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We investigate nonparametric regression methods based on spatial depth and quantiles when the response
and the covariate are both functions. As in classical quantile regression for finite dimensional data, regres-
sion techniques developed here provide insight into the influence of the functional covariate on different
parts, like the center as well as the tails, of the conditional distribution of the functional response. Depth
and quantile based nonparametric regression methods are useful to detect heteroscedasticity in functional
regression. We derive the asymptotic behavior of the nonparametric depth and quantile regression estimates,
which depend on the small ball probabilities in the covariate space. Our nonparametric regression proce-
dures are used to analyze a dataset about the influence of per capita GDP on saving rates for 125 countries,
and another dataset on the effects of per capita net disposable income on the sale of cigarettes in some states
in the US.
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1. Introduction

Nonparametric regression with functional covariate and real valued response has been exten-
sively studied in the recent literature (see [6,7,19,20,33,36], etc.). Since the publication of the
seminal paper by Koenker and Bassett [26], quantile regression has emerged as a powerful statis-
tical tool for investigating the nature of dependence of a response on a covariate. Main advantage
of quantile regression is that it provides information about the influence of the covariate on all
parts of the conditional distribution of the response unlike the usual mean regression, which fo-
cuses only on the center of the conditional distribution. Linear quantile regression, where the
response is scalar and the covariate is a function, is studied in [5] and [25]. For similar situ-
ation, a semiparametric approach in quantile regression is considered in [14]. Nonparametric
quantile regression with real valued response and functional covariate is studied in [20] and [21].
The notion of spatial quantiles developed and studied in [2,12] and [28] extends the concept of
univariate quantiles to multivariate data. It was shown in [28] that spatial quantiles completely
characterize a multivariate distribution function like the univariate quantiles characterize a uni-
variate distribution. Spatial quantile regression was considered in [9] and [15] for problems where
both the response and the covariate are finite dimensional. Recently, nonparametric spatial quan-
tile regression for finite dimensional response and functional covariate was investigated in [10]
and [11].

To probe into different parts of the conditional distribution, which are off-center, we develop
nonparametric regression methods based on the conditional spatial depth and quantiles when both
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the response and the covariate are functions. Spatial depth for multivariate data was developed in
[42] and [37], based on the ideas of spatial quantiles in [12] and [28]. The concept of spatial depth
is extended to infinite dimensional data in [8]. In [38], multivariate spatial depth was employed in
a functional data context by first discretizing the sample curves. In [35], the topological aspect of
a formal definition of depth for functional data was investigated. Some aspects of the integrated
depth for functional data were studied in [34]. In this paper, we employ conditional spatial depth
and quantiles for functional data to investigate the spread of the conditional distribution of the
response and detect the presence of heteroscedasticity.

We model functional data as random elements in infinite dimensional spaces. The response
is assumed to be an element in a separable Hilbert space while the covariate is assumed to be
an element in a complete separable metric space. The conditional spatial quantiles and condi-
tional maximal depth sets are defined in such a setup in Section 2. We construct measures of
conditional spread based on the quantiles and the depth sets. In Section 3, kernel based nonpara-
metric estimates for the conditional spatial quantiles, the maximal depth sets and the measures
of conditional spread are constructed, which can be used to investigate possible presence of het-
eroscedasticity in the data. We investigate the asymptotic properties of the estimates in Section 4.
The estimates of the conditional spatial quantiles and the maximal depth sets are demonstrated
using simulated and real data in Section 5. Some computational details for the sample conditional
quantiles are described in Appendix A. The proofs of the theorems are presented in Appendix B.

2. Conditional spatial depth and quantiles

Given a data cloud, statistical depth of a point is a measure of the relative position of the point
with respect to that cloud. If a point is deep inside the data cloud, the direction vectors from the
observations to that point tend to nullify one another. But, if a point is on the periphery of the
data cloud, most of the observations are concentrated around a few directions from the point,
and consequently the direction vectors cannot nullify one another. So, the length of the average
of all direction vectors originating from the observations towards a particular point in the data
cloud will be small if the point is deep inside the data cloud, while this length will be close to 1
for points at the outer regions of the data cloud. We demonstrate this in a bivariate dataset. We
generate 20 observations from a bivariate normal distribution with mean 0 and the identity matrix
as dispersion. In Figure 1, this data is presented in two sub-plots. In the left sub-plot, the vectors
from a few data points towards a given point, marked as point A, in the central region of the data
cloud are shown. It is clear that the direction vectors tend to cancel out one another for point A so
that the resultant length of the average direction vector will be close to zero. In the right sub-plot,
a few vectors are plotted for another point, marked as point B, in the periphery of the data cloud.
Here, the vectors have very similar directions, and instead of canceling one another, they add up
so that the average direction vector has a length close to 1. This idea was used in [42] and [37] to
define the spatial depth of a point relative to a data cloud in a multivariate setup. We now extend
the same idea to define the conditional depth for the response lying in an infinite dimensional
space.

Let the response Y and the covariate X be random elements in a separable Hilbert space H
and a complete separable metric space (M, d), respectively (d is the metric on the space M).
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Figure 1. Spatial depth obtained using direction vectors.

