.

Polynomial r can reduce polynomial p if HMONO(r)

divides HMONO (p). The act of reducing p by r involves

subtracting a multiple of r from p so that the head term

of p is cancelled.

Example. If p = 2Z2yZ3 – 7zy1° + z and r = 5zyz – 3

n
then r reduces p to p’ = p– ~xz2 r = –7xy10+~xz2+

z.

A polynomial p is reduced by a set S of polynomials by

looking for some s E S that reduces p. If none is found,

p is in normal form with respect to S, which is denoted

by NORMAL (P, S). Otherwise p is reduced by s and the

process is repeated. For any general set S a polynomial

p may end up in many normal forms; the collection of

all possible normal forms is denoted NFs (p). The zero

polynomial, O, is in normal form with respect to any S.

Given monomials ml = xv . . . x$ and mz = x{’ . . . x;,

their highest common factor is defined as

min(il,jl) , . .Xrnin(in,jfi)
HCF(ml, rn2) = ZI n

Let pl and p2 be polynomials with HTERM(pl) = klml

and HTERM(p2) = k2m2, where kl, k2 G K and ml and

m2 are monomials. The s-polynomial of pl and p2 is

defined aa

$@@PI , P2) = ~1 HCF::;: m2) – P2
klml

HcF(ml, rrtz)”

The ideal generated by a set S of polynomials is denoted

by IDEAL(S). Given a set P of polynomials, a Grobner

basis of P is a set G of polynomials satisfying the

following:

● IDEAL(G) = IDEAL(P) and

● For each p c IDEAL(P), NFG(p) = {O}.

The original sequential algorithm for computing a

Grobner basis was given by Buchberger [2]. A survey of

the theory can be found in Mishra [5].

Input: F, a finite set of polynomials.

Initially:

G=F

gpq={{f)g} :f, gEG, f#g}
while gpq # fI {

let {f, g} be any pair in gpq

9M! = 91W \ {{f! 9}}
h = SPOL(~, g)

h’= REDUCE(/t, G)

ifh’ #0{

~==Gg;h~ {{f, h’} : f GG}

}

}

Figure 1: Sequential Algorithm S Buchberger]. G is
Jinitialized to the input set F an grows to become

a G;obner basis. Elements in G are never modified.
gpq M the set of pairs of polynomials. The function
REDUCE(h, G) returns some element h’ c NFG(h), i.e.,
it reduces h completely to normal form.

3 Basic Algorithm

In this section we develop the parallel algorithm from

the sequential one by Buchberger. The data structures

are described first and then the transition axioms are

introduced.

3.1 Abstractions

The sequential algorithm has two important data struc-
tures (figure 1). The set G is initialized to input set
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F and, in course of time, grows to a Grobner basis of

F. Reduction prevents two identical polynomials from

entering G, so G is a set. However, the data type im-

plementing G does not itself prevent duplicates, so it is

specified as a (monotonically growing) multiset.

Pairs of polynomials for s-polynomial computation

are kept in gpq (global pair queue). The reason for spe-

cializing gpq from a multiset to a queue is that selection

of a pair in the while loop is sensitive, Correctness is

ensured regardless of the selection, but heuristics exist

to dramatically improve performance. Thus, priority

ordering is necessary in gpq, so that heuristic merit can

be encoded into priority.

The central problem in our design is understanding

the algebraic properties of the problem and exploiting

them to design suitable data structures and communi-

cation protocols. We encapsulate the data structures so

that the semantics and consistency are exposed through

a specified interface to the higher level. We can therefore

reason about correctness (safety and liveness properties)

using these specifications [4], without having to use the

specifics of implementation. The details of the data

structure implementations are in \4.

Input: F, a finite set of polynomials.

initially:

grq=fl, G=F,

gP~={{f, g}: f,g CG, f# g}.
S-POLYNOMIAL

3{p, q} c gpq *

9Pq = 91W \ {{P> ~}}
grq = grq U {SPoL(p, g)}

AUGMENT BASIS

~r C grq : NoRMAL(r, G), r # O +

grq = grq \ {r}

gpq = g~q u {{s, r} : s ~ G}
G= GU{r}

REDUCE

3?’ E grq : =NoRMAL(r, G) +

r = REDucE(r, G)

Figure 2: G-1: Transition Axiom formulation with one
copy of G. Data structures G and gpq as before. Unlike
in Akorit hm S, REDUCE( r, G) need not return a normal
form;”a partially reduced’forrn will do.

