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Abstract

Reducing communication cost is crucial to achieving good
performance on scalable parallel machines. This paper
presents a new compiler algorithm for global analysis and

optimization of communication in data-parallel programs.
Our algorithm is distinct from existing approaches in that
rather than handling loop-nests and array references one

by one, it considers all communication in a procedure and
their interactions under different placements before making
a final decision on the placement of any communication. It

exploits the flexibility resulting from this advanced analysis

to eliminate redundancy, reduce the number of messages,
and reduce contention for cache and communication buffers,

all in a unified framework. In contrast, single loop-nest

analysis often retains redundant communication, and more
aggressive dataflow analysis on array sections can generate

too many messages or cache and buffer contention. The

algorithm has been implemented in the IBM pHPF compiler
for High Performance Fortran. During compilation, the
number of messages per processor goes down by aa much

as a factor of nine for some HPF programs. We present

performance results for the IBM SP2 and a network of Spare
workstations (NOW) connected by a Myrinet switch. In
many cases, the communication cost is reduced by a factor

of two.

1 Introduction

Distributed memory architectures provide a cost-effective

method of building scalable parallel computers. However,
the absence of global address space, and the resulting need
for explicit message passing makes these machines difficult
to program. This has motivated the design of languages
like High Performance Fortran (HPF) [9], which allow the

programmer to write sequential or shared-memory parallel
programs that are annotated with directives specifying data

decomposition. The compilers for these languages are
responsible for partitioning the computation, and generating

the communication necessary to fetch values of non-local

data referenced by a processor [15, 30, 4, 3, ,5, 12].

Accessing remote data is usually orders of magnitude
slower than accessing local data. This gap is growing
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because CPU performance is out-growing network perfor-
mance, CPU’s are running relatively independent multipro-

grammed operating systems, and commodity networks are

being found more cost-effective. As a result, communication

startup overheads tend to be astronomical on most dis-
tributed memory machines, although reasonable bandwidth
can be supported for sufficiently large messages [25, 24].
Thus compilers must reduce the number as well as the
volume of messages. This can improve performance on

shared memory machines as well, because fewer messages
translate into fewer synchronization events [26, 22, 13].

Consequently, communication optimization has been
extensively researched, from local single loop-nest to global

and even interprocedural optimization, The earliest and

most commonly used optimizations include message vec-

torization [15, 30], using collective communication [11, 20],
message coalescing [15], and exploiting pipelined communi-

cation [15, 12], all withh the scope of a single loop nest.
Local analysis of array accesses based on dependence testing

alone often retains redundant communication. Naturally,
the next step waa the use of dataflow analysis, e.g.. using
precise array dataflow analysis to detect redundant comm-

unication within a loop nest [3], and those using global

dataflow analysis for redundancy elimination across loop
nests as well, These include dataflow analysis over array

sections for regular computations [10, 14, 17, 18] and over
entire arrays for irregular computations [27, 1]. Typically,

the technique is to move communication to the earliest

possible point dictated by data dependency and control flow.
Superficially, this appears to give the additional benefit

of maximum overlap between CPU and network activity.
Recently, it has been pointed out that communication that
is scheduled too eagerly can lead to problems like contention

(which reduce effective network bandwidth) and excessive

buffer requirement (which upsets the computation’s cache

and thereby degrades performance) [18, 21]. This is similar
to the issue of register pressure [19]. However, a more

striking fact we point out is that earliest placement can

also lead to valuable opportunities being missed for reducing
the number of messages or eliminating partial redundancy,

making it a sub-optimal strategy even in the absence of
resource constraints.

There is thus a clear need for global scheduling of

communication. In this paper we present a novel compiler
algorithm that includes and extends all the optimizations
mentioned above. Our algorithm derives from static single

assignment analysis, array dependence analysis, and the
recently introduced data availability y analysis [14], which is
extended to detect compatibility of communication patterns

in addition to redundancy. We differ significantly from
existing research in that the position of communication code
for each remote access is not decided independent of other
remote accesses; instead, the positions are decided in an
interdependent and global manner, The algorithm achieves

both redundancy elimination and message combining glob-
ally, and is able to reduce the number of messages to an
extent that is not achievable with any previous approach.
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our algorithm has been implemented in the IBM pHPF
prototype compiler [12], We report results from a prelim-

inary study of some well-known HPF programs. The per-

formance gains are impressive. Reduction in static message

count can be up to a factor of almost nine, Time spent

in communication is reduced in many cases by a factor of

two or more. We believe that these are also the first results

from any implementation of redundant message elimination

across different loop nests, and add significant experimental

experience to research on communication optimization.

2 Motivating codes

We motivate the need for our proposed optimization by
analyzing a series of real-life F90/HPF source codes. Specif-
ically, we demonstrate the following.

●

●

b

Redundancy elimination is useful, but often not
enough to reduce the number of messages. This is

crucial for our target architectures, especially for

synchronous and collective communication,

In fact, the traditional mechanisms of redundancy

elimination can sometimes prevent the compiler from

generating the best communication code. “

The well-known redundancy elimination techniaue of
earliest communication placement is sensitive to &inor
syntactic differences in the high-level source, and may
produce suboptimal code.

In the code fragments that we present, we will elide actual

operations and show each RHS as a list of variables accessed.
Frequently we deal with F90 style shift operations that
involve nearest-neighbor communication (NNC); we show

this pictorially using arrows. For simplicity, the combinable
messages in our examples have identical patterns on the
processor template; in reality, combining is feaaible when

one pattern is a subset of another.