We adopt the convention of defining ‖v‖−1v = 0, when v = 0 ∈ H. Let x ∈ M. The conditional
spatial distribution S(y|x) of Y given X = x at y ∈ H is defined as S(y|x) = E[‖y − Y‖−1(y −
Y)|X = x]. The conditional spatial depth SD(y|x) of a point y ∈ H given X = x is defined as
SD(y|x) = 1 − ‖S(y|x)‖ (cf. [8]). Defining the conditional depth in the above way ensures that
a point near the center of the conditional distribution of the response has higher depth than a
point at the peripheral regions of the conditional distribution, and also that the conditional depth
lies between 0 and 1. When the Hilbert space H is the Euclidean space R

p , our definitions
of conditional spatial distribution and depth coincide with the multivariate conditional spatial
distribution and depth.

We next define conditional quantiles in Hilbert spaces. The development of multivariate quan-
tiles as minimizers of convex functions in [12] motivates our definition of conditional quantiles in
Hilbert spaces. In fact, the definition of multivariate quantiles can be naturally extended to define
quantiles in infinite dimensional Hilbert spaces. Let τ ∈H with ‖τ‖ < 1. Define g(·|x) : H → R

by

g(Q|x) = E
[‖Q − Y‖ − ‖Y‖ ∣∣X = x

] − 〈τ ,Q〉.
The conditional τ -quantile Q(τ |x) of Y given X = x is defined as a minimizer of g(·|x) (cf. [8]).
It is easy to see that g(Q|x) is finite for every Q and x, even when E[‖Y‖|X = x] = ∞, and if
E[‖Y‖|X = x] < ∞, then a minimizer of g(Q|x) is same as a minimizer of E[‖Q − Y‖|X =
x] − 〈τ ,Q〉. Using the convexity of g(Q|x) and the fact that g(Q|x) → ∞ as ‖Q‖ → ∞, one
can show that Q(τ |x) exists in H. If the support of the conditional distribution of Y given X = x
is not contained in a straight line in H, we get that g(Q|x) is strictly convex, and hence Q(τ |x)

becomes the unique minimizer of g(Q|x). If in addition, the conditional distribution of Y given
X = x is non-atomic, it follows that Q(τ |x) is the unique solution of S(y|x) = τ for y ∈ H. The
point Q(0|x) is defined as the conditional spatial median. Recall Figure 1 again. Note that S(y|x)



398 J. Chowdhury and P. Chaudhuri

is the average direction vector from the response Y to the point y given X = x. So, when τ is near
0, we see that Q(τ |x) lies near the conditional spatial median Q(0|x), which is the deepest point
in the data, and we have SD(Q(τ |x)|x) close to 1 for such Q(τ |x). When ‖τ‖ is near 1, Q(τ |x) is
an extreme quantile, and we have SD(Q(τ |x)|x) close to 0. This explains the connection between
the spatial depth and the spatial quantiles.

When the response Y is a real random variable, for τ = 0, Q(τ |x) becomes the usual condi-
tional median of Y given X = x, and for τ = 2α − 1, Q(τ |x) is the conditional α-quantile of Y
given X = x for any 0 < α < 1.

We shall now briefly describe some equivariance properties of the conditional quantiles. Let
� be an invertible norm preserving linear operator on H, i.e., ‖�(u)‖ = ‖u‖ for all u ∈ H.
Then, for any w ∈ H, it is straight-forward to verify that w +�(Q(τ |x)) is the conditional �(τ )-
quantile of the transformed response w+�(Y) given X = x (cf. Fact 2.2.1 and related discussion
in [12]). As a special case, we get that Q(τ |x) is equivariant under any location transformation.
Further, one can also easily verify that Q(τ |x) is equivariant under any scale transformation, that
is, cQ(τ |x) is the conditional quantile of the scale-transformed response cY given X = x for any
positive number c.

2.1. Conditional maximal depth sets

When the response Y is a real random variable, the conditional spatial depth SD(y|x) sim-
plifies to SD(y|x) = 1 − |2F(y|x) − 1|, where F(·|x) is the conditional distribution func-
tion of Y given X = x. So, the conditional spatial median of Y given X = x is same as the
usual conditional median of Y given X = x. The conditional inter-quartile interval I (x) of
Y given X = x is [Q(−0.5|x),Q(0.5|x)], where Q(−0.5|x) and Q(0.5|x) are the conditional
first and third quartiles, respectively. The conditional inter-quartile range of Y given X = x is
Q(0.5|x) − Q(−0.5|x). Denote I to be the collection of all intervals I such that P [Y ∈ I |X =
x] ≥ 0.5 and SD(y1|x) ≥ SD(y2|x) for every y1 ∈ I and y2 ∈ I c. Then I (x) = ⋂

I∈I I . We can
generalize this property of the conditional inter-quartile interval when the response space H is a
separable Hilbert space.

Given α > 0, we define the spatial depth based conditional α-trimmed set B(α|x) for Y given
X = x as B(α|x) = {y ∈ H|SD(y|x) ≥ α} (cf. [43]). Clearly, α1 ≥ α2 implies that B(α1|x) ⊆
B(α2|x). For 0 < p < 1, let

Ap = {
α > 0

∣∣P [
Y ∈ B(α|x)

∣∣X = x
] ≥ p

}
.