3.2 Transition Axiom Specifications

Transition axioms [9, 11] are a means to exploit non-

determinism in an algorithm description. They help

decompose the computation into independently schedu-

lable chunks, so that scheduling decisions are deferred

as much as possible. This means that significant per-

formance tuning can be done late in the design process

without major design changes.

Given the basic sequential algorithm by Buchberger,

we transform it in a series of refinements to a transition

axiom style parallel algorithm for a distributed memory

machine. As we proceed from one axiom system to

the next, the effort is to convert a formal algorithm

to an efficient implementation for a distributed memory

machine, in our case, the CM-5 multiprocessor.

Input: F, a finite set of polynomials.

Initially:

grq = 0,
!nw={{f,g}: f,g EF,.f #g}.
Vi: l<i<P, Gi=F, G~=O

Processor–i, 1< i < P.

VALIDATE

(gpg#@orgrq#0)md3gcG~+
G; = G;\ {g}

G~ = G~ U {g}

S-POLYNOMIAL- -

~{Pi,qi} c gpq : pi, qi G Gi =

9Pq = 9Pq \ { {Pi, qi} }
grq = grq U {% ’OL(Pi, qi)}

AUGMENT BASIS AND INVALIDATE

G{ = 0, ~r~ E grq : ri # O,and NORMAL(r~, G~) +

grq = grq \ {r~}

gpq = gpqu{ {s, ri}, VS E Gi }
G~ = G~ U {ri}

Vj:l~j~P, i#j

G;= G; u {ri}
REDUCE

3; e grq : ~NORMAL(r~, Gi) +

r~ = R,EDucE(r~, Gi)

Figure 3: G-P: Transition axioms using P copies of

G, one for each processor. g~q, g~q as before. Each
processor i has a local copy Gi of the basis.

Replicating the Basis

Figure 2 is a transition axiom specification (named

G-1) of the sequential algorithm in figure 1. While

G-1 uses essentially the same data structures as the

sequential algorithm, the next version G-P (figure 3)

has P copies of the basis, one with each processor.

We justify replicating the basis in !j4. Consistency is

managed explicitly at the application level to exploit

algebraic properties.

Formally, we regard invalidations as updating a

shadow set at each processor. A processor can access

elements in the shadow set only after moving them ex-

plicitly from the shadow set to its local replica. To

model our consistency mechanism, suppose each proces-

sor i has a (possibly incomplete) copy of G called Gi.

To incorporate invalidations and validations, we use the

shadow set G:. Say processor i adds a new element

g. This involves adding g to Gi and invalidating all

other copies by adding g to G;, j # i. If processor k

has G; = fl then Gh is a valid copy, otherwise it can

validate its copy by moving the elements in G~ to Gk.

Processor k can inspect element g only after moving it
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to Gk. All the transition axioms are written in terms of

these abstractions.

Of course, for this technique to be practically useful,

the algorithm must have the following properties.

● The representation of elements in G; is significantly

smaller than in G~. For polynomials, which are

typically several hundreds to thousands of bytes

large, the elements in G; are only eight byte unique

identifiers.

● The properties of the algorithm permit a processor to

do a significant amount of work with an incomplete

basis. In particular, no reduction “goes to waste”.

This allows us to update local copies lazily upon

demand, which reduces communication expense and

obviates stringent synchronization of the critical

section style<

Input: F, a finite set of polynomials.

Initially:

Vi:l~i~P,lpqi =lrqi=O

g~q={{f, g}: f,g6F,.f #g}.
Vi: lci<P)Gi =FJG~=O

Processor–i, 1< i < P.

TRANSFER

3{pi, qi} G gpq *

9Pq = 9Pq \ {{Pi> !Ii}}

ipqd = ipq~ U {{P~j qd}}

VALIDATE

(lpqi # @ or lrqi # 0) and 3g c G; *

G; = G;\ {g}

Gi n Gi U {g}

S-POLYNOMIAL

~{pi, qi} c lpqi : pi, qi E Gi +

~pqi = ~Pqi \ { {Pi, qi} }

lrqi = ~t’qd U {SPOL(Pi, qi)}

AUGMENT BASIS AND INVALIDATE

G: = 0, lri E lrqi : ri # O,arld NoRMAL(r~, Gi) +

irqi = Irqi \ {r~}

gpq =gpq U{ {s, ri}, VS c Gi }

Gi = G~U{r~}

Vj:l<j~P, i#j

G; = G$ U {r~}

REDUCE

Sri G lrqi : YNoRMAL(ri, Gi) +

r~ = REDUCE(r~, Gi)

Figure 4: GL-P: Transition Axioms with P copies of G
and local pair and reduct queues lpq and h-q to buffer
work.

