
Parallel Randomized Load Balancing

(Preliminary Version)

Abstract

Micah Adler* Soumen Chakrabartit Michael Mitzenmacher$ Lars Rasmussen~

Computer Science Division

University of California, Berkeley, CA 94720

{mi.cah, soumen,mitzen,larsr}Klcs .berkeley. edu

It is well known that after placing n balls independently

and uniformly at random into n bins, the fullest bin holds

@(log n/ log log n) balls with high probability. Recently,

Azar et al. analyzed the following: randomly choose d

bins for each ball, and then sequentially place each ball in

the least full of its chosen bins [2]. They show that the

fullest bin contains only log log n/ log d + El(l) balls with

high probability. We explore extensions of this result to

parallel and distributed settings.

Our results focus on the tradeoff between the amount

of communication and the final load. Given r rounds of

communication, we provide lower bounds on the maximum

load of Q(r log n/ log log n) for a wide class of strategies.

Our results extend to the case where the number of rounds

is allowed to grow with n.

We then demonstrate parallelizations of the sequential

strategy presented in Azar et al. that achieve loads within

a constant factor of the lower bound for two communication

rounds and almost match the sequential strategy given

log log n/ log d + O(d) rounds of communication. We also

examine a parallel threshold strategy based on rethrowing

balls placed in heavily loaded bins. This strategy achieves

loads within a constant factor of the lower bound for

a constant number of rounds, and it achieves a final

load of at most O(log log n) given Q(log log n) rounds of

communication. The algorithm also works in asynchronous

environments.

“ Supported by a Schlumberger Foundation graduate fellowship.
tsuppofied in part by ARPA under contract DABT68-92-C-ol)261

by NSF (numbers CCR-921026O and CDA-8722788), and by Lawrence
L1vermore National Laboratory.

~supp~~ted by the Office of Naval Research.
$Supported by a fellowship from UC Berkeley.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyn ht notice and the

%title of the publication and Its date appear, an notice is given
that copyin is by permission of the Association of Computing
Machinwy. o cop otherwise, or to republish, requires

y ra fee andlor specx ICpermission.
STOC’ 95, Las Vegas, Nevada, USA
@ 1995 ACM 0-89791 -718-9/95/0005 ...$3.50

1 Introduction

When n balls are thrown independently and uniformly at

random into n bins, it is known that with high probability

(by which we shall mean 1 – 0(1/n)) the maximum number

of balls received by any bin is E)(~O~fO~n). (In this paper log

is used for logz.) Occupancy results such as this have a long

history in the mathematical literature [7, 10] with numerous

applications in hashing [2, 5, 9], PRAM simulation [9, 11]

and load balancing [2, 5].

Recently, an important extension of this result was

proven by Azar et al. [2]. Suppose we adopt the following

st rat eg y: we place the balls sequentially, one at a time; for

each ball, we choose two bins independency and uniformly

at random, and place the ball in the less full bin. When

all the balls have been placed, the fullest bin cent ains

only @(log log n) balls with high probability, an exponential

improvement over the simple randomized approach.

Unfortunately, the new method requires the resting

place of the balls to be determined sequentially. This

limits its applicability in parallel and distributed settings, a

major drawback when compared to the simple randomized

approach. In this paper, we examine the potential

of parallelizing the above procedure, as well as other

possible strategies for reaching a small maximum load in a

distributed environment. We focus on the tradeoff between

the number of communication rounds and the final load one

can achieve using simple, randomized strategies.

We first show lower bounds that hold for a wide class of

load balancing strategies, including natural parallelizations

of the method of Azar et al. (Following [2], we shall hereafter

refer to their algorithm as GREEDY.) We demonstrate a

parallelization of GREEDY for two communication rounds

that matches the lower bounds to within a constant factor,

and we examine alternative parallelizations of GREEDY that

are effective when the number of communication rounds is

approximately equ~ to the maximum load. We also examine
an idea used in [9] and [11] based on setting a threshold at

each bin: balls that attempt to enter a bin that is already

above its threshold for that round must be rethrown. This

strategy matches the lower bounds up to a constant factor

for any constant number of rounds. Our results show that

thresholding strategies can achieve a useful tradeoff between

communication cost and the maximum load achieved.

1.1 The model

We first describe our model in terms of balls and bins. Each

of m balls is to be placed in one of n bins. (For simplicity,

we shall concentrate on the case m = n. Extension to

general values will appear in the full paper,) Each ball

begins by choosing d bins as prospective destinations, each

choice being made independently and uniformly at random

(with replacement) from all possible bins. The balls decide

on their final destinations using T rounds of communication,

where each round consists of two stages. In the first stage

each ball is able to send, in parallel, messages to any

prospective bin, and in the second stage each bin is able

to send, in parallel, messages to any ball from which it has

ever received a message. In the final round, the balls commit

to one of the prospective bins and the process terminates.

Messages are assumed to be of size polylog(n, m). The goal

is to minimize the maximum load, which is defined to be the

maximum number of balls in any bin upon completion.

This model is motivated by the following realistic sce-

nario: modern computer networks often have decentralized

compute-servers (bins) and client workstations issuing jobs

(balls). A distributed load-balancing strategy has to assign

jobs to servers. Clients are ignorant of the intention of

other clients to submit jobs; contention is known only from

server load. Servers are ignorant of jobs from clients that

have not communicated with them. It is also prohibitively

expensive for clients to globally coordinate job submissions.

The primary objectives are to minimize the maximum load

achieved as well as the number of communication rounds

required. Reducing the number of rounds is an important

goal since, in a network setting, the time to complete a round

is determined by network latency, which is generally orders

of magnitude higher than CPU cycle times.

We examine a class of simple strategies that include

many of the standard algorithms presented in the literature.

