
ELSEVIER Theoretical Computer Science 162 (1996) 341-349

Theoretical
Computer Science

Random allocation of jobs with weights and precedence

Soumen Chakrabarti”

Computer Science Division. Unirersity of California, Berkelq>. CA 94720, USA

Abstract

We analyze random allocation applied to irregular and dynamic task-parallel programs such
as branch and bound. The precedence between jobs is revealed on-line, and the processing times
of jobs are diverse and unknown before job completion. The objective is to assign jobs to
processors and to schedule them to minimize makespan. We show that random allocation
achieves makespan close to a natural lower bound. Some empirical experience with irregular
parallel applications is reported.

1. Introduction

We analyze the performance of random allocation schemes applied to irregular and

dynamic task-parallel programs. Execution of the program defines a job precedence

graph with vertices representing jobs and directed edges representing precedence

constraints. The precedence graph is revealed on-line and is irregular in shape, and the

processing times of jobs are diverse and unknown before job completion. The

objective function to minimize is makespan, the maximum completion time of a job.

Although the exact problem is X8-hard, good approximations are possible if the

algorithm assigning jobs to processors is centralized, and thus has perfect global

knowledge. For example, Graham’s list-scheduling algorithm [9] will result in a finish

time at most 2 - l/P times optimal, where P is the number of processors. This,

however, leads to a severe communication bottleneck at the processor where the pool

of jobs resides. Our goal, therefore, is to study decentralized allocation which avoids

such bottlenecks.

The bottleneck can be relieved in a variety of ways, each of which reduces

communication cost by sacrificing global load information and thus risking some load

imbalance. We study work sharing, where busy processors forward jobs to random

* E-mail: soumen@cs.berkeley.edu. Supported partly by ARPA/DOD (DABT63-92-C-0026), DOE
(DE-FG03-94ER25206), and NSF (CCR-9210260, CDA-8722788 and CDA-9401156).

SO304-3975/96/$15.00 Q 1996-Elsevier Science B.V. All rights reserved
PII SO304-3975(96)00036-9

342 S. Chakrabarti / Theoretical Computer Science 162 (1996) 341-349

processors. Some other techniques are work stealing, where idle processors ask for

work [S], and dijiision, where neighbors exchange local load information and then

move some jobs from busy to lazy processors [8].

1.1. Models and notation

The input comprises a set J of jobs presented to the algorithm in a distributed and

on-line fashion. Job j has running time tj, also referred to as its “weight”. We assume

these are powers of 2; this will affect the results only in constant factors. We assume

that tj can be known only when jobj completes. The total work or weight in a job set

J is denoted t(J) = x,EJ tj. The number ofjobs in J is denoted 1 J 1 or n (J). The average

job weight is f(J) = t(J)/IJI. Let tmax(J) = maxiEJ(tj) and tmi”(J) = minjEJ{tj}. We

characterize the diversity using a single parameter T(J) = t,,,(J)/t,i,(J). Equiva-

lently, we scale jobs so that tmin = 1 and t,,, = T. This is in keeping with recent

analyses of online load-balancing algorithms [4], and is more broadly applicable than

results with assumptions about distribution or variance.

J will have an associated acyclic precedence relation < c J x J. Let

nj = maX,~,,{TCj~} + tj and let n(J) = max,,, \z,} ’ be the critical path. We assume there

is a unique root job. The number of edges on a path fromj to the root is denoted h(j);

the path will be clear from context. Also let h(J) be the maximum number of edges on

any precedence path in J.

J will be omitted when clear from context. We assume that the job times and job

graph are oblivious of the decisions made by the scheduler. In exhaustive traversal,

J is finite and the goal is to execute all jobs in J in any order obeying <. In heuristic

search or branch and bound, the job graph J provided may be very large or even

infinite. Each job j has an associated cost c(j), with the requirements that jr < j, +

c(j,) < c(j,) and all costs are distinct without loss of generality. The goal of the

execution is to start at the root and execute jobs obeying <, until the leaf node

with minimum cost c* is identified. It is not necessary to generate and execute all jobs

in J.