Local Threads

To hide the latency of remote operations across the

network, we implement application level “threading” by

packaging up state into application level data struc-

t ures: local queues holding pairs of polynomial pointers

and partially reduced polynomials. The version incor-

porating these is GL-P (figure 4).

REDUCE/AUGMENT

Elr Elrqi, r#O+

if =NORMAL(r, Gi)

r = REDucE(r, Gi)

else {

if G~=O{

lrq~ = lrqi \ {r}

g~q = gpqu {{s, r}, VS e Gi}
GiDGi U{ri}

Vj:l Sj<P, i#j

G; = G; U {r}

}

}-

Figure .5: Axioms REDUCE and AUGMENT BASIS are com-
bined into REDU3-MENT to eliminate redundant

computation of the expensive guard NORMAL (r, Gi ).

Stuttering Axioms

Certain transitions have complicated guards that are

expensive to evaluate. For instance, NORMAL ($, S) re-

quires checking divisibility of HMONO(~) by HMONO(S)

for all s c S. We collapse the axioms REDUCE and

AUGMENT BASIS into a single axiom in figure 5 to cut

down redundant computation of NORMAL.

However, in an execution of the resulting set of

transition axioms, it is possible for the new axiom

REDUCE/AUGMENT to fire repeatedly without making

any progress in the state of computation. It is called

a stuttering axiom. To ensure termination, the sched-
uler must prevent infinite sequences of invocations of
stuttering axioms.

These axioms can be interpreted as specifying an inter-

leaving of axioms without any real concurrency. Few

axioms actually interfere by sharing data. Using little
serialization we can enable the axioms to fire concur-
rent ly in the implementation. In [4] we have shown that
the transition axiom specifications correctly compute a

Grobner basis; we omit the proofs.

4 Data Structure Design

In this section we describe the design and implementa-

tion of the two aggregate data structures used in the

algorithm,

4.1 The Basis

A major decision was the representation of the bssis,
the choices being essentially to replicate or partition.

A parallel algorithm employing a ring of reducers with
the basis partitioned among them was proposed by
Buchberger [7]. A slight variant using a reducing
pipeline has been implemented by Siegl [6]. We believe
that partitioning has less available parallelism and more
communication overhead. It is useful only if available
memory is too small to replicate the basis.
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4.1.1 To Replicate or Part it ion

The following analysis shows that replication of basis

polynomials, if permitted by memory capacity, can be

expected to give better performance. We demonstrate

the following problems in using a partitioned scheme:

poor load balance, insufficient parallelism and high

communication overhead.

Input

arnborg4

arnborg5

katsura4

lazard

mOrgen-

pavelle4

robbiano

rose

trinksl

trinks2

Max Stage

Time (/Js)

51208

6226476

6092409

12355072

10259753

3680064

533431

29213252

2343233

545874

PiDeline

Maximum

Parallelism

3.55

15.0

6.03

8.02

2.ss

4,99

2.65

3.31

6.03

5.58

Efficiency

(Percent)

35

26

30

24

15

36

9

16

35

27

Max Single

Reduction

Step (/h)

1771

19983

11410

95935

15495

14324

3143

174201

14242

17621

Table 1: The potential parallelism using a replicated basis
is inherently larger than that using a partitioned basis.

Poorly Balanced Pipeline

Partitioning means that reduction will have to be

done in a pipeline as in [6]. The baaic requirement

for a pipelined computation to be efficient is that there

should be a large number of stages, each taking about

the same time (i.e., no bottlenecks exist). To measure

the limit ation8 of pipelining, assume the machine has an

unlimited number of processors, in8t ant aneou8 commu-

nication and no dependencies between reduction events.

Place one reducer at each pipeline stage (processor).