2.1 Beyond redundancy elimination

Redundancy elimination seeks to avoid unnecessary repeti-
tions of communication for the same data. Often programs

exhibit similar communication patterns involving different

data as well. Combining those communications to use fewer
messages is a crucial goal on current multicomputers like the

SP2 as the message startup costs are large.

In the NPAC gravity codel, all 2-d arrays are of dimen-

sion (ny, nz) distributed (BLOCK, BLOCK) and all 3-d arrays

are of dimension (nx ,ny ,nz) distributed (*, BLOCK, BLOCK).
A simplified form of the code is shown in Figure 1. In this
code it is easy to detect that the NNC for g and glast

can be combined, as can be the sum operations. Thus we
can combine the eight NN messages into four and the eight
global sums into two parallel sets of four global sums.

2.2 Earliest placement may hurt

While in the last example we merely needed a combining
pass after earliest placement, in general the situation could

be more complicated. In particular, redundancy elimination
via earliest placement can prevent the combining possibili-
ties from being exploited. To demonstrate this, we study
the NCAR shallow water code, which has NN message

pattern. As discussed in [12], the message coalescing

optimization implemented in the pHPF compiler allows the

diagonal communication to be subsumed by an augmented
form of the NNC along the two axes. A simplified
form of the original code is shown in Figure 2. If no

redundant message elimination is done across different loop

nests, there would be 20 exchanges generated per processor,

following the subsumption of diagonal communication by

message-coalescing. Earliest placement will move up a
communication as far as possible within the loop, commu-

nicating data right after definition. 14 array sections will

be communicated per processor. In contrast, using message

combining as the guiding profit motive, we get a schedule
with only 8 exchanges per processor, in which placement

of communication is not at the earliest point detected by

dataiiow analysis. (The IBM compiler already optimizes
diagonal communication like p~ by subsuming it using p~

and p+. This is reflected by the message counts.)

2.3 Syntax sensitivity

Since earliest placement pushes communication close to the
production of the data value, placement is sensitive to the

structure of intervals containing the production. As a case

in point, consider the semantically equivalent codes in the

three columns of Figure 3. Suppose arrays a and b have
identical layout, say blocked. Using earliest placement, the

messages for the two arrays can be combined in the third
column whereas they cannot in the second code. Even if
the programmer were careful enough to write the code in

the first column, intermediate passes of compilation may

destroy the interwd containment. In fact, the current IBM
HPF scalarizer [12] will translate the F90-style source to

the scalarized form in the second column. If loop fusion

can be performed before this analysis, as in this case, the

problem can be avoided. But this is not always possible [28,

~ 9.2]. Thus, limited communication analysis at a single
loop-nest level or a rigid placement policy may not work well.

Our framework, by not relying on any restricted placement
(like earliest or latest) but evaluating many choices globally,
proves to be a much more robust strategy that is not easily
perturbed by minor syntactic differences.

3 Network performance

By profiling our target networks, we justify why global

message scheduling is necessary, and what reasonable sim-
plifying assumptions can be made about the optimization

problem. We pick two platforms: the IBM SP2 with
a custom network, and a network of Spare workstations
(NOW) connected by a commodity network \Myrinet).
IBM’s message passing library MPL and MPIC!H are used
for communication. Details of the networks can be found
in [25, 24, 16]. We want to measure how large messages
are rewarded by the network, while estimating the local

buffer-copy cost to collect small messages. Figure 5 shows

the profiling code and results.

The top curve shows the bandwidth of local bcopy as

a function of buffer size. The bottom curve plots network

bandwidth as a function of message length, based on the

time that the receiver waits for completion.

As long as the buffers fit in cache, we can ignore the
overhead of bcopy. Fortunately, most of the message startup

amortization benefits occur at message sizes much smaller

2&fp~CH is an implementation of the MpI standard.

69



Timestep loop:
glast(:,:) = g(l,: . :)
fori=2tonx-1

... = g(i, :, :)T+J-+

. . . = sum(g(i, ny, :)), sum(g(i, ny – 1, :)), swn(g(i, O, :)), snrn(g(i, 1, :))

. . . = glast(:, :)~e$+

. ~. = swn(glast(ny, :)), surn(glast(ny – 1, :)), swn(glast(O, :)), sum(glast(l, :))

glast(:,:) = g(i,:,:)

g(i):,:) =,..

Figure 1: Asimplified form of the NPAC gravity code illustrating theneed for combining communication.

Cu = p+

Cv = P?

z = Ut, v+, p+, pt, p~

h =Ui-, V$

une w = Z$, h+, CV+, CV$, CV\

vnew = z4-, h~, CU4-, cut, cu\

pnew = cue, Cv$

Earliest placement

Loop:

COMM+D,v I-p$u +U Jv
Cu = p+
COMM+Cu -rCu
Cv = Pt’
COMM-+Cv .l.Cv

z = u~, v+, p+, pt, p>

COMMJ,z 4-z

h = u+-, V$

COMM+h Th
unew = zJ, h+, cv~, CVJ, cv\

vnew = z4-, h~, cue, cu~, cu\

mew = Cu+. Cv.1

Combined placement

Loop:
COMM+P,v -rP, u tu Lv
Cu = p+

Cv = Pt-

Z = Ut, v+, p+, Pt, P7

h = u+, V$
COMM+cv,h lZ,CV +Z, cu ~cu,h
nnew = z+, h+, CV+, CV$, cv\

vnew = z+, h~, CU+, cut, cu\

pnew = cue, CVJ

Figure 2: The NCAR shallow benchmark illustrating that redundancy elimination via earliest placement may lose valuable opportunity
for message combining.