The set Ap is bounded above as SD(y|x) ≤ 1. Denote αp = supAp . We define the conditional
100p% maximal depth set of Y given X = x as B(αp|x). So, the set B(αp|x) contains 100p% of
the conditional probability mass with its elements having the highest conditional spatial depth.
Clearly, the conditional spatial median of Y given X = x belongs to the conditional 100p%
maximal depth set. Recall that Q(τ |x) is the unique solution of S(y|x) = τ when the conditional
distribution of Y given X = x is non-atomic, and its support is not contained in a straight line in
H. So, we get

B(α|x) = {
y ∈ H

∣∣ ∥∥S(y|x)
∥∥ ≤ 1 − α

} = {
Q(τ |x) ∈ H

∣∣‖τ‖ ≤ 1 − α
}
.
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Hence, the spatial depth based conditional 100p% maximal depth set of Y given X = x is
{Q(τ |x) ∈ H|‖τ‖ ≤ 1 − αp}. Note that the conditional 50% maximal depth set reduces to the
conditional inter-quartile interval when H =R.

The functional box plot defined in [41] is a concept closely related to our maximal depth set,
which we define in a conditional set up while the concept of functional box plot was introduced
in an unconditional set up. The functional box plot was defined using modified band depths
of the sample functional observations. Unlike our maximal depth set, no population version of
the functional box plot was provided in [41]. If one constructs the functional box plot for the
population using the idea of pointwise range in [41], it can be shown using the isolated outliers
concept in Section 2.1 in [24] that the functional box plot may sometimes become unbounded
and hence a non-informative set.

2.2. Measures of conditional spread

We define two measures of conditional spread, one based on conditional maximal depth sets
and another using conditional spatial quantiles. The measure D1(p|x) of conditional spread is
defined as the diameter of the conditional 100p% maximal depth set of Y given X = x, that is,
D1(p|x) = sup{‖y1 − y2‖|y1,y2 ∈ B(αp|x)}. Equivalently,

D1(p|x) = sup
{∥∥Q(τ 1|x) − Q(τ 2|x)

∥∥ ∣∣‖τ 1‖,‖τ 2‖ ≤ 1 − αp

}
.

Note that D1(0.5|x) generalizes the concept of the conditional interquartile range that we have
for a real valued response. We also define a measure of directional spread, based on conditional
spatial quantiles. The measure D2(τ |x) of conditional spread is defined as D2(τ |x) = ‖Q(τ |x)−
Q(−τ |x)‖, where ‖τ‖ < 1. Note that D2(τ |x) depends only on the conditional quantiles in the
direction of τ , while D1(p|x) is a “global” measure of the conditional spread in the sense that
its definition involves conditional quantiles in all directions. The measure D2(τ |x) also reduces
to the conditional inter-quartile range when the response is real valued and τ = 0.5 because
Q(−τ |x) and Q(τ |x) become the conditional first and third quartiles, respectively.

Both D1(p|x) and D2(τ |x) can be used to investigate the presence of heteroscedasticity in
regression problems involving functional data, and this will be demonstrated in Section 5 using
real and simulated datasets. Investigation of heteroscedasticity using linear regression quantiles
for a real valued response and finite dimensional covariate was done as early as in 1982 by
Koenker and Bassett (see [27]). Subsequently, nonparametric quantile regression was used in
[22] and [13] to study heteroscedasticity in problems involving real valued response and finite
dimensional covariate.

3. Nonparametric estimates

We describe here the construction of kernel estimates of S(y|x), SD(y|x) and Q(τ |x). Given the
sample (X1,Y1), . . . , (Xn,Yn), a Kernel function K(·) supported on [0,1] with a bandwidth hn,
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and for y ∈ H, the kernel estimator Ŝ(y|x) of S(y|x) is defined as

Ŝ(y|x) =
∑n

i=1(‖y − Yi‖−1(y − Yi ))K(h−1
n d(x,Xi ))∑n

i=1 K(h−1
n d(x,Xi ))

.

The kernel estimate ŜD(y|x) of SD(y|x) is defined as ŜD(y|x) = 1 − ‖Ŝ(y|x)‖.

3.1. Estimation of conditional quantiles

When the response space H is finite dimensional, the conditional sample τ -quantile Q̂n(τ |x) can
be defined as a minimizer of the function

ĝn(Q|x) =
∑n

i=1 ‖Q − Yi‖K(h−1
n d(x,Xi ))∑n

i=1 K(h−1
n d(x,Xi ))

− 〈τ ,Q〉

in H. Q̂n(τ |x) can be computed using iterative methods (see [12]). When H is an infinite di-
mensional separable Hilbert space, let {en} be an orthonormal basis of H. For v ∈ H, let {vk}
satisfy v = ∑∞

k=1 vkek . Let {dn} be a sequence of positive integers increasing to infinity, and let

Zn = span{e1, e2, . . . , edn}. Define v(n) = ∑dn

k=1 vkek for v ∈ H. We define the function ĝn(·|x)

on H as

ĝn(Q|x) =
∑n

i=1 ‖Q − Y(n)
i ‖K(h−1

n d(x,Xi ))∑n
i=1 K(h−1

n d(x,Xi ))
− 〈

τ (n),Q
〉
. (3.1)

The conditional sample τ -quantile Q̂n(τ |x) is defined as a minimizer of ĝn(Q|x) in Zn. This
method of computing conditional spatial quantiles in an infinite dimensional space is similar to
the procedure described in [8] for computing unconditional quantiles.