The maximum achievable parallelism is limited by the

ratio of the total time for reduction to the maximum

time spent by one pipeline stage. Table 1 shows that this

upper bound on parallelism is rather low for most stan-

dard benchmarks. Typical efficiency is only 20-30%.

Granularity

A possible way to increase efficiency is to exploit sta-

tistical averaging, by putting several basis polynomials

(reducers) in each stage of the pipeline. The parallelism

obtained from a pipelined approach is already limited by

the the number of reducers; in this case it will decrease

further. In contrast, the work can be decomposed into

much finer grain units by replicating the basis. The time

for a single reduction step (which is the minimum pos-

sible grain size permitted by our de8ign) is also shown

in table 1. It is about two orders of magnitude less than

a pipeline stage time.

Communication Overhead

Let us make a rough estimate of the number of

polynomial that get reduced to zero and the number

added to the basis. Consider algorithm S (figure 1).

Suppose a problem starts with / polynomials and (~)

pairs, finishing with m ~ 1?polynomials. When we add

the i-th polynomial to G, we make i – 1 new pairs. Thus

/,/+ l,..., m– 1 pairs are added at those times when

the basis is grown. How many pairs are generated in

all?

If m >> /, as often is the case for large problems, the

number of polynomials added is @(m) while the number

reduced to zero is El(m2 ).

It has been pointed out that with a good implemen-

tation of pruning criteria a large number of pairs are

eliminated quickly and only about m instead of m2 pairs

have to be actually reduced. However,

● A formal proof of this fact exists in [3], but it only

works for restricted inputs with two symbols (n = 2).

No such re8ult i8 known for general inputs.

● our sequential prototype with Buchberger’8 criteria

shows the performance presented in table 2 which

shows a much larger (at least 5 time8) number of

reductions to zero.

● Eliminating pairs using criteria, while not aa expen-

sive aa reduction, still lead to computations involving

potentially all basis polynomials ([2] ,page 197). Thus

the number of pairs generated is still a reasonable

mea8ure of communication expense.

What is the impact of this analysis? In a partitioned

scheme, partially reduced polynomials go around the

pipeline, several times in general, perhaps to get reduced

to zero, thus incurring communication overhead. On the

contrary, suppose the basis is replicated. Then com-

munication involves only those polynomials which have

gone through (local) reduction and actually entered the

basis. Communication is thus undertaken only once

for added polynomials and not polynomials reduced to

zero. Table 2 clearly indicates reduction to zero as the

common case to be optimized.

Our assumption of large memory resources might not

be justified under all circumstances. As we note in ~7,

there exist long-running problem instances we could not

run owing to limited memory capacity. In such cases, a

hybrid strategy using both replication and partitioning

may be useful.

Input Added Zeroed I Ratio

arnborg5 53 511 9.64

I pmJei1e4 I1OI57I5.7OI

robbiano 26 158 6.07

trinksl 11 S3 7.55

Table 2: Typical number of polynomials added
reduced to zeroes in a sequential implementation.

and
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4.1.2 Interface
The basis ofpolynomials, G, isimplemented asamul-

tiset abstraction with operations AddToSet, Validate,

predicate Valid? and iterator ForAll (used for reduc-

tion). The specifications we give are based on the

abstractions in the transition axioms (figure 3): local

replicas Gi and shadow sets G{ on processor i.

AddToSet(G, g):

Gi = Gi U {g}

‘dj: l~j<P, j#i:G~=G~U {g}

Validate(G):

f%= G;\ {g}
Gi = Gi U {g} for some g E G:.

Valid?(G):

Return 1 if G: = 0, 0 otherwise.

ForAll(g, G) [Stxnt]:

Execute Stxut iteratively for each g c Gi

(Gi might be incomplete.)

Note that the abstraction in itself does not guarantee

any consistency (for example, for a read-only semantics

a program need never validate its copy). The applica-

tion must use the operations so as to implement the

nature of consistency it needs. Thus the abstraction

provides a software controlled weak consistency mecha-

nism (see [1], for example).

4.2 The Pair Queue

The algorithm needs a priority queue for pairs of

polynomials. The priority corresponds to the heuristic

merit of a pair. Since this is only a heuristic, it need not

be adhered to exactly. In the parallel algorithm, gpq is

as much a scheduling control as a data structure.