F90 Source code

distribute a, b, c:: (BLOCK)
a=3
b=4

c(2:n)= cJ(l:n-l)+b(l: n-1)

Scalarized code

doi=l:n

a(i) = 3
COMMEarliest(a)
doi=l:n

b(i) = 4

CO!4!4 Earliest(b)
doi=2:n

c(i) = a(i - 1) -I- b(i – 1)

Hand coded F77

doi=l:n

a(i) = 3
b(i) = 4

COf414Earliest(a), Earliest(b}

doi=2:n

c(i) = a(i – 1) + b(i – 1)

Figure 3: Syntax sensitivity of earliest placement.

marking elimination elimination

distribute a, b, c, d :: (BLOCK,*)

placement

1 b(:,l:n:2)=l bl bl
2 b(:,2:n: 2)=2 bl , bz bz
3 if ( cond )
4 a=3

5 else
a2

6 a=d

7 endif
az

al, az, bl, b2 al,az,bl,bz az, bz
8 doi=2:n
9 doj=l:n:2

10 c(i, j) = a(i– l,j) +b(i– l,j) // use al, bl

11 doj=l:n
12~ use a2, b2

Figure 4: Running example for analysis and optimization steps. Code for each communication entry is executed after executing the
statement. The notation {az, bz } means the messages for these accesses can be combined. The results of traditional earliest placement
is shown in the last column for comparison.
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C. --A-.. Receiver:
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Time { blocking send }
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Figure 5: Buffer convirw and network bandwidth studies On the
lB-M SP2 using MPL an~ the Berkeley NOW using MPICH. The
x-axis is to a log scale.

the cache limit, for both machines. Given typical cache

sizes, we believe this is a fairly general feature. It may

be important to suppress combining communication from
different large non-contiguous array sections. E.g., for the

SP2, bcopy bandwidth is barely twice message bandwidth
beyond cache size.

The middle curve shows bandwidth computed using the

time the sender takes to inject the message. While the
injection bandwidth is much lower than bcopy, it is larger

than receive bandwidth for certain message sizes. Our

algorithm permits additional techniques like Give-n-Take to
be used to overlap this latency with code at the sender [27].

We did not implement this because the potential gain was
not clear in our architectures and bulk-synchronous SPMD

model. It also depends on the co-processor and network
software. E.g., the implementors of MPL minimize co-
processor assistance because it is much slower than the CPU,

and the channel between the CPU and the co-processor is

S1OW [24].

4 Compiler algorithms

In this section we describe the algorithm for placing comm-

unication code. This analysis is done after the compiler has
performed transformations like loop distribution and loop

interchange to increase opportunities for moving communi-
cation outside loops [12].

1.

2.

For each RHS expression that may need communi-

cation, identify the earliest (54.3) and latest ($4.2) safe

position to place that communication. This is typically
done using a backward and forward dataflow approach
with array section descriptors or bit-vectors. We find

it more efficient to exploit the SSA clef-use information

already computed in an earlier phase [8, 6], refined by
array dependence-testing [29].

For each non-local reference, identify a set of candidate
positions, any one of which can be potentially chosen
as the final point to emit a call to a message-passing
runtime routine ($4.4).

Modified pHPF SPMDizer

Trace dump to Ist file
for hand compdation

Data
Parhtloning

Preprocessing

‘.< 4
Communication Dataflow/

Analysis Dependence
Analyzer

J
Commumcation LooP

Code Generation Transformer

J
Data

w
Figure 6: Prototype modifications to the IBM PHPF SPMDizer.

3. Perform the “array-section” analog of common subex-
pression elimination: detect and eliminate subsumed

communication ($4.6).

4. For the remaining communication, choose one from the

set of candidate placements. In the prototype we do
this in two substeps that will be explained later (\4.5
and $4.7).

The above algorithms have been added to a proto-

type version of the pHPF compiler as shown in Figure 6.
Throughout this section, we will use the code in Figure 4 as

a running example to illustrate the operation of the steps of

the algorithm.

4.1 Representation and notation

We represent the program using the augmented control flow
graph (CFG), which makes loop (interval) structure more

explicit than the standard CFG by placing preheader- and

postezit nodes [2, 23]. These extra nodes also provide

convenient locations for summarizing dataflow information
for the loop.

The CFG is a directed graph where each node is a basic

block, a sequence of statements without jumps. A statement
S may have a use u or def d of an array variable. d can

be either a “regular” def found in the source code, or a
rj-def inserted during conversion to SSA form. All regular
array clefs are preserving. We refer interchangeably to a

use, clef, statement, or the node containing them. The
node containing S is called CfgNode(S). When we say

communication is placed at d we mean immediately ajler d.

Zero-trip

kPre-heeder

Header

(v
Body edge

Exit

=Q P.st-exit

+

Figure 7: The augmented control flow graph.

71



A path x : vo~vj from V. to vj is a non-empty node

sequence (w) with edges (vj-1, v;), 1 < i < j; we also
call n a backward path or backpath from Vj to vo. T

bypasses v if v does not occur on m. Possibly empty paths
are denoted VO--%Vj. Two paths are non-overlapping if

they are node-disjoint. Non-empty paths m : vo>vj,

T2 : WO&W,$ converge at -? if ‘VO # wO, vj = z = wh,

and(vP= w~)*(p=j Vq= k).