The strategies we restrict our attention to are non-adaptive,

in that the possible destinations are chosen before any

communication takes place. We will also restrict our

discussion to strategies that are symmetric, in the sense that

all balls and bins perform the same underlying algorithm

and all possible destinations are chosen independent y and

uniformly at random. We believe that these restrictions have

practical merit, as an algorithm with these properties would

be easier to implement and modify even as the underlying

system changes.

Informally, we shall say that an algorithm functions

asynchronously if a ball (or bin) has to wait only for

messages addressed to it (as opposed to messages destined

elsewhere). That is, balls and bins are not required

to wait for a round to complete before continuing. An

algorithm requires synchronous rounds if there must exist

a synchronization barrier between some pair of rounds;

that is, a ball or bin must explicitly wait for an entire

previous round to complete before sending a message. In

many distributed settings, the ability of an algorithm to

function asynchronously can be a significant advantage;

an algorithm with synchronous rounds needs some notion

of global time to maintain coordination. Note that the

algorithm of Azar et al. achieves final load no worse than

O(log log n), but requires Q(n) synchronous rounds. Also,

the obvious strategy of having the balls choose random I.D.

numbers and applying standard sorting methods requires

O(log n) rounds in this model, as well as more sophisticated

communication.

We remark that many of our algorithms can perform

asynchronously. In these versions of our algorithms any ball

sends or receives at most d messages per round, whereas

a bin may receive or send up to 0(~) messages per

round. It seems unlikely that this latter number could be

made smaller while insisting on a small (O(log n)) number

of rounds. During some round at least 0(*) messages

from balls that have not previously communicated must

be handled. If these messages are distributed randomly,

some bin will receive at least 0(~) of them. We canloglogn
avoid this complication if we modify the algorithms to use

synchronous rounds and assume a time limit for each round.

In most of our algorithms, a bin must explicitly acknowledge

each message and send a negative response to all but a

constant number of balls in each round. If these negative

responses need not be sent explicitly, and instead a lack of

response is interpreted as a negative reply, then the bins

need only acknowledge and respond to a constant number

of messages per round. The remaining messages can be

discarded.

1.2 Our results

In $2, we provide a general lower bound for non-adaptive

and symmetric strategies that include parallel variations of

GREEDY [2] and threshold methods [9, 11]. For any fixed

number r of rounds of communication and any fixed number

d of choices for each ball, we show that with constant

probability the maximum load is at least Q
(m

The lower bounds are proved by reducing the balls and bins

scenario to an edge orientation problem on random graphs.

The rest of the paper deals with upper bounds. Our

analysis exploits a basic tool, based on results of Gonnet [6].

In analyzing complex random processes, the use of heuristic

approximations through normal or Poisson distributions

is common. We apply this notion systematically to the

scenario of a number of balls being thrown independently

and uniformly at random into some number of bins. Apart

from enabling us to prove our bounds, the tool may be of

independent interest.

In $4 we describe an asynchronous parallelization of

GREEDY for two rounds that matches the lower bound to

wit hin a constant factor for any fixed d. We also describe a

more complicated extension of GREEDY in which the number

of rounds is allowed to grow with n. We show that this

extension achieves a final load no worse than 10~O~j n + 2d +

O(1) with high probability if we allow ‘“fo~~” + 2d + O(1)

synchronous rounds.

In ~5 we explore an entirely different paradigm based

on thresholds, which were also used in [5, 9, 11].

239

We demonstrate algorithms based on thresholds that

asymptotically match the lower bounds for any fixed number

of rounds r up to a constant factor; that is, the final load is

“(m with high probability. However, if r and d

are allowed to grow with n, we show that the thresholding

method (with threshold one) is inferior to the parallel

GREEDY approach: while the latter achieves a maximum load

of O(lJ:~j:O;~) with O(,~;f$fO~m) rounds, thresholding

achieves a maximum load of Q(log log n) with log log n+O(l)

rounds. Nevertheless, thresholding has the advantage of

functioning asynchronously and offering a continuous trade-

off between rounds used and final load achieved.

Finally, we also present results obtained by simulating

our algorithms. As one might expect, our parallel strategies

lead to a final load close to that obtained by GREEDY,

and much better than that achieved by choosing one bin

randomly for each ball.

2 Lower bounds using edge orientation

We first develop a general model for lower bounds that

captures a class of non-adaptive, symmetric load balancing

strategies. Recall that for non-adaptive, symmetric

strategies, the destinations are chosen independently and

uniformly at random before communication begins. Our

lower bounds are based on the number of rounds of

communication, T, and the number of choices available to

each ball, d. In $2.1, we will focus on the case where d = 2

and T = 2, extending the results to arbitrary values of T and

d in ~2.2.

For our bounds, we will rephrase the balls and bins

problem in terms of a graph orientation problem similar to

that found in [1]. We temporarily restrict ourselves to the

case of d = 2. Associate with each bin a vertex of a graph.

Each ball can be represented by an undirected edge in this

graph, where the vertices of the edge correspond to the two

bins chosen by the ball]. Choosing a final destination is

equivalent to choosing an orientation for the edge. The goal

of the algorithm is to minimize the maximum indegree over

all vertices of the graph. In the case where there are n

balls and n bins, the corresponding graph is a random graph

from ~n,n, the set of all graphs with n vertices and n edges.

Following standard terminology, we define the neighbors of

an edge e, denoted by N(e), to be the set of all edges incident

to an endpoint of e. For a set S of edges, we write IV(S) for

U,cSIV(e). The neighbors of a vertex v, denoted by iV(v),

is the set of all edges incident to rJ.

Definition 2.1 The .-neighborhood of an edge e, denoted

by N,(e), is defined inductively bg: NI (e) = N(e), N,(e) =

N(N,_l(e)).