The distributed task queue by Wen et al, described

in [10], is designed for applications that can be broken

down into tasks. The suggested paradigm is that the

task queue starts with some number oft asks, processors

dequeue tasks and perform them, possibly generating

more tasks. Our parallel algorithm naturally fits into

this model.

4.2.1 Implementation

The queue is partitioned, so there is only one copy of

each element and each processor has a local portion

of the queue. Processors are logically organized in a

ring. Enqueue adds the given element to the local queue.

Dequeue attempts to dequeue work off the local queue;

if it is empty remote queues are tested. Protocols ex-

ecute in the background to sense load imbalance and

redistribute tasks more evenly. Priority is ensured only

within each local queue and not across processors. Ter-

mination detection, a non-trivial problem in distributed

queues, is provided to detect global completion of t asks.

4.2.2 Interface
The task queue creation operation crest e expects as

argument a function Idle? which is a function in the

application that returns true if and only if the calling

processor has no work (at the moment). This is used for

termination detection, and is necessary because tasks

may be in transit on the communication network or

buffered in local variables of busy processors. Enqueue

adds the given element to the queue. Dequeue can

either remove and return some element or signal empty

or terminated. Empty is only a hint: it says that the

local queue is empty. Terminated is a stable property,

true only if the total number of enqueued tasks equals

the total number of dequeued tasks, and all processors

are idle. Formal specifications are omitted.

5 Scheduling

We now describe how computation is organized. The

basic principles are as follows.

● The work is decomposed into basic units called tasks

that can be dynamically created, scheduled and

executed.

● To overlap local and remote computation, suitable

state is maintained at each processor to get the

benefit of threading.

. Split phase data transfer is used to pipeline commu-

nication.

Task Queue

A task in our implementation is a pair of polynomial

ID’s. Solving a task involves finding both polynomi-

als, computing their s-polynomial and reducing the s-

polynomial by the basis. If the s-polynomial does not

reduce to zero it is added to the basis, generating new

tasks in the form of pairs between old basis polynomials

and the new one. Tasks are used to implement paral-

lelism and to balance load. The distributed pair queue

cent ains only unique polynomial ID ‘s, not polynomi-

als so polynomials are not transferred when tasks move

about.

Local Threads

Efficient implementation of the transition axioms

should avoid having processors wait for a response from

a remote computation, using some form of t breading.

Since threading is not as yet available on the CM-

5, we implemented a special purpose application level

threading.

There are two places where this might be necessary.

First, when an s-polynomial must be computed, one or

both of the polynomials of the pair might be missing.

Instead of fetching the polynomial(s) immediately, we

put the pair “on hold” (by representing it as a suspended

thread) and look for other pairs whose polynomials can

be found locally. Second, since Invalidates cannot

be overlapped, we arbitrate using a mutex lock. If a

processor fails to get the lock, it suspends the current

thread and proceeds with other activity, such as other

s-polynomial comput at ions or reductions.
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I Local Reduce I

k+&J\----
ILocal Pair

Queue I
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..--- Dqu9ua

I I Local Reduce ]

● we IL Queue J
<

---- Spoly

~ a

Loca; Pair

Ihqwlm Queue
..-,

,.
! \ Dequaw

, I 1 ---- ,

L t ) A / /

Distributed Pair Queue

Figure 6: Sketch of data structures and transition axioms in our implementation.

Split Phase Operations

Another optimization in programming a machine like

the CM-5 is to pipeline communication. In split phase

data transfer, a processor can do useful work between

initiating data transfer and responding to the other

party. For example, in reading an integer from each

of the other processors it is better to initiate all reads

together and then wait until all the data arrives.

WJe use this principle in invalidations and validations.

During invalidations, the broadcasting processor sends

out invalidates all at once and then waits for acknowl-

edgements (acknowledgements are necessary for correct-

ness). During validations, the processor sends out re-

quests for all necessary polynomials that are missing

and then waits for all data transfer to complete.

The CM-5 currently does not support significant over-

lap of communication and computation since the nodes

do not have DMA’s. It can, however, support overlap of

computation with delays for remote acknowledgements.

Pipelined communication would be more valuable if true

overlap were possible.

6 Sketch of Implementation

Figure 6 sketches the general organization of our imple-

mentation. Each processor has local pair and reduce

queues and access to the distributed pair queue and

basis. Data transfer paths induced by the transition

axioms are shown as thin broken arrows.