Loops are named L. Every loop haa a well-defined

nesting leve~ called NL(L): this is the number of loops
containing it. NL(v) for node v is defined likewise. L or

v is deep or shailow according as N L is large or small. The

common nesting level CN L(u, v) of two nodes u and v is the
NL of the deepest loop containing them both. Every loop
L has a single preheader node, PreHdr(L), and there is an

edge from PreHdr(L) to Hdr(L), the header node. PreHdr(L)
dominates all nodes in L. There is a postemt node for each
distinct loop exit target. Each postexit node of L has an

incoming edge, called zero-trip edge, from PreHdr(L) (along
with the original loop-exiting edges). See Figure 7.

L has a ~-def at Hdr(L), called @ti&, for each variable

defined in the loop or in a loop transitively nested in L. &id,

has two parameters, rP,, and rp.,t,such that there exists a

backpath from rP,, to ENTRY that bypasses all nodes in the

loop, and there exists a path from any node in the loop to

rPo,t which never takes an exit edge out of the loop.

Each postexit node of a loop L has a ~-def, called @Exit,

for each variable defined in the loop or in a loop transitively
nest ed in it. Because of #EX!t, a definition d can reach a use

u only through a definition d’ at a level CNL(d, u). d’ can

possibly be d only if CNL(d, u) = NL(d); otherwise, d’ is a
~-def at a level CNL(d,u).

4.2 Identifying the latest position

We describe how the compiler finds Latest(u), the latest

point to place communication for u which is as shallow
as possible. This follows from standard communication

analysis in which communication is placed just before the

outermost loop in which there is no true dependence on u,
and is placed just before the statement containing u if no

such loop exists [30, 15, 12].

Given a use u, let d range over the reaching regular clefs
of u. Consider some d. Observe that it is never necessary to
place communication for u deeper than at CN L(d, u). Given

d and u, we can compute all possible direction vectors (each
is a C N L (d, u)-dimensional vector) [28]. These vectors are
used in lsArrayDep in Figure 8(d). Let DepLevel(d, u) =

maxt{lsArrayDep(d, u, 1)},

Because of the dependency at level DepLevel(d, u),

communication for u cannot be moved outside loop level
DepLevel(d, u). The overall communication level for use
u, denoted Comm Level(u), is set to maxd{DepLevel(d, u)}.

Finally, to place communication, we check CommLevel(u):
if Comm Level(u) = NL(u), communication is placed
immediately before the statement containing U3; if
CommLevel(w) < NL(u), communication is placed in the
loop preheader of the loop at level (CommLevel(u) + 1)

that contains u. Note that CommLevel(u) > N L(u) is not
possible, and that by construction Latest(u) dominates u.

31n this ~a~e no vectorization has been possible.

~

For each def d of use u in depth-first preorder traversal:

,, . . . .

For each q5-~arameter r~

visit ~] = O, visit [d] = 1
Let Ci = Rcount(Reaching( ri), u, CNL(d, u), visit)

If two or more c~’s are positive
Return TRUE

else (d is a regular clef)
If lsArrayDep(d, u, CNL(d, u))

Return TRUE.

,. Rcount(d, u, 1,visit)
Ifdisa@-def, sayd=r$(... ,i,i, . . .)

If visit[dl return O
visit[d] = 1
Return xi Rcount(Reaching (ri), u, 1,visit)

else (d is a regular clef)
If lsArrayDep(d, u, t)

Return 1
else if d is a preserving def

Return Rcount(Reaching( d), u, 1,visit)
else return O.

L lsArrayDep(d, u, i?)
[f d is the pseudo-def at ENTRY then return TRUE
If t? > CNL(d, u) then return FALSE

If 3 direction vector Z = (trl,. . . . VCNL[,j,uJ) such that
● vi= O, fori E{l, .,, ,l– l}, and

Qvi>o
then return TRUE
else return FALSE

Figure 8: (a) Pseudocode for iterating over reaching clefs of
u. (b) Pseudocode for testing a def d to identify if d is the
earliest communication placement point. (c) Pseudocode for
recursively counting the number of incoming edges at @clefs

or preserving regular clefs that bear possible dependence. (In
our SSA implementation, there is a pseudo-def at ENTRY for
each variable accessed in the routine, which simplifies dataflow
analyses.) (d) Routine to check array dependencies at the leaf
clefs.

4.3 Identifying the earliest position

We now describe how compute Earliest(u) for use u. Typ-
ically, dataflow analysis with array sections marks a set of
nodes as ‘tearliest” such that a copy of the communication

code has to be placed at all these points. This is acceptable if
each array section is communicated using a separate runtime

call, but for our purposes, this greatly complicates code
generation. In different control flow paths, communication

for u may be combined with different references, making
it impossible to generate a single version of the original
computation containing u. The resulting code expansion

can be enormous.
Therefore, we restrict our search to the single earliest

position that dominates the use. Our experience with
benchmarks, albeit limited, suggests that further sophisti-
cation is often unnecessary. The pseudocode for computing
Earliest(u) for a use u is shown in Figure 8.

Claim 4.1 Earliest(u) returns the earliest single dominating
communication point dl for use U.