Sequential algorithm. A common sequential strategy is the “best first” traversal. All

available jobs with completed predecessors are maintained in a priority queue. While

the queue is nonempty, the job j with least c(j) is removed and executed. The jobs

executed are y = {j E J: c(j) < c*> c J. In the special case of complete traversal,

J = J. For all models, we assume that operations on a priority queue for job selection

take negligible time compared to job execution time. In this model, the sequential

algorithm takes time t(J). We assume 1 JI > IJ”I 2 P.

Parallel algorithm. Parallel execution starts with the root job in one processor.

A job can be started when all predecessors have been completed. When a processor

completes executing a job j, all successors of j become available to that processor.

Processors can negotiate to transfer available jobs among themselves.

There is no coordinated global communication for load-balancing purposes. We

study the setting with a local priority queue ofjobs in the memory of each processor as

S. Chakrabarti / Theoretical Computer Science 162 (1996) 341 349 341

in [lo]. Thus, priority is preserved within each local queue but not across processors.

An idle processor nonpreemptively executes the best job from its local queue, if any.

Any newly available job with completed predecessors is enqueued into the priority

queue of a processor chosen uniformly at random. The destination processor is not

interrupted.

Communication. The machine model consists of processors with individual local

memory connected by a communication network. We ignore the topology of the

interconnect as in the LogP model 161. Communicating a job takes unit time at the

two processors involved in the transfer.

Pruniny and termination. In parallel branch and bound, each processor has to

periodically propagate the cost of the least cost leaf it has expanded. so that all

processors know the cost of the global best cost leaf in order to use it for pruning.

Also, barrier synchronizations are required to detect situations where all local

queues are empty so that the processors can terminate. We note that these can be

done infrequently with low overhead, so they do not affect the time bounds we

derive.

1.2. Discussion of results

For exhaustive search 7 = J, and greedy centralized schedules give a simple bound

on makespan in terms of variables defined above: @(t/P + 7~). We show that the

situation changes somewhat in the branch and bound setting: Q(t(J”)/P + k(J). T(J))

may be necessary even for an ideal centralized scheduler with no communication cost.

Then we give a delay sequence type analysis of parallel branch and bound with _i # ,I

in a complete network: we show that with probability at least 1 - F. the makespan is

O(riP + 11 T log k T + T log (n/E)), where t = t(J), k = k(J), II = n(J”). and T = T(J).

We also report on experience with some irregular programs. This is necessary for two

reasons. First, our analysis is probabilistic and asymptotic; in practice. constant

factors would be important. Second, although the above result establishes near-

optimal load balance, our model does not reflect the gains from avoiding communica-

tion bottlenecks.

Other results of the diffusion type are based on occasionally matching busy and idle

processors and transferring jobs [8. 131. These are not appropriate for relatively

fine-grain jobs which is our focus. Notice also that diversity in job execution times

makes coordination even harder unless a processor can suspend long jobs and

participate in global communication.

Work stealing is the strategy of least communication for the particular case where

the job graph J is an out-tree, all jobs must be executed. and the relative order of

execution is immaterial (provided it obeys <). In work stealing, the graph is expanded

depth-first locally in each processor, and idle processors steal jobs nearest to the root

[14,5]. In many application such as parallel search or branch and bound, the total

work done is very sensitive to the job order, and one wishes to deviate from the best

sequential order as little as possible [7, 21.

344 S. Chakrabarti / Theoretical Computer Science 162 (1996) 341-349

2. Analysis

2.1. Weighted occupancy problem

At first we consider the weighted occupancy problem, where there is no precedence

among jobs. There are n weighted balls (jobs), ball j having weight tk These balls are

thrown uniformly at random into P bins (processors). We want to bound the weight of

the heaviest bin.

Lemma 1. For random allocation of weighted balls to bins, with probability at least

1 - E, each bin has O(t/P + T(log 1ogT + log P/E)) weight.

Proof. Classify the balls into weights 1,2, . . . , T, where there are ni balls of weight 2’.