Communication for gpq occurs mostly in a ring pat-

tern. Invalidations follow a star pattern. Validations

involve bulk transfer. To balance communication load

over the network, for each polynomial added to the

basis, a tree is embedded into the network with the

processor adding it at the root. Any processor in search

of a polynomial knows the tree structure implicitly from

the unique ID of the polynomial. It traverses up the tree

along its ancestors until it finds the polynomial.

One processor, the coordinator (not shown), is re-

served for running a termination detection protocol and

managing a lock to arbitrate invalidations. We used

simple, centralized methods to keep the prototype sim-

ple. Being centralized, these protocols will not scale

to thousands of processors. However, a large variety

of relatively decentralized protocols are available. We

have never observed this centralization to be a bottle-

neck: less than 270 of running time is spent in mutual

exclusion and termination detection.

7 Performance

In this section we present the performance of our

implementation.

The Environment

We used a CM-5 multiprocessor. Each node is a

33 MHz (15-20 MIPS) Spare processor with 8 MB

of memory. The network is a fat-tree supporting at

most 20 MB/s data transfer. For our purpose we

ignored the topology. Communication was done using

the active message layer [8]. The implementation is in

C; we used gee-2 .2.2 with optimization “-o2” for our

measurements.

Measurement and Fluctuation

The sequential algorithm S is under-specified, even

though a sequential program could be designed to be

deterministic. In the parallel algorithms we exploit this

loose specification, resulting in highly non-deterministic

behavior.

● Lock serializations and message ordering by the

communication net work are unpredictable.

● Since the heuristic priority on pairs is weakly en-

forced, there is more uncertainty in pair selection.

● Because polynomials may be added to copies of the
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basis in various orders, the choice of reducers can

differ across processors and over different invocations

of the program on the same input.

● Pairs in the task queue can migrate in complicated

ways and get dequeued by an arbitrary processor at

an unpredictable time.

Apart from these nondeterminism issues, factors like

code optimization and message protocol tuning are

import ant. Although we have been able to demonstrate

the benefits of parallelism without too much noise in

the data, slight perturbations of such nature can make

significant differences to performance.

Speedup Baseline

Given the irregular nature of this problem, it is

difficult to define a fair baseline for computing speedups.

If we wish to define speedup traditionally as the ratio of

running times of the parallel to a sequential algorithm,

the sequential algorithm must be the best known — but

Input Time (s) Time (s) Time (s)

P=l P=lo Best Seq.

arnborg4 0.27 0.06 0.2s

Iarnbarg5 I 4S6 I 15 I 46

katsura4 29.2 3.1 11 I
I kbzai-d / .55.5 I 2.6 I ,009 /

Table 3: Sample times for benchmarks for a sequential

algorithm and our parallel implementation.

what is best is not known. There is a wide spectrum of

opinion about the efficacy of various pair selection and

elimination heuristics, whether interreduction helps or

not, whether to reduce only head terms or all terms,

etc. As might be expected, no single heuristic does well

all the time.

Thus we had two choices for the speedup baseline:

the parallel program running on one processor or a

sequential implementation. The latter choice exposes
the overhead of parallelization, but has the disadvant age

that the “speedup” for the parallel algorithm running

on one processor is generally different from 1. This

is counter-intuitive. We decided to scale all speedups

to pass through the point (1,1), and also provide the

ratio of absolute running times of the two choices to

demonstrate that there is true parallelism (table 3).

There are cases where the one processor parallel version

outperforms the sequential program and vice versa.

It is clear from the discussion that an exact character-

ization of speedup using speedup curves has relatively

little meaning when the basic sequential algorithm is

heuristic guided and quite sensitive to minor perturba-

tions. The point we wish to make is that the problem,

while not as amenable to scalable parallelizat ion as,

say, matrix multiplication, does have usable parallelism

which even a distributed memory multiprocessor can

exploit.

Benchmarks

We have used the set of standard benchmarks col-

lected by Vidal [7]. On one processor they run for

about half a second to a few minutes, with total degree

orderingl. The smaller inputs are solved too quickly to

1Ties are resolved by lexicographic order.
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make accurate speedup measurements.

In figure 7(a) we give performance on two small exam-

ples, arnborgb and trlnks 1. The best speedups over ~

runs are shown for our implement at ion. In comparison,

the best curve from Vidal [7] show less scalable speedup.

