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Abstract

We initiate a study of resource scheduling problems in paral-
lel database and scientific applications. Based on this study
we formulate a problem. In our formulation, jobs spec-
ify their running times and amounts of a fixed number of
other resources (like memory, IO) they need. The resource-
time trade-off may be fundamentally different for different
resource types. The processor resource is malleable, mean-
ing we can trade processors for time gracefully. Other re-
sources may not be malleable. One way to model them is
to assume no malleability: the entire requirement of those
resources has to be reserved for a job to begin execution,
and no smaller quantity is acceptable. The jobs also have
precedences amongst them; in our applications, the prece-
dence structure may be restricted to being a collection of
trees or series-parallel graphs.

Not much is known about considering precedence and
non-malleable resource constraints together, For many other
problems, it has been possible to find schedules whose length
match to a constant factor the sum of two obvious lower
bounds: the total resource-time product of jobs, denoted V,
and the critical path in the precedence graph, denoted II. We
show that there are instances when the optimal makespan
is G?(V + II log 2’) in our model. Here T is the ratio between
longest and shortest job execution times, where typically
T << n, the number of jobs.

We then give a polynomial time makespan algorithm
that produces a schedule of length O(V + II log T), which is
therefore an O (log T) approximation. This contrasts with
most existing solutions for this problem, which are greedy,
list-based strategies. These fail under heavy load and that
is provably unavoidable since theoretical results have estab-
lished various adversaries for them that force Q(T) or Q(n)
approximations, The makespan algorithm can be extended
to minimize the weighted average completion time over all
the jobs to the same approximation factor of O(log T).

1 Introduction

Judicious job scheduling is crucial to obtaining fast re-
sponse and effective utilization. Consequently, algorithms
for scheduling have been extensively researched since the
60’s both in theory and in practice. In the past decade, there
has been increasing interest in scheduling specifically for par-
allel systems. Owing to the vastly different nature and ap-
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placability of sequential and parallel computing systems, the
scheduling problems of practical interest are rather different
in the two settings. For example, scheduling general-purpose
jobs is a reality for a uniprocessor operating systems while
it is hardly an issue yet for existing parallel systems; simi-
larly, scheduling threads for massive game tree searches is a
reality for parallel systems while that is hardly an issue for
uniprocessor traversal.

In this paper, our concern lies in scheduling problems
that are critical to, and prevalent in, practical parallel com-
puting. We first need to model parallel computing scenarios
and then identify relevant problems. For modeling, we fo-
cus on applications where parallelism has been effectively
exploited. We isolate parallel databases and scientific com-
puting as two such areas. In both these areas the computa-
tion is well-structured so regular subproblems can be solved
in parallel, and the resource requirements of jobs can be
estimated well. For these reasons, these remain the two ar-
eas where parallel computing h~ proven highly successful.
Here, we caxefully model the resource scheduling problems
in these applications and study them.

In the model we abstract from those applications, jobs
arrive over time to a central manager; they have prece-
dence constraints and resource requirements. Resources are
of various different types. Some resources, like processors,
can be traded for time gracefully. Others, like memory,
are not flexible in such a continuous fashion. A survey
of practical systems reveals that they typically use simple
greedy approaches that may perform poorly under heavy
load. This is not surprising since theoretical results have
produced appropriate adversaries for many such situations.
On the other hand, no algorithmic result to our knowledge
completely addresses our real-life setting, in particular, the
combined complication of precedence and non-malleable re-
source constraints. However, reported experience with par-
allel databases suggests that this is an important problem.

We initiate a study of such resource scheduling models.
Our main technical contribution is the first known logarith-
mic approximation algorithm for this scheduling problem
under two metrics, namely, the classical makespan, and the
weighted average completion time (WACT), which has seen
more attention recently. We suggest a number of directions
for extending our preliminary results.

1.1 Model and problem statement

We describe the modeling scenarios in parallel databases
and scientific computation later on (\2). The model and
problems we abstract from there are as follows.