Fix one bin. The probability that there are at least mi balls of weight 2’ in this bin is

at most (E)Pmmi < (eni/Pmi)m’, which is less than e/Plog T for mi = O(ni/P +

log log T + log P/E). Adding over i and all P bins gives the result. 0

2.2. The scheduling problem

First we show that in case of branch and bound, permitting diverse job times does

change the setting from the exhaustive traversal, or the unit time case. Let J and J” be

as before. For unit time jobs, Q(n(J”)/P + h(J”)) is a lower bound that can be achieved

by a central scheduler. For diverse times, the analogous bound of O(t(J”)/P + z(J)) is

not always achievable.

Lemma 2. With a centralized scheduler, the execution time for branch and bound is

O(t(J”)/P + h(J)T(J)).

Proof. For the lower bound we will produce a J and .? c J with t(J”) = o(n(J”)) such

that even a centralized scheduler will need Q(h(J)T(J)) time. The instance is shown in

Fig. l(a). In the first time-step, one processor expands the root job, generating

P children that all P processors start expanding at the second time-step. P - 1 of these

are jobs in J\J” with tj = T, meant to keep P - 1 processors busy for time T, so the

last processor is left alone to expand part of J” as shown. In the figure, job x has

P children and job y has T - 1, so that when the new set of P nodes are generated, the

P - 1 processors just freed grab the new decoys. This can be arbitrarily repeated.

For the upper bound, suppose the makespan is z and s is a job finishing at time z.

Label s as s,,(~) and starting at s, move up towards the root. If a task sc has more than

one parent, go to the one that completed last of all parents, and call it sI _ 1. Thus, trace

a path root = sl, . . . ,sh(s) = s. Note that CC&, d n(s). Suppose sp runs in the interval

[B/,&l. Note that sI appears in the central job pool at time E,_ 1 + 1, and in

the interval [E, 1 + T, B,], if nonempty, all processors are executing jobs inside

J” since they all picked some other jobs j’ with c(j’) < C(Q), meaning j’ E J. Thus,

P(z - 7c(J”) - T. h(J”)) d t, which proves the claim since 7~ = O(hT). 0

S. Chakrabarti / Theoretical Computer Science 162 (1996) 341-349 345

Next, we show an upper bound for random allocation. Unlike in the previous

section, occupancy results cannot be used directly, since unlike a batch, a DAG

schedule is not composable from arbitrary task subsets. Further, in analyses related to

global task pools as above, arguments depend significantly on statements to the effect

that during certain intervals of time, most processors do useful work. We can no

longer say this when each processor has a local task pool: processors can remain idle

even though there are tasks yet to expand. because they can be in the queues of other

processors. We handle this using a delay sequence argument. The following lemma is

similar to Ranade’s construction [12].

Lemma 3. Suppose the executionjinishes at time T. Then the following 4-tuple (s, Q, R,

l7) exists:

~ s is a job that finished no earlier than T. Let S = (sl, . . shts,) be a path of “special”

,jobs from the root of the DAG to job s = s,,,+

- Q = (ql, ,qhCs,) is an ordered list, where q, is the processor that executed s,, ,fkjr

1 d C d h(s).

~ R c J” is a set of jobs, and
_ I7,, , lIhcsj is a partition of [1, z] such that

l Rn{sl, . . > sh,s,l = 8.
l Eachjob in R become “ready” and arrives into q, during interval Ilj, for some j,

1 <j < II(S).

l t(R) > 5 - K(J) - h(J)T(J).

Proof. Label s as As,, and starting at task s, move up towards the root. If a task s, has

more than one parents, go to the one that completed last of all parents, and call it s, ,.

Thus, trace a path root = sr, . . ,s,,,~, = s.

To obtain R, work backwards from the time r and consider the latest time instant

5’ < z such that q,,(s) was empty at time z’ - 1. This means that all tasks executed by

qhCsl during the interval [z’, z] also arrived there during this interval. Call these tasks

R h(sv Include Rhw into R, and set IZh,s, = [T’, z]. Then continue the construction from

T’ - 1 in an iterative manner.