In Figure 4, Earliest(al ) = Earliest = 7. Traditional

array dataflow analysis, which does not insist on dominating
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e. Mark candidates:
c = CfgNode(Latest(u))
While c # CfgNode(Earliest(u)) do

Mark all statements up to Latest(u) in basic block c
c = DomTreeparent(c)

Mark all statements between Earliest(u) and Latest(u)
in CfgNode(Earliest(u)),

f. Eliminate redundancy:
Repeat until no progress:

Find statement S and CI, C2c CommSet(S)
such that CIZsubsumesCI

For all S’ dominated by S
disable c1 in CommSet(S’)

—
g. GreedyChoose:

Let StmtSet(c) = {S: c E CommSet(S)}
Consider entries c in increasing order of lStmtSet(c)l:

For each S c StmtSet(c), count the number of entries
in CommSet(S) with which c can combine (see text)

Pick S with the highest count to place c
Delete c from CommSet(S’) for all S’ # S

Place each group of combined entries at the latest
position common to the candidate placements of the
entries it contains, including entries disabled during
redundancy elimination.

—

Figure 9: Pseudocode for communication placement. (e) Pseu-
docode for marking all candidate statements for commuriication
placement. (f) Pseudocode for global redundancy elimination.
(g) Simple greedy heuristic to choosea final position from the set
of candidates.

clefs [14], would lead to Earliest’(al) = Earliest’ = {4, 6}.
In both cases, az subsumes al. We prove Claim 4.1 using
the following three lemmas. We defer their proofs to the
appendix.

Lemma 4.2 dl dominates u.

Lemma 4.3 Let ns be any proper dominator-tree ancestor
of dl . Then there exists a regular def dz such that
lsArrayDep(dz, u, CNL(dl, u)) returnsTRUE and a path
dz+dl *U that bypasses ns.

Lemma 4.4 There is no regular def d4 along a path
dl ~di-u such that lsArrayDep(d4, u, CNL(dA, u)) returns
TRUE, and there is a path from db to u that bypasses dl.

Proof of Claim 4.1. Observe that only a node that dom-
inates u can serve as a single communication point for u.
Lemma 4.2 says that dl = Earliest(u) dominates u. Consider
all dominator-tree ancestors of u. From this set, Lemma 4.3
rules out all nodes that strictly dominate dl as unsafe.
Finally, Lemma 4.4 implies that dl is a safe communication
point for u. ●

4,4 Generating candidate positions

Since any safe position to insert a single copy of commu-
nication for use u must dominate u, the set of candidate
positions has a very simple characterization in terms of the
following claims. We omit the proofs.

Claim 4.5 Starting at the basic block containing Latest(u),
if we follow parent ltnks in the dominator tree of the CPG,

we will reach the basic block containing Earliest(u).

Claim 4.6 The statements marked in the basic blocks

encourstered dursq the dominator tree traversal from

c(Latest(u)) up to c(Earliest(u)) are exactly those that are
single candidate positions jor communication placement for

use u.

Our algorithm for finding candidate placements of comm-
unication is thus extremely simple, and shown in Figure 9(e).
In our example (Figure 4), statements 3, 4, 5, and 6 are not
candidates for bl and b2 because they do not dominate those
uses.

4,5 Subset elimination

Our current algorithm gives priority to reducing the volume
and number of messages over exploiting overlap benefits
or reducing contention for buffers and cache. Given this
simplification, we can preclude a large number of candidate
positions without compromising the quality of the solution.
Specifically, let CommSet (S) denote all communication en-
tries associated with the statement S. A given entry can
occur in the CornmSet of many statements. If for statements
S1 and Sz we have CommSet(Sl) C CommSet(Sz), we can
reset CornmSet(S1) = 0 without losing opportunities for
combining or redundancy elimination. For example, in
Figure 4, the CommSet of statements 1 and 2 can be safely
set to 0. In the case that CommSet(Sl) = CommSet(%),
either set may be emptied at thk stage, because the actual
choice governing the placement of communication would be
made in the final step (~4.7).

4.6 Redundancy elimination

Typically, earlier approaches eliminated redundancy by ex-
amining the list of communications placed before each state-
ment, and check each pair of entries to see if one subsumes the
other. This test is based on the Available Section Descriptor
(ASD) representation of communication [14]. Briefly, an
ASD consists of a pair (D, M), where D represents the data
(scalar variable or an array section) being communicated,
and M is a mapping function that maps data to the
processors which receive that data. A communication
(DI, MI ) is made redundant by another communication
(Dz,kfz) if DI ~ Dz, and M~(DI) C Mz(D,).

In our case, since there can be many entries for a
reference, we have to propagate the redundancy information
globally. The pseudocode for eliminating redundant comm-
unication in the context of our current framework is shown in
Figure 9(f). The modification is that in each step examining
a statement S, the subsumed communication entry is cleared
not only from CornmSet(S) but from all statements S’ such
that S dominates S’. (The dominance ordering prevents
a cycle of deletions. ) We iterate over statements and
communicant ion pairs until no more elimination occurs.

Claim 4.7 The subset and redundancy elimination steps
are safe, i.e., the remainmg communication entries are

suficient.