Model. Our model consists of m identical processors and
s types of other resources not including the processors. The
unit of computation is a job: job j specifies a number of
parameters: Fj = (r~l, . . . . rjk, . . . . rjs), of the fractions r~~
of resource of type k demanded by job j, k = 1,. . .,s; the
maximum number of processors rnj that may be allotted
to job j; tj> 1,the running time for job j on rrq proces-
sors provided all the resource demands are met; and w], the
weight of j which reflects its priority. In addition, there is
a precedence relation + amongst the jobs, that is, for each
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job ,j, there exists a possibly empty subset of jobs that must
have completed before job j begins its execution. This can
be modeled as usual by a directed acyclic graph (DAG). Pro-
cessing resource is assumed to be perfectly malleable, that
1s, if job j is allotted p~ processors, 1 ~ pj s ml, (together
with all the other resources it requires) then it takes time

mj tj /P3 (ie ~~ gives linear speedup UP to m~ processors).
Other resources are assumed to be non-malleable, that is,
when job j is scheduled to run, Tjk fraction of resource k
must exclusively be set aside for it. For notational simplic-
ity we scale the total available resource to be 1 unit for each
type.

Problem. A scheduler is an algorithm that specifies for
each processor and time slot, a portion of at most one job to
be executed, so that all jobs get executed subject to all the
constraints above. Consider a set of n jobs. Let a scheduler
complete job j at time Cj. The two performance metrics
that we seek to minimize are the makespan maxj Cj and the
weighted average completion t%me (WACT) ~ ~1 Wj Cl.

The applications we model impose further constraints
on the schedulers. First, preemption is not allowed. Time-
slicing and preemption of space-shared resources is very ex-
pensive because (1) the state has to be evicted to slower lay-
ers of the memory hierarchy, (2) processes have to synchro-
nize and switch across protection domains, and (3) in-flight
messages have to be flushed and reinfected [6, page 6]. Anec-
dotal evidence suggests that many practitioners switch off
time sharing for production runs on parallel machines that
do not permit creating dedicated space partitions. To re-
cover from pathological cases, some machines (like the Gray
T3D) have an expensive roll-in/out mechanism, but it is
important to minimize its deployment. Second, the num-
ber of types of non-malleable resources, s, can be assumed
to be a small constant. Since we target symmetric shared
memory multiprocessors, resources are not private to pro-
cessors; they are equally accessible by all jobs. Typically
the set of resources will be memory, disk and network band-
width (i.e., .s = 3). Third, it suffices for our scheduler to
be a sequential algorithm since in both databases and OS’s
these decisions are typically made by a front-end processor
connected to clients. Fourth, the precedence graph may be
thought of as a collection of trees or series parallel graphs
only; these are the most prevalent instances in applications
(see !j2). Finally, the scheduler can collect Jobs over some
time window but cannot wani for all jobs to be submitted,
asjobsarrive on-line overtime. Moreover, each arriving job
specifies only its predecessors at the time of its arrival, but
not, e.g., successors.

1.2 Known approaches

Many simplified variants of our problem are strongly AfP-
hard, even for makespan. Thus the goal 1s to find approx-
imations for the worst case and heuristics in practical set-
tings.

All known practical solutions use some variant of greedy
hst- or queue-type scheduling [6, 9, 18]. Jobs on arrival are
placed in a list ordered by some heuristic (often FIFO). The
scheduler dispatches the first ready job on the list when
enough resources become available List scheduling and its
variants are appealingly simple to implement; however they
can be notoriously bad. In fact, theoretical results show that
if precedence is combined with non-malleable resource con-
straints, there exist sequences of jobs such that the scheduler
can be arbitrarily compromised. No deterministic scheduler
that does not know t] until job J has finishedl has WACT

1 Such a scheduler is called “non-clairvoyant”

performance ratio bounded away from T [20, Theorem 5.4].
Even if t~ is known upon arrival, any greedy schedule has
worst case makespan performance ratio at least nT/(n + ‘T),
which is roughly T when T << n and n when T >> n, both
of which are achieved trivially [8, Theorem 1]. On the other
hand, all positive algorithmic results we tried to adapt fall
short of our goal in some respect or another, unless we aban-
don some requirement. In what follows we show examples
of this,

No precedence, If the precedence graph were empty, (i.e.,
independent j ohs) then a number of approaches are known to
get approximation bounds, even with additional restrictions
like sub-linear speedup [8, 17, 26, 25, 24]. In the database
scenario, it is possible to collapse each query (consisting of
several jobs with a precedence relation amongst them) into
one job (allocating maximum resources over all the jobs
in the query) and then apply the results for independent
jobs [27]. This has a serious drawback in that some obvious,
critical co-scheduling may be lost. For example, a CPU-
bound job from one query and the IO-bound job of another
can be co-scheduled and it is highly desirable to do so [14];
this cannot be done after the collapse.