The function ĝn(Q|x) is not Fréchet differentiable at Q = Y(n)
i for any i. So, we cannot com-

pute Q̂n(τ |x) by directly solving the equation ĝ
(1)
n (Q|x) = 0 in Zn using a straightforward

Newton–Raphson type iterative method, where ĝ
(1)
n (Q|x) is the Fréchet derivative of ĝn(Q|x)

with respect to Q. Instead, we first check if any of the Y(n)
i s minimize ĝn(Q|x) in Zn. We ap-

ply the Newton–Raphson method if ĝn(Q|x) is not minimized at any of the Y(n)
i s. Details of this

computational procedure are provided in Appendix A. Further details of the estimation procedure
and the choices of the bandwidth hn, the basis {en} and {dn} are discussed in Section 5.

Like the population conditional quantile Q(τ |x), the conditional sample quantile Q̂n(τ |x) is
also equivariant under all invertible and distance preserving affine transformations. Further, the
sample conditional quantiles are scale equivariant in the sense that for any positive constant
c, cQ̂n(τ |x) is the conditional sample quantile for the scale-transformed responses cYi , i =
1, . . . , n.
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3.2. Estimation of maximal depth sets and conditional spread

We estimate the conditional 100p% maximal depth set of Y given X = x as follows. We order the
sample of responses Y1, . . . ,Yn by their conditional sample spatial depth ŜD(Yi |x), and denote
the ordered responses as Y[1], . . . ,Y[n], where ŜD(Y[i]|x) ≥ ŜD(Y[i+1]|x) for i = 1, . . . , n − 1.
Given p ∈ (0,1), let ip be the smallest integer such that

∑ip
i=1 K(h−1

n d(x,X[i]))∑n
i=1 K(h−1

n d(x,X[i]))
≥ p.

The conditional sample 100p% maximal depth set of Y given X = x is the set {Y[1], . . . ,Y[ip]},
which contains 100p% of the sample observations having the highest conditional sample spatial
depth. Define

D̂1(p|x) = max
{‖Y[i] − Y[j ]‖

∣∣ i, j = 1, . . . , ip
}
,

which is an estimate of the conditional spread measure D1(p|x). The other measure of condi-
tional spread, D2(τ |x), is estimated by

D̂2(τ |x) = ∥∥Q̂n(τ |x) − Q̂n(−τ |x)
∥∥.

4. Asymptotic properties of estimates

We now proceed to derive the asymptotic properties of the estimates of conditional spatial dis-
tribution, depth and quantiles. Recall that the response space is a separable Hilbert space H,
and the kernel function is denoted by K(·). Define the small ball probability function φ(·|x)

as φ(h|x) = P [d(x,X) ≤ h]. Denote the conditional probability measure of Y given X = z as
μ(·|z). We make the following assumptions on φ(·|x), K(·) and μ(·|z).

C(i) φ(h|x) > 0 for all h > 0. Also, there exists a function ρ(·|x) : [0,1] → [0,1] such that,
for every 0 ≤ s ≤ 1,

φ(hs|x)

φ(h|x)
→ ρ(s|x) as h → 0+.

C(ii) The kernel function K(·) is bounded and supported on [0,1] with K(1) > 0, and it has
a continuous bounded derivative on (0,1) such that K ′(u) ≤ 0 for all 0 < u < 1.

C(iii) μ(·|z) → μ(·|x) weakly as d(x, z) → 0.

Assumptions C(i), C(ii) and C(iii) will be considered to be true throughout this section, Ap-
pendix B and Section 2 in the supplement [17], and we may not always explicitly mention them.
It is easy to see that the function ρ(s|x) in assumption C(i) is non-decreasing in s, and ρ(1|x) = 1.
Below we describe some situations when the above assumptions are satisfied.
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• Assumption C(i) holds if the covariate X is finite dimensional with a positive probability
density at x or a fractal-type process (see [20], p. 207), as then ρ(s|x) = sd for some d >

0. On the other hand, if X is an infinite dimensional process like a continuous Gaussian
Markov process on an interval equipped with the Lp-norm with 1 ≤ p ≤ ∞, and x belongs
to the associated reproducing kernel Hilbert space, then φ(h|x) ∼ c1(x) exp[−c2h

−2] as
h → 0, where c1(x) > 0, and c2 > 0 does not depend on x (see Theorem 3.1 in [31] and
Theorem 1.1 in [30]). Also, from Theorem 2.1 in [23] and Theorem 1.1 in [30], it follows
that that for any continuous Gaussian Markov process on an interval equipped with the L2-
norm and for any x, φ(h|x) ∼ c1(x) exp[−c2h

−2] as h → 0. In both the above cases, one
can show that ρ(s|x) = I (s = 1). In particular, if the covariate X is a Brownian motion or
a Brownian bridge or an Ornstein–Uhlenbeck process equipped with the L2-norm, we have
ρ(s|x) = I (s = 1). See Proposition 1 in [19] for other examples of ρ(s|x).