Definition 2.2 The (T,z)-neighborhood of an edge e =

(z, y), denoted by Nr,x (e), is defined inductively by:

Nl,. (e) = N(z) – {e}, N,,z(e) = N(N,_l,c(e)) – {e}.

1For convenience, We assume here that balls choose distinct bins;

that is, the graph has no self-loops. The analysis is similar if self-loops
are allowed.

Intuitively, for each round of communication, a ball

discovers a little more about the graph. Specifically, since

we are working towards lower bounds, we may assume that

the bins transport all available information about the balls

whenever possible. Consider an T round protocol for the

balls and bins problem where balls commit to their final

choice in the rth round. In this case, we may assume a ball

knows everything about the balls in its (r – 1)-neighborhood,

and no more, before it must commit to a bin; this follows

from a simple induction argument.

We now describe an assumption that we use to show

that the final load is high with constant probability. The r-

neighborhood of a ball e = (x, y) splits into two subgraphs

corresponding to N,,=(e) and Nr,Y (e); these are the parts of

the neighborhood the ball discovers from each bin. Suppose

that these two subgraphs of the ball’s r-neighborhood are

isomorphic rooted trees, with the roots being z and y. In

this case we say the ball has a symmetric r-neighborhood.

Then the ball has no reason to prefer one bin over another,

and must essentially choose randomly. For the moment, we

explicitly assume that in this situation the ball chooses a

bin randomly with probability 1/2; we shall expand on this

shortly.

Assumption 2.3 If a baii has a symmetric (T – l)-
neighbor-hood, then in any protocol of r rounds it chooses

a destination bin with a fair coin f7ip.

2.1 The d = 2, T = 2 case

We now show that, with constant probability, there exists a

‘ertex ‘ith at least T=o(m ‘ncident edges such
that each incident edge has a symmetric one-neighborhood.

Thus, with at least constant probability, at least T/2 of

these edges orient themselves to the vertex, and hence with

constant probability, any two-round parallel algorithm for

balancing balls and bins in this model must end with a final

load atleastQ(m The vertex in question will be

the root of a specific tree component in the graph.

Definition 2.4 A (T, T) tree is a depth T tree, each of whose

internal vertices has degree T and each of whose leaves is at

depth T. A (T, T) tree is said to be isolated in a graph G if

it is a connected component of G.

Lemma 2.5 If there is m isolated (T, 2) tree in the graph

determined by randomly throwing balls into bins, then the

probability that each ba[t incident to the root directs itself to

the root & 1/2.

PROOF. This follows since each edge incident to the root of

the (T, 2) tree has a symmetric one-neighborhood. K

Theorem2.6Thereexists aT=~(mSuchthat
with constant probability, a random graph from ~n,n contazns

an isolated (T, 2) tree.

240

We restrict ourselves to isolated trees in order to simplify

the proof. Note that it would be sufficient for the graph

to contain a (Z’, r) tree with further edges adjacent to the

leaves; restricting ourselves to isolated trees, however, only

affects lower order terms in the analysis.

PROOF. Let J = (vo, v], OTZ) be a vector of T2 + 1

vertices. Let XZ be an indicator variable that is 1 if V.

is the root of an isolated (T, r) tree, VI, VT are the nodes

of depth 1, VT+l, ..., VZ7–-1 are the children of vl, and so

on, and let X = &XZ. We show that X > 0 with at

least constant probability by determining the expectation

and variance of X and applying the simple bound (from [4],

equation (3) of 1.1):

E[x]2
Pr(X=O) < l–—.

E[x’]

The multinominal coefficient (l. T,T_~, .,.~_l) represents the

number of possible choices for’ d; we must first choose the

root, and then the T children of the root, and then the

T – 1 children for each child. We now choose a specific J

and determine the probability that Xu is 1. If X7 is 1, there

must be T’ edges corresponding to the (T, r) tree connecting

the vertices of J and no other edges incident to these vertices.

Routine calculations give the probability of this event as:

[n-(:,+,, ‘-T’) (:,)(T’)!

(;)n
Using linearity of expectation, we have

E[x] = (I, T, T-:;...;1)I) (n-(:’+ ’))n-T2 (~2)IT2)!

(;)n

This unwieldy expression can be simplified by canceling

appropriately and noting that we will choose T small enough

so that many terms are o(l). For example,

(n-(;2+l))-
e–2(T2+])(l + o(l)).

~;)n-T2 =

We thus obtain:

E[x] =
n2T2(l + o(l))

T!e2(T2+l)((T _ I)!)T ‘

We now examine how to compute E[X2]. Note that, because

we are considering only isolated (T, r) trees, if Z # ti, then

X3 and X. can both equal 1 if and only if Z and ti consist

of disjoint sets of vertices or are equal. This simplifies the

calculation of E[x2] considerably. Since

E[x2] = E[X] + ~ E[X”Xw]

it suffices then to compute the second term. The calculation

is similar to that for E[X]. Thus, with essentially the same

argument as above, one finds that

n’2’T2(l + o(l))
~ E[-xu-xwI = (jp!)2e4Tz+4((T - I)!)zT”

17#G

We thus have that E[x2] = E[X] + E[x]2(1 + o(I)). It now

suffices to choose a T such that E[X] is bounded below by a

constant. One can thus check that there exists a (T, 2) tree

with T = (~— o(l)) ~-- with constant probability.

E

Corollary 2.7 Any non-adaptive, syrnrnetmc load distr-i-

bution strategy for the balls arm! bins problem satisfying

Assumption 2.3, where d = 2 and r = 2, has a final

loud at least (fi/2 – o(l)) J-” with at least constant

probability.