Only malleable resource. If there were no non-malleable
resources, (i.e., there is only a malleable resource), then
precedence can be handled (in the sense of approximating
makespan) even by a scheduler that does not know tjbefore
a job finishes [7]. But we must also schedule non-malleable
resources.

Small resource demand. Another possible restriction is to
allow non-malleable resources, but require each job to re-
serve no more than } fraction of the non-malleable resources,
where A is small. That is, the maximum fraction requested
by an job is at most J. In that case naive approaches will
work well. The approximation ratio for greedy scheduling
can be easily shown to be 1 + &. This is however useless

even if one, or a few jobs need a large fraction, or equiv-
alently, if ~ approaches 1. In fact, J = 1 – 0(1/m) suf-
fices to render the greedy schedule useless. Intuitively, a
few resource-intensive jobs can delay a convoy of tiny jobs.

Therefore, using known results off-the-shelf from the
theory literature for our formulation means we have to com-
promise heavily. See Table 1 for a succinct comparison with
some settings and results close to ours.

1,3 Our contributions

Our contribution is twofold. First, we initiate a study of re-
source scheduling problems in parallel databases and scien-
tdic computing, and abstract a problem formulation. While
the abstraction does ignore some details, we show that it is
already different from the body of known theory results. On
the other hand, known practical solutions have poor worst-
case behavior. Our second contribution is that we design
new scheduling algorithms with good guaranteed worst case
performances. We describe the latter results now.

Essentially all known scheduling results with prece-
dence depend on two bulk parameters of the input instance:
the volume and the crittcal path. The volume V is the to-
tal resource-time product over all Jobs; the critical path
II is the earliest possible completion time assuming unlim-
ited resources. Clearly O(V + II) is then a lower bound to
makespan, and in most existing settings this can be achieved
to a constant factor. We show that our formulation is very
different in flavor, in that some parameter other than V and
H is at work. Specifically, we give instances of our prob-
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Table 1: Comparison of results. N/A=not applicable, seq=sequential. ~ar=r)arallel, Mall= malleable resource, Non-Mall= non-malleable
resource, SPG”=series-parallel grap’h.

lem where no schedule can achieve a makespan smaller than
Q(V + II log 2’), where T is the ratio maxj tj / minj tj.

For this choice of parameters (V, II and T), we give
a simple approximation algorithm that matches the O(V +
l_Ilog T) makespan bound. The makespan problem can be
extended in many different ways ($4). In particular we use
it as a subroutine to give the first polynomial-time scheduler
that, forallinstances ofour problem, determines a schedule
with WACT at most a O (log T) fact or away from optimal in
the worst case. (Recall that in our model jobs needs = 0(1)
distinct types of resource, and the precedence between them
are forests or series-parallel graphs). The approach we use
to minimize WACT requires another subroutine for solving
a generalized packing problem, where the main complication
is precedence constraints between items to be packed. Thk
problem appears to be of independent interest. Throughout
we have made an effort to keep our algorithms simple. For
instance, our algorithms do not use powerful primitives such
as linear programming algorithms, and indeed we could not
improve the quality of our solution using them. Finally we
remark that although our problem is different from exist-
ing theoretical settings, our solution borrows from various
existing techniques [8, 22, 3, 13].

Outline. In $2 we study database and scientific comput-
ing scenarios to justify our model. In $3 and S4 we give
the makespan lower and upper bounds. In $5 and !6 we
show how to extend the makespan algorithm to a WACT
algorithm. In $7 we pose unresolved problems.

2 Model

Databases. Query scheduling in parallel databaaes is a
topic of active research [2, 18, 27, 12, 9]. Queries arrive
from many users to a front-end manager process. A query
is an in-tree where the internal vertices are operations like
sort, merge, select, join etc., which we call jobs. (We think
of pipelines ae collapsed into single vertices. ) The leaves are
relations stored on storage devices. Edges represent data
transfer; the source vertex sends output to disk, which the
target vertex reads later. Queries may have a priority asso-
ciated with them, e.g., an interactive transaction has high
priority and statistics collection has low priority.

Databases keep certain access statistics along with the
relations that are used to predict the sizes of results of joins
and selects, and how many CPU instructions will be re-
quired to compute these results. The tools are standard in
database literature [21]. For parallel databases, one can also
estimate for each operation up to how many processors can
be employed at near-linear speedup [14]. Thus tjand ~j
can be estimated when a job arrives. Estimates of sizes of
intermediate results can be used to estimate the memory
and dkk bandwidth resource vector Fj.