• Kernel functions satisfying condition C(ii) have been considered earlier in [19]. These are
type I kernel functions (see Definition 4.1 in [20], p. 42), which are popular in nonparamet-
ric regression involving functional data (see, e.g., [3,18,32,33]), satisfying the additional
condition that their derivatives are nonnegative. The simplest choice of K(·) satisfying C(ii)
is the indicator kernel K(u) = I (0 ≤ u ≤ 1). Other examples of such kernels are the trun-
cated Gaussian kernel K(u) = exp[−u2/2]I (0 ≤ u ≤ 1), the truncated triangular kernel
K(u) = [1 − u/2]I (0 ≤ u ≤ 1), etc.

• Assumption C(iii) states the continuity of the conditional probability measure of Y given
X = z at X = x, and this holds in many standard models. For example, consider the location-
scale model: Y = m(X) + f (X)G, where X and G are independent random elements in
(M, d) and H respectively, and the functions m(·) : M → H and f (·) : M → R are both
continuous at x. It is easy to verify that assumption C(iii) holds in this model. Evidently, this
model covers every situation where the response is a Gaussian process equipped with the
L2-norm given the covariate, and its conditional mean and conditional covariance operator
are continuous functions of the covariate.

From assumption C(ii), we get 0 < l ≤ K(u) ≤ L < ∞ for all u ∈ [0,1], where L = K(0) and
l = K(1). Consequently,

lj φ(h|x) ≤ E
[
Kj

(
h−1d(x,X)

)] ≤ Ljφ(h|x)

for any h > 0 and any positive integer j . Denote

F(j)(h|x) = E[Kj(h−1d(x,X))]
φ(h|x)

.

Using assumptions C(i), C(ii) and arguments similar to those in the proof of Lemma 2 in [19],
we get

F(1)(h|x) → K(1) −
∫ 1

0
ρ(s|x)K ′(s) ds = E(1)(x) (say)

and

F(2)(h|x) → K2(1) − 2
∫ 1

0
ρ(s|x)K(s)K ′(s) ds = E(2)(x) (say)
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as h → 0. Clearly, 0 < lj ≤ E(j)(x) ≤ Lj for j = 1,2. Denote En = E[K(h−1
n d(x,X))]. Define

the bilinear operator γ (y|z)(·, ·) :H×H → R as

γ (y|z)(v,w) = Cov

[〈
y − Y

‖y − Y‖ ,v
〉
,

〈
y − Y

‖y − Y‖ ,w
〉 ∣∣∣∣X = z

]
.

Under the following additional assumptions, we shall obtain the asymptotic normality of the
conditional sample spatial distribution Ŝ(y|x) and the rate of convergence of the conditional
sample spatial depth ŜD(y|x).

A-1 The bandwidth hn satisfies hn → 0 and (nφ(hn|x))−1 logn → 0 as n → ∞.
A-2 For y ∈ H and for d(x, z) ≤ C1, we have (d(x, z))−1‖S(y|z) − S(y|x)‖ ≤ s1, where C1

and s1 are positive constants.

We now discuss Assumptions A-1 and A-2.

• We can choose a sequence of bandwidths {hn} satisfying condition A-1 whenever the small
ball probability function φ(h|x) is a continuous function of h for all sufficiently small h,
and φ(h|x) > 0 for all h > 0. It follows from the discussion on assumption C(i) that this
requirement is satisfied for many covariate distributions.

• Assumption A-2 is a smoothness condition on the conditional spatial distribution S(y|z) for
z lying in a neighborhood of x, which will be required to derive the order of convergence
of ŜD(y|x) to SD(y|x) in Theorem 4.1. Assumption A-2 holds in many models. As an
example, consider again the location-scale model: Y = m(X)+f (X)G, with X and G being
independent random elements in (M, d) and H respectively. Assume that E[‖G‖] < ∞,
and m(·) : M →H and f (·) :M → R are both Lipschitz continuous at x such that f (x) >

0. Assume also that some trivariate marginal distribution of (〈G, e1〉, 〈G, e2〉, . . .) has a
density that is uniformly bounded on bounded subsets. Clearly, this particular requirement
is satisfied for G being any Gaussian process. Then, one can verify that assumption A-2
holds.

Theorem 4.1. Denote

Mn(y|x) =
∑n

i=1[S(y|Xi ) − S(y|x)]K(h−1
n d(x,Xi ))∑n

i=1 K(h−1
n d(x,Xi ))

.

Under assumption A-1, √
nφ(hn|x)

(
Ŝ(y|x) − S(y|x) − Mn(y|x)

) → W

in distribution as n → ∞, where W is a Gaussian random element in H with mean 0 and co-
variance operator [(E(1)(x))−2E(2)(x)]γ (y|x)(·, ·). Also, under Assumptions A-1 and A-2,

∣∣ŜD(y|x) − SD(y|x)
∣∣ = OP

(
1√

nφ(hn|x)
+ hn

)
as n → ∞.
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Mn(y|x) can be viewed as the bias in the kernel estimate Ŝ(y|x) of S(y|x). From Assumptions
A-1 and A-2, it follows that ‖Mn(y|x)‖ = O(hn) as n → ∞ almost surely. So, from Theorem 4.1,
we get

∥∥Ŝ(y|x) − S(y|x)
∥∥ = OP

(
1√

nφ(hn|x)
+ hn

)
as n → ∞.