Although it may at first seem unreasonable to insist

that balls with symmetric r-neighborhoods choose a bin

randomly, obvious tie-breaking schemes do not affect the

lower bound. For instance, if the balls are ordered at

the bins, either by random I.D. numbers or by a random

permutation, and then choose a bin according to their rank,

the balls are essentially choosing a bin at random. The

proof can easily be modified for the case where the balls are

ranked at the bins by some fixed ordering as well by using the

symmetry of the destination choices of the balls. Similarly,

if bins are numbered and given a preferred ordering in case

of ties, then with constant probability there is still a (T, r)

tree whose root has the given final load.

2,2 The general case

One can extend the proof to the case where d >2 and r > 2;

in fact, the extension applies if r and d grow sufficiently

slowly wit h n as well.

When r > 2, the balls and bins scenario can again be

reduced to a graph orientation problem; instead of showing

the existence of a (T, 2) tree, one needs to the existence of

a (T, r) tree. The proof that such a tree exists is similar to

that of Theorem 2.6.

When d > 2 we must consider hypergraphs instead of

graphs. In this reduction, balls correspond to hyperedges of

d distinct vertices in the hypergraph, The degree of a vertex

is the number of incident hyperedges. A tree of hyperedges

is simply a connected acyclic hypergraph, and the depth of

a tree is the the number of hyperedges in the longest path

from the root to a leaf.

Definition 2.8 A (T, r, d) tree is a depth r tree of

hyperedges of size d, each of whose internal vertices ha~

degree T and each of whose leaves is at depth r. A (T, r, d)

tree is said to be isolated in a hypergraph G if G contains

a subgraph that is a (T, r, d) tree and there are no other

hyperedges incident to the (T, T,d) tree in the hypergraph.

The r-neighborhood and (r, x)-neighborhood of a ball

can be defined for hypergraphs similar to Definitions 2.1 and

2.2. As in Assumption 2.3, we will assume that if a ball has

a symmetric r — 1 neighborhood, it chooses one of the d bins

uniformly at random at the end of an r round algorithm;

for convenience, we still call this Assumption 2.3. Thus the

root of an isolated (T, r, d) tree will end with T/d balls with

241

at least constant probability. The important feature in our

calculations is essentially the size of the (T, r, d) tree. As

long as the tree size is approximately ,O~&~n, a suitable

(T, r, d) tree will exist.

Theorem 2.9 For any fixed r and d, there exists a T =

“Cm such that with constant probability, a random

graph with n vertices and n edges of size d contains an

isoiated (T, T,d) tree.

PROOF. The proof will appear in the full version of the

paper; it requires a combinatorial calculation entirely similar

to that of Theorem 2.6. ■

Corollary 2.10 Any non-adaptive, symmetric load distri-

bution strategy for the balls and bins problem satisfying

Assurnptton 2.3 where d and T are constants has a final load

at ieast ~(~-) with constant probability.

The constants in the lower bound (for T and d fixed)

are dependent on d. The theorem can also be used when d

grows with n; with constant probability the final load is T/d

if there is a (T, r, d) tree in the corresponding hypergraph.

Similarly, if there is a (T, T,o!) tree in the corresponding

hypergraph, then with probability d-~ the final load is T;

this can be used to give negative results by showing that no

non-adaptive, symmetric load distribution strategy achieves

load T with high probability when dT = o(n).

3 The Poisson approximation

We now derive a tool that will be useful in developing

upper bounds. After throwing m balls independently and

uniformly at random into n bins, the distribution of the

number of balls in a given bin is approximately Poisson

with mean ~. We formalize this relationship by adapting

an argument used by Gonnet [6] to determine the expected

maximum number of balls in a bin. While useful tail

bounds on the distributions of balls in bins can be found

with other methods, most notably martingales [8, 9], our

method appears to be more general, and in some cases easier

to apply. Although tighter probability bounds for specific

problems can often be obtained with more detailed analyses,

as can be seen for example in [3], for our purposes this simple

approach is quite effective. As mentioned in [4], similar ideas

have been used in the study of random graphs to relate the

setting where each edge is included independently with some

probability and the setting where a graph with a certain

number of edges is chosen randomly.

Theorem 3.1 Suppose m balls ar-e thr’own into n bins

independently and uniformly at random, and let X, be the

number of balls in the ith bin, where 1 < i s n. Let

Yl,.. ., Yn be independent Poisson random variabtes with

mean ~, and let f(xl, ..., Xn) be a non-negative function.

Then

E[f (Xl, Xn)] < eE[f(Y,,. . ., Yn)]. (1)

Further, if E[f (Xl, . . ., Xn)] is monotonically increasing or

decreasing with m, then

E[-f(x],X~)] < C E[f(Yl, Y~)] (2)

for- some constant c.

PROOF. We have that

E[f (Y1,..., Yn)]
co

= ~[(EfYl,..., 1Yn)~E=k Pr[~X=k]

k=O

[
> E f(Yl,...,

1
Y.)~E=m Pr[~~=m]

m -m

= E[.f(Xl,..., xJ~,

where the last equality follows from the fact that the joint

distribution of the Z given ~ ~ = m is exactly that of

the X,, and that ~ X is Poisson distributed with mean m.

Using Stirling’s approximation now yields equation (1).

If E [.f(XI,X~)] increases with m, then by a similar

argument we have

E[f(Yl, Y~)]

[
> Ef(Yl, ..., Yn)~K=7n]f%[~Y2rnJ

= E[f(Xl,..., Xm)]Pr[~X>m]

Since 1% [~ z ~ m] can be bounded above by a constant,

equation (2) follows. The case where E [f(Xl,. . . . Xn)]

decreases with m is similar. ■

From this theorem, we derive a corollary that will be

central to most of our proofs. Let us call the scenario in

which bin loads are taken to be independent Poisson random

variables with mean ~ the Poisson case, and the scenario

where m balls are thrown into n bins independently and

uniformly at random the ezact case. Also, let a load based

event be an event that depends solely on the loads of the

bins.