One implication of the above ordering of eliminations
is noteworthy. Consider our running example (Figure 4),
specifically the communication due to the uses bl and b2

(ASD(bI) c ASD(b*)). Since Earliest = 1 # Earliest =
2, an initial test of redundancy based on earliest placement,
followed by candidate marking and subset elimination will
not catch the redundancy. Thus, by choosing a later
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(than the earliest possible) placement for bl, we are able to
eliminate that communication completely. In contrast, the
solution proposed in [14] would move each communication
to the earliest point, and reduce the communication for bz
to ASD(bZ ) – ASD(bl ), while the communication for bl would
remain unchanged. The solution obtained with our current
method is superior because it reduces the communication
startup overhead, and it makes code generation much
simpler.

4.7 Choosing from the candidates

At this stage we can still have a communication entry c in
multiple CornmSet‘s, and we have to arbitrate in favor of one.
The goal is to minimize the total communication cost. In
the common message cost model using fixed overhead per
message and bandwidth, minimizing the cost is N’P-hard
(also see 56). In practice, simple greedy heuristics work
quite well; see Figure 9(g). It is similar to Click’s global
code motion heuristic [7]: consider the most constrained
communication entry next, and put it where it is compatible
in communication pattern (as shown by the test below) with
the largest number of other candidate communication. A
more refined heuristic would use estimates of message sizes
and consider the communication cost if the current entry
were combined with a given set of entries.

The entries in the CornmSet of each statement can now
be partitioned into groups, each group consisting of one or
more entries which will be combined into a single aggregate
communication operation. Any flexibility still available in
placing this aggregate can be used to push this communi-
cation later if reducing contention for buffers and cache is
more important than overlap benefits (as is folk truism for
the SP2), or push it earlier if the situation were reversed.
Our algorithm places communication for each group at the
latest position common to the possible placements of each
entry in that group (including positions disabled during the
previous step for redundancy elimination). Deferring the
placement decision until this final step enables our algorithm
to take advantage of any possible placement that leads to
redundancy elimination or combining benefits, without the
drawback of unnecessary movement of communication that
uses up more resources or degrades performance.

Criteria for communication compatibility. While in princi-
ple, code for any arbitrary communications can be combined
into code for a single (and potentially complex) communi-
cation operation, we are interested in combining messages
only when the startup overheads associated with all but one
of them can be eliminated, leadlng to improved performance.
Hence, we view two communications as compatible for
combining if the associated sender-receiver relationships are
identical or one is a subset of the other.

Thus, communications for (DI, Ml) and (Dz, &fz) are
combined only if Ml = &fz or Ml c MZ. The combined
communication is given by (DI U DZ, MZ ). In order to ensure
better performance and for simplicity of code generation, we
impose the following additional constraints on combining.

. The combined data size of D1 U Dz must be below a
threshold (based on our study reported in $3, currently
set to 20 KB for SP2), beyond which combining
messages leads to diminishing returns or even worse
performance. When data sizes are unknown, the
compiler uses rules of thumb like assuming that NNC
and reductions (where volume of data communicated is

significantly lower than that involved in computation)
are operating within the range suitable for combining.

The size of DI U D2, as amroxirnated bv a siruzle-. . .
section descriptor (array sections are not closed un~er
the union operation), should not exceed the combined
size of DI and Dq by more than a small constant. This
descriptor for DI U DZ refers to identical sections of
different arrays if DI and D2 correspond to different
arrays, and to a single array otherwise.

The check for Ikfl ~ M2 is done in the virtual processor
space of template positions, as described in [14]. However,
we have incorporated extensions to check for equality of
mappings in physical processor space for nearest-neighbor
communication and for mappings to a constant processor
position [14].

4.8 Code generation

As shown in Figure 6, the step after communication analysis
and optimization is to insert communication code in the
form of subroutine calls to the pHPF runtime library
routines, which in turn invoke MPL/M PI. The runt ime
library provides a high-level interface through which the
compiler specifies the data being communicated in the form
of array sections, and the runtime system takes care of
packing and unpacking of data. For NNC, data is received
in overlap regions [30] surrounding the local portion of the
arrays. For other kinds of communication involving arrays,
data is received into a buffer that is allocated dynamically,
and the array reference that led to this communication is
replaced by a reference to the buffer.

Redundant message elimination for NNC requires no
further change to code generation. For other forms of
communication, code generation has been modified to en-
sure that the array reference corresponding to eliminated
communication is also replaced by a reference to the buffer
holding non-local data, and that this buffer is deallocated
only after its last use is over.

Combining messages for different arrays requires changes
in code generation and the HPF runtime library routines,
The data being sent or received is still represented by
a single section descriptor, but now has a list of arrays
associated with it. Correspondingly, the runtime routines
now have to take on additional responsibilities of packing
and unpacking data for the multiple array sections. Our
benchmarks currently emit calls to a rudimentary runtime
library with these features, but this has not been integrated
into the compiler yet.

5 Performance

The analysis described in this paper has been implemented
in the pHPF compiler. In order to study the potential
performance benefits before the code generator and the
run-time library could be modified to take advantage of the
superior communication placement, we emitted scalarized
code annotated with human readable communication entries
after the analysis and optimization pass of the compiler.
The table in Figure 10 shows some compile-time statistics
of the reduction in the number of static call sites to the
communication library. Static message counts are reduced
by a factor of roughly 2-9.