Unlike for processors, the running time of a job is not
roughly inversely proportional to memory. For example, a
hash-join between two relations R1 and Rz with, say, RI be-
ing smaller, takes time roughly proportional to [log, IRI 11,
where ~ is the memory allocated; typically the query planner

liz, independentof other queriespicksr= Iltl[ err= IRII

[18]. Once processor and memory allocation are fixed, the
disk bandwidth needed can be estimated from the total IO
volume and job running time.

This model is best suited to shared memory databases
running on symmetric bus-based multiprocessors (SMP)
with shared access to disk [14]. They currently scale to
30–40 processors. There is consensus that SMP’S and scal-
able multiprocessors will converge to networked clusters of
SMP nodes [12]. Since communication costs across clusters
is much more expensive than shared access within a clus-
ter, the expectation is that most queries will be parallelized
within an SMP node.

Scientific applications. Multiprocessor installations are
shared by many users submitting programs to manager pro-
cesses running on the front-end that schedules them. Exam-
ples of front-end schedulers are DJM (distributed job man-
ager) on CM5, NQS (network queuing system) on Paragon,
POE (parallel operating environment ) on SP2. In some ma-
chines, the parallel job scheduler is closely integrated with
the OS, such as IRIX. Users may submit a script to the
manager. A script file has a sequence of invocations of exe-
cutable, each line typically specifying a priority, the number
of processors, estimated memory and running time. Notice
that although there may be some flexibility in the amount
of memory needed, the user typically makes a choice before
specifying an amount to the scheduler, which has to regard
it as inflexible. To improve utilization, system support has
been designed to express jobs at a finer level inside an appli-
cation and convey the information to the resource manager
by annotating the parallel executable [11, 5, 19].

Note that the common precedence graphs are chains
for scripts, series-parallel graphs for structured programs,

forests for database queries, and for divide-and-conquer and
branch-and-bound.

Fidelity. The most general representation of a job is its
running time as a function of the resource allocated to it. It
is difficult to find this function [9], and unclear if it is simple
enough to be used by the optimizer. We propose grouping
the resources into two types: malleable and non-malleable.
It maybe of interest to evaluate more elaborate alternatives.
Assuming knowledge of tjis reasonable for our applications,
but for more unpredictable applications, adaptive scheduling
is needed.

We have avoided both unwarranted simplifications and
generality. For example, we have not assumed for simplicity
that all resources are malleable. Memory is clearly not mal-
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Figure 1: Illustration of the lower bound.

leable, even for programs that are adaptive in limited ways
to the amount of allocated memory, Similarly, we have not
modeled the details of the inter-processor network.

3 Makespan lower bound

Many results in DAG scheduling rely on two bulk parameters
of the workload. One, which we call the volume parameter,
is the sum of resource-time products over jobs in the graph,
denoted V For example, with only one resource type, V =
X, t, r,. Note that for malleable jobs r, = mj /m and for

Graham’s list-scheduling type situation r, = l/m for all j.
The other parameter is the critical path II of the graph.
II = max~ IIj, where IIj IS the minimum time at which j
can complete even if infinite resources were available.

Q(V + H) is a lower bound to makespan. In all occa-
sions without non-malleable resources, this lower bound can
be achieved to a constant factor: H + & EJ tj= II+ V for

sequential jobs [10], and II+ (~~) ~ ~j tjmj = II+ O(V)

for malleable jobs [7]. These depend on arguments of the
form: “if a critical path is being ignored, most of the re-

sources are being utilized. ”

In this section, we show that O(V + II) makespan is
not always possible with both non-malleable resources and
precedence constraints. Thus this differentiates our prob-
lem from all list-type approaches [10, 8, 13] and malleable
job scheduling [7]. Our formulation is very different in flavor
because jobs may have to wait even when resource utiliza-
tion is very low because their specific requirement of the
non-malleable resources are not met. In contrast, jobs can
proceed with a smaller amount of a malleable resource with
proportionate slowdown. Thus some parameter other than
V and II is at work,

Claim 1 With precedence and non-malleable resources, the
optimal makespan can be as la~ge as G!(V + IIlog T), where
T = tm.x/tmin.