Corollary 3.2 A load based event that takes place with

probability p in the Poisson case takes p[ace with probability

at most p= in the exact case. If the probability of the

event is monotonically increasing or decreasing with the total

number of batls, then the probability of the event is at most

cp in the exact case for some constant c.

PROOF. Let f be the indicator function of the load based

event. In this case E[f] is just the probability that the

event occurs, and the result follows immediately from

Theorem 3.1. ■

To demonstrate the utility of this corollary, we provide a

simple representative example that will prove useful later,

Lemma 3.3 Suppose m < &, and suppose m balls are

thrown independently and uniformly at random into n bins.

Then, with high probability, the maximum load is at least

0(#$-&) and at most O(l~).

242

PROOF. By Corollary 3.2 it is sufficient to prove that the

bounds hold in the Poisson case. Let p be the probability

that any particular bin contains T or more balls.

For the lower bound, note that

~ > (;)~e-dn

T! ‘

as the right hand side is simply the probability that a bin

has exactly T balls. The probability that no bin has T or

more balls is thus at most (1 –p)” s e–pn, and we need to

show that e-p” ~ ~ when T = Q(&). Taking logarithms
m

twice yields the following sufficient condition:

log T! + Tlog(~) s logn – O(loglog n). (3)

It is now simple to check that choosing T = * for any

constant a < * suffices.

For the upper bound, note that

~ < z(:)~e-+

T! ‘
(4)

as can be found by bounding the probability that a bin has

T or more balls by a geometric series. It is easy to show

that when T ~ ~, this probability is less than -$, and

thus no bin containsrnw or more balls with probability at

least 1 – 0(1/n) in the ~xact case. ■

Corollary 3.2 will also prove useful to us because in

the Poisson case all bin loads are independent. This

independence allows us to use various forms of Chernoff

bounds (such as those in [4], section 1.3) in the Poisson case,

and then transfer the result to the exact case.

4 Parallel GREEDY

The lower bounds in the previous section show that if the

number of communication rounds and possible destinations

for a ball are fixed, the log log n/ log d + O(1) maximum

load bound of [2] no longer applies. We therefore seek

ways to parallelize the GREEDY strategy and gauge their

performance. We first deal with the case of two rounds in

$4.1, and then consider multiple rounds in $4.2.

4.1 A two-round parallelization of GREEDY

We note that in the GREEDY strategy, all balls can choose

their random bins efficiently in parallel, but the rest of the

protocol is sequential. In this section, we consider strategies

that allow for the entire protocol to be performed efficiently

in parallel. We first consider the case where a ball makes

only two destination choices, i.e. d = 2. We begin with a

description of GREEDY. Each ball a will at some point in the

algorithm independently choose two destination bins Z1(a)

and iZ (a). We may assume that these choices are made in

parallel as the first step in the algorithm; this assumption

clarifies that GREEDY is non-adaptive. Next, each ball a

decides, solely by communicating with il (a) and i2 (a), to

which of the two bins it shall commit. Once a ball has

committed to a bin, its decision cannot be reversed. We note

that ties in this and other algorithms are broken arbitrarily

unless stated otherwise.

E

chooses u.a.r. two bins z] (a) and i2 (a)

GREEDY:

call CHOOSE(2)

sequentially: each ball a

queries bins il (a) and iz (a) for current load

commits to bin with smaller load

We first attempt to break the sequentiality of GREEDY by

letting the balls choose between ZI (a) and iz (a) according to

the selections made by the other balls in the initial stage of

the process. Let all the balls inform il (a) and i2 (a) of their

choices by sending them both a request. We shall refer to

the two requests as sibhrsgs.

Each bin then creates a list of the requests it has received.

The bins may order the list arbitrarily. However, if they

handle requests in the order they arrive, the algorithm may

function asynchronously. Notice that we make no claim that

the requests arrive at the bins in any particular order.

The height of a request is its position in the request list

it belongs to. The bins now send back the heights of their

requests to the balls. Finally, each ball commits to the bin

in which its request had the smaller height. This allows the

entire process to finish in only two rounds:

PGREEDY:

call CHOOSE(2)

in parallel: each ball a

sends requests to bks il (a) and iZ (a)

in parallel: each bin i

creates list of received requests

sends heights to requesting balls

in parallel: each ball a

commits to bin with smaller height

Note that Corollary 2.7 provides a lower bound for the

PGREEDY strategy. We now prove an upper bound on the

maximum load achieved by PGREEDY.

Theorem 4.1 The maximum load achieved by PGREEDY is

at mo9t (4 + o(l)) J- wzth high probability.

PROOF. We bound the probability that a specific bin i

receives more than 2T balls, where T is to be determined.

Consider a bin z with more than T requests. The probability

that more than 3 balls sent both requests to i or that the

total number of requests received by z is more than log n is

243

at most 0(~), so we condition on the event that neither

is the case. The set R of requests sent to a bin other than

z are distributed in the remaining n – 1 bins independently

and uniformly.

Consider a request in i of height at least T whose sibling

lies outside Z. Let S C R be the set of siblings of such

requests. We prove that, with sufficiently high probability,

fewer than T requests in S have height T or more.

Consider the subprocess of requests R arriving to

the bins other than i. We can imagine these requests

arriving sequentially at the bins according to some arbitrary

ordering. Let time tbe the instant immediately after the t’th

such request arrives.

We now use an innovation from [2]. Let N = ~ and

& be the event that, at time t, no more than N bins have

received more than T requests from R. Also, let the random

variable X* equal 1 if the height of the t ‘t h request is greater

than T, and O otherwise. Finally, let the random variable

Y~ equal 1 if X~ = 1 and t~ occurs, and O otherwise.