From Fig. l(b), it can be seen that the processing times of nodes in R must cover all

of [l,s], except for the time spent in processing nodes s,, . . . ,shcsp which is at most

n(J), and decoy jobs, which accounts for at most h(J)T (.I). Thus, let R = IJ, R, and

observe that t(R) >/ z - ~(5”) - h(J)T (J). We have also constructed a ordered parti-

tion I7 = (I7,, . . . > nh(s,) Of [I, zl. 0

Theorem 4. With probability at least 1 - E, the execution time for branch and bound is

O(t!P + h T log h T + T log(n/E)), where t = t(d), h = h(J), n = n(J), and T = T(J).

346 S. Chakrabarti / Theoretical Computer Science 162 (1996) 341-349

Time

Fig. 1. (a) A bad instance for the central scheduler. (b) Accounting for time in the delay sequence.

Proof. We will bound the probability over all s, Q, ZI and R that a 4-tuple as

above will occur. Given fixed values for s, Q,n, R and z, a conforming execution

happens with probability at most P ~ (w+ lR’). Thus, our target expression is

Cs,Q,n,RP-(h(S)+‘R’) = =y&.RP-“y since, given s, the number of choices for Q is

just Phcs). In the sum x,,n,RP-‘Ri, s can be chosen in n ways. The number of ways

to pick 27 is at most (‘ih) d (6~)~. It only remains to evaluate &P-IRf, where the

sum is over all R such that t(R) > z - ~(3) - h(J”)T(J). &P-IRi is the probability,

over all RI, . , Rhtsj, that R, got assigned to q/, 1 < j d h(s). This is the same as

the probability that some bin gets a weight of at least r - rr(J”) - h(J)T(J) when

y1 - h(s) balls were randomly assigned to P bins. This can be bounded using

Lemma 1.

Specifically, setting z - 71 - hT = Q(t/P + T(log log T + log (P/d))) bounds the

probability of makespan being z to n. (6~)~. 6, which we need to be less than E. It will

suffice to pick z such that z > 52 (t/P + hT + T log (nP(6~)~ log T/E)); this holds for the

choice of the makespan in the statement of the theorem. 0

3. Experience

Unlike in analyses of centralized schemes, our results are probabilistic and hide

constants at several places. It is therefore interesting to evaluate the cost and benefit of

decentralization in practical settings. We report on experiments with two applica-

tions. The first is a parallel symmetric tridiagonal eigenvalue solver. The second is

a parallel symbolic multivariate polynomial equation solver. Both our applications

lead to tree-shaped precedence between jobs, and the job times are diverse. In both

cases, most of shared data can be replicated at small communication cost, so random

allocation is feasible. Random allocation with diverse time have also been use in

N-body simulation [l l] and integer linear programming [7].

For each application, we added instrumentation to the sequential program to emit

the task tree with task times, and input this tree to a simulator that simulated the

S. Chakraharti i Theoretical Computer Science 16.? (1996) 341-349 341

25,
(4 04

I 500,

+f++++
20 Upper bound +++“+gentral

t

400 Upper bound
++

&

OF
0 10 20 30 40

P

$300.
7J
ii
~200-

+

Central
+

+

+
0 0

100. ++ O o Random
0

0 200 400 600
P

Fig. 2. Comparison of spcedup between Graham’s list schedule and random allocation with zero commun-

ication cost: (a) symbolic algebra; (b) eigensolver.

parallel execution of the randomized load-balancing algorithm, as well as Graham’s

list schedule. By an idealized simulation without communication cost and other

overheads, we first isolate and study only the loss in load balance owing to random

allocation. In Fig. 2, the eigensolver instance has t = 108 247480 us, y1 = 2999,

IT = 20. T = 184 377 us t 4486 us z 41, 7c = 237917 us, and r/n z 455. The symbolic

algebrainstancehast=11053339~s,rz=142,h=11,T=174860~st1184~s~

148. IZ = 474 880 us, and t/7-t zz 23.

In the graphs shown in Fig. 2 we have presented the speedup without explicitly

measuring communication costs. We also measured actual speedup on the CM5

multiprocessor. Comparing the speedup curves enabled us to judge the closeness of

the simulation to reality. In Fig. 3, we present a break-up analysis of parallel running

time for the eigensolver, comparing a centralized task queue with the random

distributed allocation. Although load imbalance is larger for random allocation, the

benefit due do decentralization is overwhelming.