If hn satisfies
√

nφ(hn|x)hn → 0 as n → ∞ (cf. [33], p. 163, [10], p. 1563), then√
nφ(hn|x)Mn(y|x) → 0 in probability as n → ∞, and from Theorem 4.1, we get

√
nφ(hn|x) ×

(Ŝ(y|x) − S(y|x)) → W in distribution as n → ∞. Note that the order of convergence for both
Ŝ(y|x) and ŜD(y|x) is OP ([√nφ(hn|x)]−1 +hn). The terms [√nφ(hn|x)]−1 and hn in the order
of convergence come from the variance and the bias of the estimate Ŝ(y|x), respectively. For a
choice of bandwidth hn, which balances the bias and the variance,

√
nφ(hn|x)hn will be bounded

and bounded away from 0 as n → ∞.
Let the covariate X be either finite dimensional with a positive density at x or a fractal-type

process. Then, φ(hn|x) = O(hd
n), where d > 0. In that case, the choice of the bandwidth hn,

which balances the asymptotic order of the bias, which is O(hn), and that of the variance, which
is OP ([√nφ(hn|x)]−1), is c3n

−(d+2)−1
for some constant c3 > 0 depending on x. It is easy to

see that this choice of hn satisfies assumption A-1, and for this choice, the optimum rate of
convergence of both ŜD(y|x) and Ŝ(y|x) is OP (n−(d+2)−1

). This optimum rate of convergence
is same as the optimum rate in the usual nonparametric mean regression estimate involving a
multivariate response and a multivariate covariate (see, e.g., [39,40]). Now, suppose the covari-
ate X is a continuous Gaussian Markov process equipped with the L2-norm. In such a case,
φ(hn|x) ∼ c1(x) exp[−c2h

−2
n ] as hn → 0, where c1(x) > 0 and c2 > 0. Here, it is easy to see that

if
√

nφ(hn|x)hn is bounded above, then (nφ(hn|x))−1 logn is bounded away from 0 as n → ∞.
So, there exists no choice of hn which simultaneously satisfies assumption A-1 and balances
the orders of the bias and the variance. It is easy to verify that assumption A-1 is satisfied if
hn = c4([√logn]−1) for a constant c4 >

√
c2. Then, the rate of convergence of both ŜD(y|x)

and Ŝ(y|x) is OP ([√logn]−1). Using arguments similar to those used in [16], it can be shown
that this rate is optimal under appropriate conditions and same as the optimal rate of the kernel-
based mean regression estimate. Finally, we notice that the dimension of the response does not
affect the convergence rate.

We next turn our attention to the conditional sample spatial quantiles. Denote the conditional
probability measures of Y and Y(n) given X = z as μ(·|z) and μ(n)(·|z), respectively. The fol-
lowing assumptions are required for the subsequent results.

B-1 The bandwidth hn satisfies hn → 0 and (nφ(hn|x))(1/2)−2α logn → 0 as n → ∞, where
1/4 < α ≤ 1/2 is a constant.

B-2 There exists a constant C2 > 0 and a positive integer N1 such that whenever d(x, z) ≤ C2,
μ(N1)(·|z) is non-atomic and its support is not contained in a straight line in H, that is,
there exist no a,b ∈ H such that

μ(N1)
({

v ∈H : v = a + tb, t ∈ (−∞,∞)
}∣∣ z

) = 1.
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B-3 There exists a constant C3 > 0 and a positive integer N2 such that whenever d(x, z) ≤ C3

and n ≥ N2, we have for each C > 0, E[‖Q − Y(n)‖−2|X = z] ≤ s2(C) for all Q ∈ Zn

with ‖Q‖ ≤ C. Here s2(C) is a positive constant depending on C.

Below we discuss Assumptions B-1, B-2 and B-3.

• We can choose a sequence of bandwidths {hn} satisfying condition B-1 if φ(h|x) is contin-
uous in h for all sufficiently small h, and φ(h|x) > 0 for all h > 0. From the discussion on
assumption C(i), one can verify that this requirement is met for many covariate distributions.

• Assumption B-2 implies that the probability measure μ(N1)(·|z), which is equivalent to a
multivariate probability measure, induces a continuous multivariate distribution, which is
not concentrated on a straight line whenever z lies in some neighborhood of x. Note that
μ(N1)(·|z) is non-atomic implies that both μ(·|z) and μ(n)(·|z) are non-atomic for all n ≥
N1. Also, if the support of μ(N1)(·|z) is not contained in a straight line in H, then the
supports of both μ(·|z) and μ(n)(·|z) are not contained in any straight line in H for all
n ≥ N1. When the conditional distribution of Y given X is Gaussian with its conditional
mean and conditional covariance operator being continuous at X = x, assumption B-2 is
satisfied.

• It can be established that assumption B-3 holds when some conditional trivariate marginal
distribution of (〈Y, e1〉, 〈Y, e2〉, . . .) given X = z has a density that is uniformly bounded on
bounded subsets for z satisfying d(x, z) ≤ C3. This requirement holds in all the cases where
Y is conditionally a Gaussian process given X and its conditional mean and conditional
covariance operator are continuous at X = x.