Proof. Consider the following instance with one resource
dimension. There are @(log T) independent job chains.

Chain i, z = O, 1, . . . has 2’ sequential compositions of the fol-
lowing two-job chain: the tall predecessor has tj= T/2aand

rj = C, and the fat successor has tj= r-j= 1.Then itcanbe
verified that II = O(T), and that V = ~i 2’(cT/2’ + 1) ~

CT log T + 2T = O(T) when we choose e ~ 1/ log T.

Note that only tall Jobs can run concurrently; fat jobs
cannot run concurrently with each other or with tall jobs.
Also note that the total length of tall jobs is 6)(T log T).

We will account for the makespan of an optimal schedule by
iteratively picking the currently largest job j in the schedule,
say of length tj= T/2X. No ku-ger jobs are present at this
point. Thus this job only overlaps with smaller jobs, but
at most one of each distinct length. Remove j and all these
jobs from consideration. This reduces the makespan by T/2X
and the total remaining tall job length by at most T(l/2” +

1/2”+1 + ~i- 1) ~ 2T/2Z. Note that the fat jobs need to
be only over 1 – 1/ log T wide in the resource dimension. ❑

This implies that a recent elegant constant factor
WACT approximation technique due to Chekuri et al, which
converts uniprocessor schedules to multiprocessor schedules
[4], will not generalize to handle non-malleable resources.
Their technique is to start with a uniprocessor schedule
where job j completes at time 0} and derive an m-machine

schedule with Cf~ = O(C; /m + 111). In their model all jobs
are sequential and the jobs need no other resources. If we
additionally add jobs that request non-malleable resources,
their conversion does not go through, and with good rea-
sons: if it does, a schedule with 0(11) additive term, rather
than the fl(II log T) term that we showed above, will hold,
thus violating the lower bound.

4 Makespan upper bound

In this section we will give an algorithm Makespan that is
polynomial in s, T and n that will achieve a makespan of
O(VS + II log T) for an input set of jobs J with the bulk pa-
rameters V, II and T defined before, where there is one mal-
leable resource and s types of non-malleable resources. De-
note fij = t,~j,and let V = max{~ Z, mjt,, ll~j tijllm}.

Also let I’IJ be the critical path length from a root through
job j, and II = mrcq {IIJ}.

The makespan algorithm first invokes a malleable list-
type scheduling algorithm [7] to allocate processors to jobs in
J, and to assign (infeasible) preliminary execution intervals
to these jobs. Then we partition the jobs into a sequence
of layers with jobs within a layer being independent of each
other, Finally we schedule these layers one by one using
bin-packing.

Step 1, Let ~ < v <1 be a free pmameter to be set later.
Compute a greedy schedule for J ignoring all non-malleable
resource requirements, as follows. Whenever there are more
than ~m free processors, schedule any job j in J (whose
predecessors have all completed) on the minimum of mj and
the number of free processors. This step is similar to [71.

Denote by p~ the number of processors allocated to job
j. After processor allocation let the modified job times be
t’= tjmj /Pj, and modified critical path lengths be II;. At
t~is stage the non-malleable resource requirements are stall
violated in general.

Step 2. Round all job times to powers of two: first scale
up the time axis by a factor of two, then round down each
job to a power of two, Don’t shift jobs so all precedences
are still satisfied. We will show that after this step, for all

j, t; = O(tj ) and ~~ = O (IIJ ). For notational convenience
we will cent inue to refer to the modified quantities as tjand
IIj, and assume that the modified time tjis a power of two,

with minj t;= 1 and maxj t$= T, all this affecting only
constants.

Step 3. Let B, = {j : TT ~ IIj –tj < (~+l)T}, i.e., divide
the earliest possible start times of jobs into blocks of length
T. Each block of length T will be expanded to a sequence of
layers of total length O(T log T). Specifically, remove from
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B, all jobs of length T and schedule them in a layer of
length 2’. This is the last layer. Divide [#T, (~ + 1)2’) into

[~T, (~ + ~)T) and [(7+ ~)T, (r + 1)2’) and recurse, placing
the generated layers in pre-order [22]. The total length of
the invalid schedule will be O(H log 2’).

Step 4. Schedule each layer separately in time order.
Consider each layer to be an instance of a generalized s-
dimensional bin-packing problem2 [8]. A first-fit (FF) bin
packing of each layer, considering job j in the layer to be

an item of ‘[size” -TI and bins of ~(size~~7 , suffices for our
purpose,

Lemma 2 Afier Step 2, the modified times and crttical
paths obey t; = O(tj ) and II; = O(IIJ ). Furthermore the

length of the schedule is 0(& ~~ mj t] -t- II).