We define S to be the event that & is true for all t.
Conditioned on E, we have that ~tc~ Yt is an upper bound

on the number of balls of height at least T that choose bin

z as their final destination.

Note that Pr[Y, = 1 I YI,.. ., Yt_I] < {. It follows that

the sum of a subset of the Y, is stochastically dominated

by the sum of the same number of independent Bernoulli

variables with parameter ~. Therefore, using the Chernoff

bound, we have for T = (2-+ o(l)) ~-:

P[;.+ ~ (-)’<

We can bound Pr[--t] since R consists of at

0(+).

most 2n — T

requests uniformly distributed over n — 1 bins. It is easy

to show Pr[-f] = 0(~) by Corollary 3.2 and Chernoff’s

bound. Thus

It follows that for each bin i, the probability that T balls

of height greater than T choose bin z is 0(~). Hence with

high probability all bins must finish with at most 2T balls.

■

The proof can be easily modified to the case where balls

have more than two siblings as well; for fixed d, the final

10ad ‘iii ‘tin be ‘(m but ‘he constant ‘actor
in the O-expression is & + o(l). In practice, however,

for reasonable values of n, increasing d does not improve

the final load. Informally, each ball receives more pieces of

information, but each piece is less valuable since the height

becomes a less accurate estimate of the final position. Also,

the constant factor is dictated by our attempt to have the

probability of failure be at most 0(~); if one is willing to

accept slightly larger error probabilities one can improve the

constant factor slightly.

4.2 Multiple round strategies

Our lower bounds suggest that with more rounds of

communication, one might achieve a better load balance.

We thus suggest an alternative parallelization of GREEDY

called MPGREEDY that makes use of more rounds. We first

examine the case where d = 2.

The algorithm proceeds in a number of rounds, until

every ball has committed. In every round, each bin will

allow at most one of its requesting balls to commit to it. If a

ball receives that privilege from two bins, the ball commits

to the bin with the lesser current load. Once a ball has

committed, the bin holding the other request is informed

that it may discard that request:

MPGREEDY:

call CHOOSE(2)
in parallel: each ball a

chooses a random I.D. number

sends requests with I.D. to bins i] (a) and i2 (a)

in Parallel: each bin i

sorts requests by I.D. number

sequentially: repeat until all balls have commit ted

in parallel: each bin i

sends current load to first uncommitted ball on request list

in parallel: each ball a

if received at least one message

commits to the bin with smaller current load

tells bin holding other request to discard

One can imagine the algorithm by picturing a scardine

moving level by level through the request lists of the bins,

When the scanline moves up to a new level, bins send

messages to all the balls that the scanline has just passed

through. When bins receive responses, they delete the

corresponding balls in the request list above the scardine.

The algorithm terminates when every request has either

been passed through or deleted.

One disadvantage of this algorithm is that it requires

synchronous rounds; the discards for each round must

complete before the next round can begin. We also require

a partiaJ order on the balls, given in this case by randomly

chosen I.D. numbers (chosen from a suitably large set to

ensure uniqueness with high probability), to instill some

not ion of sequentialit y. However, a significant ad vant age is

that all the communication paths required are determined

by the initial choices of two bins made by the balls. This may

be useful in practice in cases where there is a cost associated

with modifying the communication pattern during the

course of the algorithm, as in distributed networks.

Clearly, the maximum number of balls in any bin upon

completion is bounded above by the number of rounds taken

to finish. We analyze the latter.

Theorem 4.2 With high probability MPGREEDY finishes in

at most log log n + 0(1) rounds.

244

In order to prove the above statement, we consider the

following variation of GREEDY (for any d): if there is a tie

for the least loaded bin, then a copy of the ball is placed in

each bin with the minimal load. We call this scheme GREEDY

WITH TIES.

Lemma 4.3 The number of communication rounds used by

MPGREEDY is one more than the maximum load given by

GREEDY WITH TIES when the balls are thrown in the order

given by the I.D. numbers and the bm choices made by the

balls are the same for both trials.

PROOF. Consider a modification of MPGREEDY where the

ball commits to all bins from which it receives a message.

The number of communication rounds used by this modified

version of MPGREEDY is the same as for the original. With

a little thought one can see that this scheme exactly mimics

the GREEDY WITH TIES scheme, and hence the two methods

give the same final distribution of the balls. Since the height

of the scanline moves up one level each round, the number

of communication rounds used by MPGREEDY is hence one

more than the maximum load of GREEDY WITH TIES. H

We now suggest a modification of the proof given in Azar

et al. to handle the case where there may be ties. The

following statement is sufficient:

Theorem 4.4 The maximum load achieved by GREEDY

WITH TIES when n balls are thrown into n bins is at most

‘O&’~ n + 2d + 0(1) with high probabdzty. In particular, for

‘0 ‘0 n +0(1).any fixed d the maximum load M pog~

PROOF. The proof is almost entirely the same as Theorem 4

of [2]. The main difference is that for each ball placed in

the system up to d copies can be placed if ties remain.

This problem can be handled by taking some care in the

base cases. In the notation of Theorem 4 of [2], one can

set ,&d2 = n/2de; for d > 8, one can show by Chernoff ’s

bounds that setting ~zd = n/2de works with sufficiently

high probability for the argument to follow. ■

Theorem 4.2 follows immediately. Moreover, an

extension to the case where d grows with n is interesting.

Corollary 4.5 When MPGREEDY is run with d = ,0~~0~~0~ ~ +

0(1), the number of rounds and mccxtmum ioad are at most

‘(lo~lo~lo~n
~ K) with high probability.

Theorem 4.4 demonstrates that one can match the

performance of GREEDY at the expense of I“f$jn +2d+O(l)

rounds of communication. As we shall see, Corollary 4.5

also implies that, in the case where d = ~0~~0~~0~ ~ + O(l),

MPGREEDY performs better than the threshold strategy

discussed in the next section.