4. Extensions

Several questions arise from this and related results. It would be interesting to

tighten the makespan estimates in this paper, as well as to provide randomized lower

bounds. The performance of multiple round strategies [3, l] for dynamic job graphs

remains open, as is their effect on further reducing the load imbalance. Finally,

extending the results to capture network contention as in the atomic message model

[111 seems like a natural goal.

348 S. Chakrabarti / Theoretical Computer Science 162 (1996) 341-349

P=4

Comm fg Idle

4e+09

35e+09

3e+09

2.5e+09

2e+09

15e+09

le+09

5e+08

0

Fig. 3. Performance comparison of Graham’s list schedule and random allocation on the CM5. The y-axis

represents time, broken down into computation, communication for accessing the job pool(s), and idle time.

Acknowledgements

Thanks to Abhiram Ranade and Kathy Yelick for helpful discussions and the

anonymous referees for comments on presentation.

References

Cl1

PI

c31

M

CSI

C61

171

@I

c91
Cl01

M. Adler, S. Chakrabarti, M. Mitzenmacher and L. Rasmussen, Parallel randomized load balancing,

in: Proc. Symp. on the Theory of Computing (STOC) (ACM, New York, 1995).

G. Attardi and C. Traverso, Strategy-accurate parallel buchberger algorithms, in: Proc. Internat. Conf
on Parallel Symbolic Computation, 1994.
Y. Azar, A Border, A. Karlin and E. Upfal, Balanced allocations, in: Proc. Symp. on the Theory of
Computing (STOC) (ACM, New York, 1994).

Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs and 0. Waarts, Online load balancing of

temporary tasks, in: Workshop on AIgorithms and Data Structures (WADS) Lecture notes in Com-

puter Science (Springer, Berlin, 1993) 119-130.

R. Blumwofe and C. Leiserson, Scheduling multithreaded computations by work stealing, in: Founda-
tions of Computer Science (FOCS), Santa Fe, NM (IEEE, New York, 1994).

D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Sumbramonian and T. von
Eicken, Logp: towards a realistic model of parallel computation, in: Principles and Practice ofParallel
Programming (PPoPP) (ACM-SIGPLAN, 1993) l-12.

J. Eckstein, Parallel branch and bound algorithms for general mixed integer programming on the

CM-5, SIAM. J. Optim., to appear.

B. Ghosh and S. Muthukrishnan, Dynamic load balancing on parallel and distributed networks by

random matchings, in: Proc. Symp. on Parallel Algorithms and Architectures (SPAA), Cape May, NJ,

(ACM, New York, 1994)
R.L. Graham, Bounds on multiprocessor timing anomalies, SIAM J. AppL Math. 17 (1996) 416429.
R.M. Karp and Y. Zhang, A randomized parallel branch-and-bound procedure, J ACM 40 (1993)
765-789. Preliminary version in ACM STOC (1988) 290-300.

S. Chakrabarti i Theoretical Computer Science 162 llYY6) 341-349 349

[I I] P. Liu. Tlze Parallel implementation qf N-body algorithms, Ph.D Thesis, DIMACS Center, Rutgers
L)niversity, Piscataway, NJ 08855-l 179, May 1994. Also available as DIMACS Tech. Report 94 27.

[I21 A. Ranade, A simpler analysis of the Karp-Zhang parallel branch-and-bound method, Tech. Report

UCBjCSD 901586, University of Califorma, Berkeley, CA 94720. August 1990.

[13] L. Rudolph, M. Slivkin-Allalouf and E. Upfal. A simple load balancing scheme for task allocations in

parallel machines, in: Proc. Symp. on Parallel Algorithms and Archirectuw (SPA.4) (1991) 237~ 245.

1141 L.-C. Wu and H.T. Kung, Communication complexity for parallel divide-and-conquci-. in: F;oir,rdtr-
tion.5 ff Computer Science (FOCS) (1991) 151-162.