Proof. (Sketch) The former claim follows because each job
j is assigned either ml machines, in which case t;= tj,or at

least -ym machines, in which case tj< tj/v.Picking -y such

that (1 – ~) (1 + ~) = 1, the length of the (invalid) schedule

is at most II+ & XJ mfl tj,similar to [7]. ■

Lemma 3 Jobs assigned to a particular layer I are inde-
pendent; the layer ordering is consistent wn!h job precedence
+ and in any layer I, ~~EI PI < m.

Proof. At every stage in the recursion, consider the jobs
of length t removed from the block of length t (and put in
a separate layer of length t).Any pair of such jobs must
have overlapping “execution” intervals after the first step.
They must therefore have been independent, and the sum
of processors assigned to them was at most m in the first
step. A job of length t starting in a block of length t can
only have (smaller than t)predecessors starting in the same
block and no successors starting in the same block. When
the block is bisected, these predecessors are all completed
before any of the t-long jobs in this block starts. ■

Note moreover that every job j placed in a layer 1 of length
t(1)has tj= Q(t(1)).We will need the following observation
which follows from a pigeon-hole argument,

Lemma 4 For any set {Z} of s-dimensional vectors,

llzqlm > :Z llqm.

Theorem 5 Fors resource dimensions the above algorithm
obtains a makespan of O(VS + IIlog T).

Proof. Consider a layer 1 that is t(l) -long in time, and
generates ~(1) + 1 bins using FF. Then there is at most
one bin that is less than half-full in all s dimensions. Each
of the other f(1) bins are at least half-full in at least
one dimension. Call these bins F’1/2(1). For a bin b de-

fine i7~ = ~le~ Cl. Then for all b s FI/2(1), [li%ll~ >

~t(I). Hence we obtain V Z 11~~ fibllm ~ ~ Zb lldbll~ ~

: XI ~bGF1,2(I) ll~bllm > ~ ~, f(~)t(~). The total length

of the schedule is thus at most ZI t(I)(f(I)+ 1) s 4V.S +

o(rIlog T). ■

‘However, this problem is not one where items are solid blocks

with volume and the bin is a bellow unit cube

Observe that the makespan routine is polynomial in n, T,

and s, and works for any precedence. The above method

also gives an alternative algorithm and much simpler anal-
ysis (weaker only in a constant) for the (s+ 1)-approximate
resource constrained scheduling result of [8]. Their (s + 1)-
approximation is for <= 0. In this case H = T, and
we allocate log’1’ layers with t(I)c {1,2,4, . . . . T}. Then

~1 t(I)< 2T, giving an O(s) approximation.

Corollary 6 If += 0, the above analysis (with a trivial
Step 3) gives a schedule of length O(VS + T),

5 Weighted average completion time

In thw section we will describe how to extend the makespan
algorithm developed earlier to the WACT metric, by apply-
ing techniques similar to [13, 3]. First we divide time into
geometrically increasing intervals. That is, define TO = 1,
T[=2e–l, t?=l . . . . . In what follows, consider the Ith inter-
val in time, namely, (T1– ~, Tt]; other intervals are processed

similarly.

Step 1. Let Je be the set of jobs that have arrived within
time [1, ~1] but have not already been scheduled. We re-
move from consideration any job which cannot be scheduled
within the f?-th interval because of critical path constraints.
Compute the earliest possible finish time IIj of each job j
based on critical path (assuming unlimited resource and pro-
cessors). Any job j for which IIj > ~1 is removed from J~
and deferred to a later interval.

Step 2. In this step, we choose a suitably significant subset
of J1 to be scheduled, carrying a possibly empty remainder
forward to the subsequent intervals.

The subset of JC chosen for scheduling is described as
follows. From J1 we have to pick a subset J; such that

~IGJ; ZW S mrej ~lGJ; tj~j < Tei jl < J’2 and j2 6 J;
implies jl c J;, and the objective ro(J~ ) = ~j ~~: Wj

is maximized. Suppose the optimal value of the objec-
tive above is W;. Since the above problem is hfP-hard,
we will instead obtain a subset Jj with value at least W;
closed under <, and satisfying ~j CJL tj ml = O(m~l ), and

~j~J: t~fi < 0(T,)7. We will describe this procedure,

called Dual Pack, later. We postpone the jobs in J1 \ Jj to a
later interval.