These speedups were computed as the ratio between P

processor running time (excluding input, output and

initialization) and 1 processor running time, both for

the parallel algorithm. We used the pair elimination

criteria in [3] and the traditional pair selection in [2].

Inspection of execution profiles indicated that for

small problems, parallelism was limited by under-

utilization of processors during startup and termination

transients. The total number of tasks is too small to

saturate all processors with work for a large fraction of

the running time. To see if this is an inherent limitation

of the design, we needed synthetic long-running work-

loads. For this we started the program with multiple

copies of a benchmark with variables named apart. Note

that this construction is only for evaluating the potential

performance and not necessarily representative of real-

istic large examples. These examples run for hours on

one processor. Performance (in terms of running time)

for two of these are shown in figure 7(b) (best over 3

runs). Impressive scalability y is observed.

An input instance can be “large” in the sense of run-

ning time or memory requirements or both. Ah bough

our implementation scales well in time, replication of

the basis presents a limit to scalability y in space. We

have come across long-running inst antes that might

show highly scalable speedups, but all of them exceed

the current memory capacity. We are designing a more

flexible abstraction that performs this space-time trade-

off on a continuum using a hybrid of partitioning and

replication. This extension should enable us to run large

interesting examples.

Superlinear Speedup

Parts of the speedup curves in figure 7(b) are above

the ideal linear speedup, a phenomenon arising from our

definition of speedup. It is a well-known phenomenon in

problems with nondeterministic or heuristic scheduling

that it is possible to solve a problem with P processors

in less than l/P of the time needed for one processor,

because some of them may find “short cuts” to the

solution whereaa a single processor may be misled by an

inaccurate heuristic. Backtracking search, branch and

bound, and some pattern matching problems belong to

this category. To get around this difficulty the notion of

speedup is often modified. In the 8-queen problem, for

inst ante, the time to find all solutions as against just

one has been considered.

For the Grobner basis problem, superlinear speedup

occurs when certain “magic” polynomials get added to

the basis that reduce many other polynomials quickly to

zero. Consider figure 8(a). We get superlinear speedup

according to the prior definition of speedup, with a

similar effect reported by Vidal for the shared memory

implementation [7].

This indicates that the heuristic is not sufficiently

discerning for these inputs, so that exploring a few of

the best pairs (as against the best) in parallel pays o@.

To make sure that the speedup curves indicate the

benefit of parallelism and not fortuitous choice of poly-

nomials we also calibrated speedups after getting rid

of the non-determinism. For this, the parallel version

accumulates traces of activity at each processor. A se-

quential program running on only one node of the CM-5

2The heuristic favors the pair (j, g) with the smallest
HMONO(f) x HMoNo(g)/HcF(HMoNo( j), HMoNo(g)).
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reads in the traces and mimics an appropriately merged

sequence of execution steps. The execution time of this

program is used aa the baseline for normalized curves,

Normalized speedup is shown in figure 8(b). The

superlinear nature has been filtered completely and the

linear nature of “true” speedup shows clearly.

8 Related Work

A review of previous attempts to parallelize Grobner

basis can be found in Vidal [7]. Vidal’s implementation

[7] is on a shared memory machine, the basis being

still regarded as a reader-writer shared object with the

appropriate locks. As shown in the performance graphs

in ~7, except for examples where superlinear speedup

results from chancing upon “short-cuts” in the search

space, efficiency and scalability is low.

Attempts to parallelize this problem on a distributed

memory machine have been made by Siegl [6]. Re-

duction of a polynomial is done by a pipeline of pro-

cesses across which the current basis is partitioned. As

discussed earlier, communication costs are an order of

magnitude higher. The implement ation was ported to

a network of SUN workstations, a transputer and a

(shared memory) Sequent, but performance figures are

available only for the Sequent. These do not appear to

be significant improvements over Vidal’s performance.

9 Conclusion

In conclusion, we outline our results. We have suc-

cessfully parallelized an irregular application using in-

teresting techniques: introducing non-determinism us-

ing transition axioms, minimizing synchronization and

communication overhead by designing distributed data

structures with weak consistency and improving etli-

ciency using application level state and schedule man-

agement. The speedup and scalability of our distributed

memory implementation equals and often surpasses per-

formance on shared memory machines.
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