The trace emitted was then used to generate C programs
with calls to MPL/MPICH message passing libraries. This
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Benchmark shallow gravity gravity trimesh trimesh hydflo hydflo
Routine main main main normdot gauss flux hydro
Comm Type NNC NNC SUM NNC NNC
Original (orig)

NNC NNC
20 8 8 24 13 52 12

+ Redundancy elimination (nored) 14 8 8 24 13 30 12
+ Combined messages(comb) 8 4 2 4 4 6 6

(a) SP2 shallow P = 25, n x n, 50 runs

n-l 00 n=l 25 n-l 50 n=175 n=200 n=225 n-250 n-275

(c) NOW shallov P = 8, n x n, 20 runs

n=400 n=450 n=500

< n, 5 runs

n=2S 0=32 n=40 n-4S n=56 n-64

(b) SP2 gravity P = 25, n x n x n, 50 runs

n=100 n=125 n-l 50 n-l 75 n-200 n-225 n=250 n=275 n-300 n-325

(d) NOW gravity P = 8, n x n x n, 5 runs

n=lOO n=124 n..l5O n=174 n=200 n=224 n=250 II-274

(f) NOW trimesh P = 8, n x n x n, 5 runs

n=192

NW

n=256

?$

n=320

1

0.9

0.s

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 10: Performance analysis of the new algorithm: compile-time messagecounts and normalized running times.
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enabled us to study performance improvements not only on
the IBM SP2 but also on a network of workstations (NOW)
consisting of Spare workstations connected by a Myrinet
switch. For each benchmark, the compiler generated two or
three versions of code. The baseline pulls communication
into outermost possible loops but does not detect redun-
dancy or perform message scheduling. The next version uses
earliest placement for redundancy elimination but does not
perform message scheduling or combining. The final version
uses the new algorithm. (Note: gravity and trime sh have
no redundancy. ) On the SP2, all codes were compiled using
the IBM XIC compiler. On the NOW, we used SUNWspro
compiler cc. Optimization -03 was used.

We report the results in Figure 10. Each -diagram
mentions the number of processors and the number of runs
over which the median performance is reported. In each
bar-chart the x-axis is the problem size. For each size two
or three bars are plotted, one for each version of generated
code. The y-axis is normalized so that the original code
has unit running time, and the dark segment representing
network cost shortens as optimizations are applied. These
measurements were made with overlap dkabled to clearly
account for CPU and network activity. All floating point
operations are on double (eight bytes). shallow and
trimesh involve 2-d n x n arrays distributed (BLOCK,BLOCK);
shallow has 13 and trimesh has over 25 such arrays. Thus
the problem sizes are realistic in that they occupy several
MBytes. Communication time is reduced by a factor of 2-3.
This typically translates to 10–40% overall running time
reduction. gravity uses a 3-d n x n x n array distributed
(*, BLOCK, BLIJcK), Thus memory needed even at moderate
n is quite staggering, and the graphs again show 10–40%
overall gain in this reasonable size range. hydflo uses eight
5 x (n+ 2)3 arrays. Therefore even for small n, the memory
requirement is enormous, which affects the size range shown.
Finally, the SP2 network has lower overhead and higher
bandwidth than the NOW4, which is evident from the
higher overall performance gains on NOW compared to
SP2, although the reduction in communication cost alone
is roughly proportionate.

6 Extensions

The basic idea of exploiting flexibility in communication
placement is rather general. Although for the sake of
practicality our current prototype makes some justified
simplifications, it would be interesting to extend the work
in two ways. Currently, network architecture is undergoing
considerable flux. If the CPU-network overlap can be
exploited more effectively in future generation machines, the
compiler could obtain better performance by considering the
trade-offs between enhancing the overlap and reducing the
number of messages and buffer contention. In particular,
the simple subset elimination step (54.5) would have to
be dropped, as it could easily degrade the quality of the
solution. In fact, the general problem becomes intractable
when all of these conflicting optimizations are considered.
The other direction comprises enhancements for handling
special communication patterns like reductions.

6.1 General models

In a well-known model of communication cost, the prob-
lem of optimally selecting final candidates is AfP-hard,

4NOte ~ha~ we ~,$e MPI 011 both machines, not Active Messages

justifying our heuristic approach. A runtime call to the
communication library in general leads to a many-to-many
communication pattern. Let the inverse bandwidth of the
network be scaled to one, and the message startup cost be C
in these units. The cost of this pattern to a given processor
is C times the total number of distinct processors that it
sends to or receives from, plus the total volume of data
that it sends or receives. Ignoring CPU-network overlap
in our bulk-synchronous model, the cost of a pattern is the
maximum cost over all processors, and the cost of a set of
patterns is the sum of their costs. Unfortunately, we can
show the following.

Claim 6.1 Picking one candidate position for each refer-
ence, such that the total cost of all patterns is minimized, is
NP-hard. Specifically, there is an approximation-preserving
reduction from chromatic number.

Thus it is unlikely that our problem can be solved near-
optimally in the worst case in polynomial time. Like many
other ~P-hard problems, the optimization problem can be
formulated as an integer linear program (ILP). Furthermore,
several additional constraints can be incorporated into the
ILP, including overlap between CPU and network and
message buffer and cache constraints. Profile information
would be crucial to specify this ILP and solve it to adequate
precision.

6.2 Special communication patterns

Reduction communication is dealt with in a special way in
the compiler since communication requirement is inverted,
in a sense, for reductions. Whereas ordinary statements
require communication to fill in remote values before com-
putation can proceed, for reduction the computation occurs
first (for the partial reduction operation on individual pro-
cessors), followed by communication for the global reduction
operation that must be completed before the use. Our
preliminary prototype does not do reduction candidate
marking yet. For communications which are marked as
reductions, we need to employ a reversed SSA analysis,
i.e., iterating through reached uses of a given definition to
determine the latest point at which communication may
be safely placed. Conceptually this is identical to the
framework in this paper, but the implementation is left
for future work. The current implementation does allow
reduction communications placed at the same point to be
combined, as in gravity.