Step 3. In this step we schedule the jobs in J; using the
Makespan subroutine in 54 which will find a schedule of
length O(T1 log T). We schedule the output of Makespan in
the interval [K~~ log T, Wl+l log T) for some fixed constant K
determined by the O in the makespan algorithm.

That completes the description of the processing for the
lth interval, The steps at the high level are standard, for
example, see [13, 3]. The technical crux is the design of the
two subroutines Dual Pack and Makespan.

Theorem 7 The above algorithm is polynomial in T and n
and, joT s = O(1), is an O(log T) approx%mat%on for both
makespan and WA CT with on-line Job arrival.

Proof. (Sketch) Consider J1 and J; as in the algorithm. Let
w(J~) be weight of the jobs in J;. Say a optimal schedule
completes within time ~,z, finishing job j at time C?”, and

let the total weight of jobs completing in (~1-1, ~t] be W;

in that optimal schedule. First, we establish the following
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dommance property for all 1 = 1,. ., L, ~~=1 WJ(J[) ~

~~=1 W:. This follows from the design of D.alPack.

Now observe that because of the dominance property,
the above algorithm too finishes within round L, and also
that ~~zo(.lj) = xl W; Finally, the cost of thethesched-

ule it determines is at most O(logZ’)~~=lT/+lw(J~) =

O(log T) z~cl ~1-1~(~~) < ~(log T) ~~=1 ‘J&lW~, which
is at most O(log ‘T) ~j Wj C;. That completes the argu-

ment. ■

Recall that throughout we have assumed s = O(1),
In general] the algorithm above can be proved to be an
0(s + log 7’) approximation. Also, note that if we had an K
approximation algorithm for the Ma kespan routine, we would
have an O(K) approximation for minimizing WACT.

If we are only interested in off-line schedules, we can
compute J; via rounding an integer program similar to [13],
obviating the need for the Dual Pack routine. We omit the
detads of the following claim,

Theorem 8 There M an off-lvne algorzthmj polynomial m
s, T and n, that approximates makespan and WA CT to an
0(s + log T) mult~pltcative factor.

6 Packing jobs with large weight

We describe the Dual Pack routine used earlier. We are given
a set J of items (Jobs) ~ with profit p(j) and cost c(~), where

C( ) and P( ) extend to sets of items additively. There is a
precedence + amongst the items. A subset J’ ~ J is called
closed under + if jl < j2 and 3’z c J’ Imply jl E J’.

We consider the following pmmul problem: given a cost
bound C, determine a subset J* closed under < such that
c(J* ) < C and p(J* ) is maximized. Let this maximum profit
be P* (C). This is similar to the classical knapsack problem
except that there are additional constraints based on the
precedence, In this section we design a subroutine for the
following related problem X: given C, determine a subset
J’ closed under + with p(J’) > P* (C) and c(J’) = O(C).
We claim that suffices for the Dual Pack routine.

Consider the dual of the primal problem above: given a
target profit P, determine a subset J* closed under < such
that p(.J* ) z P and c(J* ) M minimized, Let this minimum
cost be C“ (P),

Our algorithm for problem X performs a binary search
for the unknown value of P“ (C). With each such binary
search query, it solves an approximate version of the dual
problem above to “correct” its mess. The whole routine is
is follows (K to be fixed later): “

Imtlalize Plb = O; Pub = 1 + ~J p(j).

While ~L,b > plb + 1 do
P = l(P]b + Pub)/2J

Call the dual approximation with argument
suppose It returns J’

If c(J’) > NC then P“b = P eke P]b = P

Return J’.

r.

It is clear that if there was an algorithm for the dual
problem which returned a subset closed under < with cost
0( C* (P)), then we could have an algorithm for problem
2?. It is this dual approximation that we describe below.
Note that choosing K in the program above no less than
the constant in the O of the dual approximation will be
sufficient.

In describing the dual approximation below, we assume
that the resource units are discrete, as is the case in reality.
In the preceding sections we had represented the resource
requirements as fractions for notational convenience only.
For simplicity we only describe the case s = 1, i.e., the case
of a single resource,

Series-parallel graphs. A series-parallel graph (SPG) can
be represented hierarchically using the grammar: a SPG G
is a vertex J (which is both the source and the sink), two
SPG’S GUP and GdOWn in series, or Glefk and Grigh~ in parallel.