Define

gn(Q|z) = E
[∥∥Q − Y(n)

∥∥ − ∥∥Y(n)
∥∥ ∣∣X = z

] − 〈
τ (n),Q

〉
and

g̃n(Q|x) = E
[(∥∥Q − Y(n)

∥∥ − ∥∥Y(n)
∥∥ − 〈

τ (n),Q
〉)
E−1

n K
(
h−1

n d(x,X)
)]

.

For Q ∈H, define the Fréchet derivatives g(1)(Q|z), g
(1)
n (Q|z), g̃

(1)
n (Q|x), ĝ

(1)
n (Q|x) by

g(1)(Q|z) = ∂

∂Q
g(Q|z) = E

[‖Q − Y‖−1(Q − Y)
∣∣X = z

] − τ ,

g(1)
n (Q|z) = ∂

∂Q
gn(Q|z) = E

[∥∥Q − Y(n)
∥∥−1(Q − Y(n)

) ∣∣X = z
] − τ (n),

g̃(1)
n (Q|x) = ∂

∂Q
g̃n(Q|x) = E

[(∥∥Q − Y(n)
∥∥−1(Q − Y(n)

) − τ (n)
)
E−1

n K
(
h−1

n d(x,X)
)]

,

ĝ(1)
n (Q|x) = ∂

∂Q
ĝn(Q|x) =

∑n
i=1(‖Q − Y(n)

i ‖−1(Q − Y(n)
i ))K(h−1

n d(x,Xi ))∑n
i=1 K(h−1

n d(x,Xi ))
− τ (n).
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Now, for each Q ∈H, define g(2)(Q|z)(·), g(2)
n (Q|z)(·), g̃(2)

n (Q|x)(·) : H →H by

(
g(2)(Q|z))(h) =

(
∂2

∂Q2
g(Q|z)

)
(h) = E

[
h

‖Q − Y‖ − 〈h,Q − Y〉(Q − Y)

‖Q − Y‖3

∣∣∣∣X = z
]
,

(
g(2)

n (Q|z))(h) =
(

∂2

∂Q2
gn(Q|z)

)
(h)

= E

[
h

‖Q − Y(n)‖ − 〈h,Q − Y(n)〉(Q − Y(n))

‖Q − Y(n)‖3

∣∣∣∣X = z
]
,

(
g̃(2)

n (Q|x)
)
(h) =

(
∂2

∂Q2
g̃n(Q|z)

)
(h)

= E

[[
h

‖Q − Y(n)‖ − 〈h,Q − Y(n)〉(Q − Y(n))

‖Q − Y(n)‖3

]
K(h−1

n d(x,X))

En

]
.

From Assumptions B-1 and B-2, it follows that for z lying in a neighborhood of x and for all suffi-
ciently large n, gn(Q|z) and g̃n(Q|x) have unique minimizers Qn(τ |z) and Q̃n(τ |x) respectively
in Zn, and

g(1)
n

(
Qn(τ |z)|z) = g̃(1)

n

(
Q̃n(τ |x)|x) = 0.

From Assumptions B-1, B-2 and B-3, we get that for all sufficiently large n and for z lying in
a neighborhood of x, g(2)(Q|z)(·), g

(2)
n (Q|z)(·) and g̃

(2)
n (Q|x)(·) are continuous linear operators

on H for all Q. We now state a Bahadur type asymptotic linearization of Q̂n(τ |x).

Theorem 4.2. Let the assumptions B-1 through B-3 hold, and (nφ(hn|x))−(1−2α)dn → c5 > 0
as n → ∞, where α is as described in assumption B-1. Then,

Q̂n(τ |x) − Q̃n(τ |x)

= −[
g̃(2)

n

(
Q̃n(τ |x)|x)]−1

[n−1 ∑n
i=1

[ Q̃n(τ |x)−Y(n)
i

‖Q̃n(τ |x)−Y(n)
i ‖ − τ (n)

]
E−1

n K(h−1
n d(x,Xi ))

n−1
∑n

i=1 E−1
n K(h−1

n d(x,Xi ))

]
+ Rn(x),

where ‖Rn(x)‖ = O(ε2
n) as n → ∞ almost surely, and εn = (nφ(hn|x))−α

√
logn.

Define Bn(τ |x) = Q̃n(τ |x) − Qn(τ |x). We view it as a kind of bias in the estimate Q̂n(τ |x).
Then, one can show that under the assumptions of Theorem 4.2, ‖Bn(τ |x)‖ → 0 as n → ∞. In
addition, suppose that there exist a constant C4 > 0 and a positive integer N3 such that whenever
d(x, z) ≤ C4 and n ≥ N3, we have, for each C > 0,(

d(x, z)
)−1∥∥g(1)

n (Q|z) − g(1)
n (Q|x)

∥∥ ≤ s3(C)
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for all Q ∈ Zn with ‖Q‖ ≤ C, where s3(C) is a positive constant depending on C. Then, it can
be shown that ‖Bn(τ |x)‖ = O(hn) as n → ∞ (see Proposition B.1). It is easy to show that all
these hold when the response Y satisfies a location-scale model as discussed in connection with
assumption A-2 earlier.