It is open whether one can

the partial order on the balls

while achieving similar results.

extend MPGREEDY to avoid

or the synchronous rounds

5 Threshold strategy

We now examine another strategy, previously exploited in

[5, 9, 11] in similar contexts, to achieve good load balancing.

Given a threshold T, we imagine throwing the balls over r

rounds. If more than T balls enter a bin during a round,

the excess balls are rethrown. We wish to set T as small as

possible while ensuring that with high probability at most

T balls are thrown into any bin in the rth round. Then after

the r rounds the fullest bin will contain at most rT balls.

Note that a ball can choose its bins for all r rounds before

any messages are sent, so this scheme falls into the general

model of Section 2 for which our lower bounds apply.

There are several advantages this method has over the

PGREEDY strategy already presented. First, this method can

work in completely asynchronous environments. As long as

a request includes the number of its current round as part of

the message, messages from distinct rounds can be handled

simultaneously. Secondly, balls send and receive at most

one message per round. Finally, we shall show that this

method demonstrates a potentially useful tradeoff between

the maximum load and the number of rounds.

THRESHOLD(T):

while there exists a ball that has not been accepted

in parallel: each unaccepted ball a

chooses u.a.r. a bh i(a)

sends a request to i(a)

in parallel: each bin i

chooses up to T requests from current round

sends these balk acceptances

sends other balls in this round rejections

The question is how to set the parameter T so that

the procedure terminates with high probability within some

specified number of rounds. In 35.1, we show how to set

T for any constant number of rethrowing rounds. We then

show in j5.2 that when T = 1 THRESHOLD(T) takes at most

O(log log n) rounds and has maximum load Q(log log n) with

high probability. Our proofs demonstrate the essential

techniques to derive the relationship between T and r for

any values of T and r.

A variation on this strategy would allow a bin to hold up

to kT balls after k rounds for all k, instead of limiting the

bin to T balls per round. We choose to analyze the latter

approach because the proofs appear more straightforward.

We also remark that we could show that the bounds

we present hold with very high probability; that is, the

probability of failure is bounded above by I/j(n) where f(n)

is a superpolynomial function. This requires more attention

to the Chernoff bounds, and the results will appear in the

full version.

5.1 Thresholds with a fixed number of rounds

d’Theorem 5.1 For T = r 2’;.;;;; ~g n THRESHOLD(T)

terminates after r rounds with high probability.

245

PROOF. We begin with the proof when r = 2. We bound the

number of rethrows after the first round by using the Poisson

case. The probability that a bin contains more than T balls

is at most ~, as can be seen by bounding the probability

by a suitable geometric series. Thus, with high probability,

the number of bins with more than T balls is at most ~. We

also have that with probability exponentially close to 1 that

no bin contains more than log n balls. We now assume that

this is the case; formally, we can condition the event that no

bin has more than log n balls, and all previous statements

still hold. Thus the total number of rethrows in the Poisson

case is at most W with high probability, and the same

holds in the exact case by Corollary 3.2, as the expected

number of rethrows is an increasing functiou in the number

of balls thrown.

Now consider the second round. Using equation (4) from

the proof of Lemma 3.3, we have the probability that a

specific bin receives more than T balls in the second round

is at most 2(2 log n) T/(T!)~+l in the Poisson case. This

expression is 0(1/n2) for the given value of T and as in

Lemma 3.3 the result follows.

We now consider when r >2. We have shown that after

one round the number of balls that need to be rethrown is

certainly less than *. Let k, be the number of balls

that have to be rethrown after z rounds. Following entirely

the same argument, one can show inductively that

T1-l

‘t < ‘(%)=
with high probability y for any fixed i and large enough n.

Now consider the final round. By equation (4) of the proof

of Lemma 3.3, the probability that a bin receives more than

T balls on the rth round is at most 2(k,_1 /n)~/(T!), which

is 0(1/n2) for the given value of T. The result follows. ■

The theorem suggests that using the threshold strategy,

one can successfully trade load balance for communication

time in a well-defined manner. We note that one can also

directly show that for T =
=

THRESHOLD(T)

requires more than T rounds with high probability in a

similar matter.

5.2 The case of T = 1

We can extend our argument to the case where r grows with

n with a bit more care. We consider the case where T = 1.

The following results are similar to those in [9] and [11], but

the simple proofs below are appealing.

Theorem 5.2 THRESHOLD (1) terminates after at most

log log n + 0(1) stages with high probability.

PROOF. Again let k, be the number of balls to be thrown

after stage i. We first claim that, as long as k,+] is

at least 4<=, k,+ 1 < ekj/n with probability 1 –

O(l/nz). For convenience we assume the balls arrive in

some arbitrary order, with the first ball that arrives at a

bin being accepted. Let XJ be the event that the jth ball

falls into a non-empty bin, where 1 < j s k,. Note that

Pr[Xj=l] Xl,..., Xj_l] < k, /n. It follows that the sum

of the k: random variables Xl is stochastically dominated by

the sum of k, independent Bernoulli random variables with

parameter k, /n. Using Chernoff bounds the claim follows.

We thus have:

J2’-1)

k, < —koz’.
n2t –1

By picking kO = n/2e, r = log log n rounds will suffice to

cut down k, to below 4/= with high probability. By

using the Poisson case to bound the number of bins that

receive more than one ball, one can show that only O(1)

more rounds will be needed after this point. It is simple

to show by Chernoff bounds that only a constant number

of rounds are required before only ko balls remain to be

thrown, and the result follows. 9

Theorem 5.3 The maximum load of THRESHOLD(1) is at

least Q(log log n) with high probability.