A solutton for G is a subgraph of G closed under +.
We set up a dynamic programming table Y, where Y[G, c]
is the maximum profit of a solution for G with cost at most
c. Thus for our given target profit P the minimum cost is

c“ = min{c Y[root, c] ~ P}

We fill in the array Y[ ] as follows. At a single vertex G =
{j}, we set

{,
xii), if f:(.) < cY[G)C] = o

At a series node G = (GUP, GdOW,,), we set

V%, C], if C(G1,P) > c
YIG~cl = { p(GUP) + YIGdown, c – C(GUP)], else

At a parallel node G = (Gleft l/G,,ght ), we set

Y[G, c] = ~~C~~C{YIGleft] c’] + y[Grigbt, c – c’]}

These dynamic programs give pseudo-polynomial time algo-
rithms, and it is routine to then convert them to fully poly-
nomial time approximation schemes (fptas). Furthermore,
the solution sets can be retrieved along with the cost/profit
values using some additional book-keeping. The details are
very similar to designing fptas for standard knapsack [15]
and are omitted. We finally note that at the expense of run-
ning time growing exponentially in s, all the above can be
extended to s resource dimensions,

Forests. These are handled slmdar to the standard knap-
sack on trees [15]; we omit the details Loosely speaking
hierarchical graphs can be all handled in a similar way, but
arbitrary graphs appear harder ($7).

7 Extensions

Finally, we raise several questions regarding extensions of
the model and algorithms in this paper.

Tighter bounds. V, II and T are not the best characteriza-
tion of an instance, since the optimal makespan IS !O(II log T)

for some but not all instances. A better characterization of
the lower bound and improved algorithms are needed It
1s not clear how such a characterization can improve the
WACT algorithm.

Imperfect malleability. In reality the processor resource is
not perfectly malleable, neither are other resources perfectly
non-malleable. How important is it to model and optimize
for complicated intermediate forms of malleability? For im-
perfect malleability m the processor dimension [3] gives an
WACT algorithm.

Persistent resources. A job may allocate memory mid-way
through execution. We cannot model this by a chain of two
jobs, since the memory the job was already holding is not
released. How can jobs with such persistent resource needs
be scheduled?
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Non-clairvoyance and preemption. For the motivating ap-
plications, reasonable estimates of job running time are
possible. More general purpose schedulers must be non-
clairvoyant, i.e., work without knowledge of tjbefore j com-
pletes [23, 20], To handle this, recourse to job preemption or
cancellation is needed, whose large cost has to be factored
into the algorithm.

Arbitrary DAGs. While we have handled hierarchical job
graphs such as forests or series-parallel graphs, the general
DAG case is open. It is known that precedence-constrained
knapsack with general precedence is strongly Af’P-hard [15],
unlike forests. We show that settling the approximability is-
sue wdl be challenging [1]. This shows that the framework of
[13] may need modification to handle DAG’s, not necessarily
that the scheduling problem is difficult.

Claim 9 TheTe w an appr-oxamatzon preserving reductzon
from Expansion, the problem of estimating the vertex expan-
sion of a bipartde graph, to P.O. K , the paTtial order knap-

sack problem, even when all ttem costs and profits are re-
stricted to {O, 1}.

Proof. Given G = (L, R, E), suppose we need the vertex
expansion of R. Construct a two layer partial order +: the
upper layer contains a Job j for every u E L, with c(j) =
1, p(~) = O. The lower layer contains a job j for every
v c R, with c(j) = O, p(~) = 1. E is directed from L to
R. Run the routine for PO. K n times, with target profits
P E {1,....n}.Return minP{C(P)/P}, where C(P) is the
cost returned for target profit P. ■

Flowtime. In this paper we consider maxi Cj and
Z, WJC’J; some more ambitious objective functions are

X, (C, -a, ) and ~J W, (Cj -a, ), commonly called fiowtzme.

Unfortunately, even with a single machine, off-line problem
instance, and no resource or precedence constraints, It is
~P-hard to approximate non-preemptive flowtlme better
than about a factor of Q(W) [16]. In a practical implemen-
tation of our algorithm, one might artificially increase WJ
for jobs waiting for a long time.

Acknowledgments. Thanks to Joel Wein for introducing
us to the area.
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