7 Conclusion

We have presented an algorithm for global optimization
of communication code placement in compilers for data-
parallel languages like HPF. Modern parallel architectures
greatly reward dealing with remote accesses throughout a
program in an interdependent manner rather than naively

generating messages for each of them. We achieve precisely
this enabling optimization. In particular, we explore later
placements of communication that preserve the benefits
of redundancy elimination (normally obtained by moving
communication earlier), reduce the wastage of resources like
buffers for non-local data, and improve performance due to
other factors like fewer messages. Preliminary performance
results obtained on some HPF benchmarks show significant
reduction in communication costs and overall improvements
in performance of those programs on the IBM SP2 and
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a cluster of Spares connected by Myrinet. In the future,
we will conduct performance studies to investigate the
desirability of including partial redundancy elimination as
well into our framework. Another area for future work is
interprocedural analysis; we believe that the application of
our algorithm across procedure boundaries can often lead to
further improvements in performance.
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A Appendix: Proofs

Proof of Lemma 4.2. (By contradiction.) We assume dl
is not the pseudo-def at ENTRY,since the latter dominates
all nodes in the CFG. Let 11 = NL(dl ), and L1 be the loop
containing dl. Note that l?l < NL(u) because Earliest will
never flag a dl with NL(dl) > NL(u). Assume dl does not
dominate u. Then there exist two or more paths: one from
ENTRYto u that bypasses dl, and another from dl to u. If
NL(w) = N L(dl ), these two paths imply that there exizts a
@clef at level 11 with (at least) two parameters, rl and rz,

such that there exist two non-overlapping backpaths: one
from rl to dl, and the other from 72 to the pseudo-def at
ENTRYthat bypasses dl. (Because of the zero-trip edges, we
can ignore other loops nested in L1. ). That there is such
a @-clef at level 11 still holds if NL(u) > NL(dl ), because
the preheader node of each loop containing u dominates
u, and the two (or more) paths converge at the preheader
node which is at level tl, at the latest. Test is called on
at least one of these ~-defs, say p, before dl during the
traversal of Earliest(u), starting from u. During execution
of Test (p, u), Rcount gets called on clefs Reaching(?-l ) and
Reaching, with nesting level CNL(p, u) = 11. The call
at Reachi ng(rl) returns a positive number, because some
recursive call inspects dl. Similarly the call at Reaching(rz )
also returns a positive number, because some recursive call
inspects ENTRY, Since at least two invocations of Rcou nt
return a positive numbers, the @clef, not dl, will be returned
as Eadiest (u) if dl does not dominate u, a contradiction. 9

Proof of Lemma 4.3. If dl is the pseudo-def at ENTRY,
there is nothing to prove. Also, if dl is a regular clef,
lsArrayDep(dl, u, CNL(dl, u)) must hold for dl to be returned
as Earliest(u), in which case dl serves as the definition dz in
the statement of the lemma. Therefore, we can assume dl
is a @clef.

By design, Test(dl ) returned TRUEbecause at least two
Rcount calls on the @parameters of dl returned positive
counts. But because of the visit [ ] array, no def is accounted
more than once. Therefore the two positive counts can be
attributed to two node-disjoint backpaths to two distinct
regular clefs (one of which could be ENTRY). At most onf? of
these paths contain TZ3. Let dz be some regular def on the
other path such that lsArrayDep(a’2, U, CNL(dl, u)) = TRUE.
Then there is a dz--f-M path bypassing n3. ■

Proof of Lemma 4.4. (By contradiction.) Assume there
exists such a dl, According to SSA construction, two cases
can occur: either (1) dl, as well as dl, dominates u, or (2) d4

has a path, bypassing dl, from it to u through one or more
+-clefs that dominate u.

Case 1. If dl dominates u, di cannot also dominate dl.
Otherwise, there exists a path from ENTRYto d4 to u that
bypasses dl (second condition in the lemma), in which case
dl cannot dominate u, contradicting Lemma 4.2. Therefore,
dl dominates d4 (note that if both dA and dl dominate u, one
of them must dominate the other), which in turn dominates
u. Thus Test(dl, u) is called before Test(dl, u) by Earliest(u).
Test(d4, u) = TRUE because lsArrayDep(d4, u, CNL(d4, u)) =
TRUE,so d4 will get returned as Earliest(u); a contradiction.

Case 2. In the second case, dl dominates the @clefs. If
not, then dl would not dominate u either, (contrary to
Lemma 4.2) because there is a path d4~#~u avoiding
dl. Hence, these @clefs are dominated by dl and are visited
before dl by Earliest(u). It follows, from a similar argument
in the proof of Lemma 4.2, that these two paths converge
at some node at level CNL(di, w), creating a qLdef at level
CNL(d4, u). This #-node has (at least) two parameters, rl
and rz, such that there exist two non-overlapping paths:
one from dl to rl, and the other from dl to r2. When
applied to rl, Rcount returns positive, possibly because
of d4, which satisfies lsArrayDep(dl, u, CNL(dA, u)). When
applied to rz, Rcount returns positive, possibly because of
the pseudo-def at ENTRY. Since (at least) two parameters
return positive, the r$def, not dl, is returned by Earliest(u),
another contradict ion. ■
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