PROOF. As before, let k, be the number of balls thrown in

round i, but let kO = n. We can determine the number of

balls thrown in the ith round by considering the number

of bins that receive two or more balls in the ith round.

Using the Poisson case and Chernoff bounds, we find that

as long as k, > 10~=, then with probability at least

1 – 0(1/n2),

()1
~,–~

k,+] 2
2’

k.
4en

z = *“

It is easy to check that we need i = fl(log log n) before

k, < 10/=. We now show that with high probability,

there will be at least one bin that receives a ball in each of

the first Q(log log n) rounds. Say that a bin survives up to

round i if it gets a ball in each of rounds O, . . . , i, and let ~i

be the number of bins that survive up to round i. Then

[
pr bin survives up to z + 1 it survives up to i1

= 1– l_u’() >~
n – 2n

where the last inequality holds since k, s n. Applying

Chernoff’s bound tells us that the fraction of bins that

survived round i that also survive round i + 1 is at least &

with probability over 1 — 0(~) as long as s, is sufficiently

large. Therefore, after the z + l-st round, with high

probability the number of surviving bins is at least

s,+ I > nx~x...x~

>
4’+’ Y4e)2’

It remains to be checked that for i = Cl(log log n) all the

Chernoff bounds will hold, and thus with high probability

there is still a surviving bin. ■

The strategy THRESHOLD (1) achieves a maximum load that

is essentially the same as GREEDY, but uses only O(log log n)

asynchronous rounds instead of O(n) synchronous rounds.

246

6

An

Balls Simple GREEDY PGREEDY THRESHOLD(T)

n Random d=2 d=3 d=5 d=2 d=3 d=5 2 rounds 3 rounds 5 rounds

106 8–11 4 3 2–3 5–6 5–6 5-6 5–6 4–5 4

5.106 9–12 4 3 3 5–6 5–6 6–7 5–6 4–5 4

10’ 9–12 4 3 3 5–6 5-6 6–7 5–6 4–5 4

5.107 9–12 4 3 3 5-6 5–6 6–7 6 5 4

Table 1: Simulation results.

Simulation Results

important feature of these load balancing schemes is that

the maximum load, even using the simplest randomization,

is very small compared to the total number of bins. Thus,

even though one may be able to show that asymptotically

one strategy performs better than another, it is worthwhile

to test actual performance. We thus briefly describe some

simulation results.

We here consider only the case where the nnmbers of

balls and bins are equal. As usual, d represents the number

of bins to which each baJl sends requests. The numbers

given in the table represent the ranges for the maximum

load found after between fifty and one hundred trials for

each strategy.

As expected, both PGREEDY and THRESHOLD(T) perform

somewhere between simple random selection and GREEDY.

Notice that for PGREEDY when d = 3 the maximum load

is the same as when d = 2, and that the maximum load

increases when d = 5; this is not completely surprising given

our previous analysis. Also, we note that the thresholds

were not optimized for the threshold strategy; in practice

one might want to take care to optimize the threshold for a

given number of balls.

7 Conclusion

We have demonstrated lower bounds for simple parallel

load distribution strategies in a distributed setting, and also

found simple strategies that match the lower bounds within

a constant factor. Our results show the tradeoff between

the final load and the number of rounds of communication

required. Directions for future work include looking at the

case where each baJl has an associated weight, and the goal

is to minimize the maximum weight over all the bins after

distribution. Also, it would be interesting to see how useful

the general paradigms we employ are in the case where

the underlying communication network is restricted, so that

balls can only communicate with certain processors.

Acknowledgments

We would like to thank the numerous people at U.C.

Berkeley and the International Computer Science Institute

who offered suggestions and improvements to previous drafts

of the paper, We thank Michael Luby and Alistair Sinclair

for many helpful suggestions, and Claire Kenyon and Orli

Waarts for leading us to examine the graph model.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Miklos Atjai, James Aspnes, Moni Naor, Yuval Rabani,

Leonard J. Schulman, and Orli Waarts. Fairness in

scheduling. In Pr-oceedzngs of the Sixth Annual ACM-

SIAh4 Symposium on Discrete Algortihms, pages 477-

485, 1995.

Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced

allocations. In Proceedings of the 26th ACM Symposium

on Theory of Computing, pages 593–602, 1994.

A.D Barbour, Lars Hoist, and Svante Janson. Poisson

Approximation. Oxford Science Publications, 1992.

B. Bollobiis. Random Graphs. Academic Press, London,

1985.

A. Broder and A. Karlin. Multi-level adaptive hashing.

In Proceedings of the 1st ACM/SIAM Symposium on

Discrete Alg&ihms, pages 43-53, 1990. - “

G. Gonnet. Expected length of the longest

sequence in hash code searching. Journal of the

28(2):289-304, April 1991.

N. Johnson and S. Kotz. Urn Models and

Applicat~on. John Wiley and Sons, 1977.

probe

A CM,

Their

A. Kamath, R. Motwani, K. Palem, and P. Spirakis.

Tail bounds for occupancy and the satisfiability

threshold conjecture. In Proceedings of the 2~th IEEE

Symposium on Foundations of Computer Science, pages

592-603, 1994.

R. Karp, M. Luby, and F. Meyer aufder Heide. Efficient

pram simulation on a distributed memory machine. In

Proceedings of the .2Jth ACM Symposium on Theory of

Computing, pages 318-326, 1992.

V. F. Kolchin, B. A. Sevsat’yanov, and V. P.

Chistyakov. Random Allocations. V.H. Winston &

Sons, 1978.

P.D. MacKenzie, C.G. Plaxton, and R. Rajaraman.

On contention resolution protocols and associated

probabilistic phenomena. Department of Computer

Science Technial Report TR-94-06, University of Texas

at Austin,, April 1994.

247