We can show that ‖Qn(τ |x) − Q(τ |x)‖ → 0 as n → ∞ (see Lemma 2.4 in [17]). As a conse-
quence, we get ‖Q̂n(τ |x) − Q(τ |x)‖ → 0 as n → ∞ almost surely for each τ with ‖τ‖ < 1. Re-
call that we defined an estimate of the conditional spread as D̂2(τ |x) = ‖Q̂n(τ |x) − Q̂n(−τ |x)‖.
Hence, we get D̂2(τ |x) → D2(τ |x) as n → ∞ almost surely.

We next state a result on the asymptotic normality of the conditional sample spatial quantile.
Recall γ (y|z)(·, ·) defined before Theorem 4.1. Let γ0(Q|x)(·) : H → H be the continuous linear
operator obtained from γ (Q|x)(·, ·), that is, 〈γ0(Q|x)(v),w〉 = γ (Q|x)(v,w) for all v,w ∈H.

Theorem 4.3. Suppose that Y has the conditional Karhunen–Loeve expansion given by Y =
m(x) + ∑∞

k=1
√

λkZkψk , where the Zk’s are conditionally uncorrelated random variables with
conditional mean 0 and conditional variance 1 given X = x, and the λk’s and the ψk’s are
the eigenvalues and the corresponding eigenfunctions of the conditional covariance operator
of Y given X = x. Also, let

√
nφ(hn|x)‖τ − τ (n)‖ → 0,

√
nφ(hn|x)‖m(x) − (m(x))(n)‖ → 0

and (nφ(hn|x)
∑

k>dn
λk) → 0 as n → ∞. Suppose the assumptions B-1 through B-3 hold, and

(nφ(hn|x))−(1−2α)dn → c5 > 0 as n → ∞, where α is as in assumption B-1. Then,√
nφ(hn|x)

[
Q̂n(τ |x) − Q(τ |x) − Bn(τ |x)

] → W

in distribution as n → ∞, where W is a Gaussian random element in H with mean 0 and co-
variance operator

�(x) = E(2)(x)

(E(1)(x))2

[
g(2)

(
Q(τ |x)|x)]−1

γ0
(
Q(τ |x)|x)[

g(2)
(
Q(τ |x)|x)]−1

.

The assumption concerning the conditional Karhunen–Loeve expansion of Y and the con-
ditions

√
nφ(hn|x)‖τ − τ (n)‖ → 0,

√
nφ(hn|x)‖m(x) − (m(x))(n)‖ → 0 and (nφ(hn|x)×∑

k>dn
λk) → 0 as n → ∞ are required to ensure

√
nφ(hn|x)‖Qn(τ |x) − Q(τ |x)‖ → 0 as

n → ∞. Note that Qn(τ |x) ∈ Zn can be viewed as a finite dimensional approximation of Q(τ |x),
and these conditions are necessary to control the asymptotic bias arising from such an approxi-
mation. For further insights into these conditions, readers are referred to [8], where the authors
used similar assumptions in their Theorem 3.4 to derive asymptotic normality of unconditional
spatial quantiles in Hilbert spaces. Note that when the response space H is finite dimensional, we
can take α = 1/2, Zn =H and dn = dimension(H) for all n. Then, there is no such bias, and our
theorems yield the Bahadur representation and the asymptotic normality for conditional spatial
quantiles of a finite dimensional response as a special case.

Suppose that the covariate X is either finite dimensional with a positive density at x or a
fractal-type process. Then, like in the cases of the conditional spatial distribution and depth, an
appropriate choice of hn, which balances the asymptotic order of the bias term Bn(τ |x) and
the asymptotic order of the variance of the estimate Q̂n(τ |x), is c3n

−(d+2)−1
for some d > 0.

The optimum rate of convergence of Q̂n(τ |x) is OP (n−(d+2)−1
) in that case. If X is a contin-

uous Gaussian Markov process on an interval equipped with the L2-norm, there is no choice
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of hn, which simultaneously satisfies B-1 and
√

nφ(hn|x)hn = O(1) as n → ∞ as observed in
the discussion following Theorem 4.1. However, if one chooses hn = c4([√logn]−1) with an
appropriate constant c4 > 0 in a similar way as done before, then assumption B-1 is satisfied,
and the rate of convergence of Q̂n(τ |x) becomes OP ([√logn]−1) as n → ∞. The optimality of
this convergence rate can be established under appropriate conditions, using arguments similar
to those used in [16], where the optimum rates for the kernel-based mean regression estimate are
derived. And it can be verified that this optimal rate is same as the optimal rate of convergence of
the kernel mean regression estimate in the same setup. Once again, we see that the convergence
rates do not depend on the dimension of the response.

Theorem 4.3 can be utilized to construct confidence sets for the conditional quantile Q(τ |x)

when the sequence of bandwidths {hn} satisfies
√

nφ(hn|x)hn → 0 as n → ∞ in addition to
the conditions in Theorem 4.3. Then, we get that

√
nφ(hn|x)[Q̂n(τ |x) − Q(τ |x)] → W in dis-

tribution as n → ∞. Let 0 < r < 1, and let Kr be a set in H such that P [W ∈ Kr ] = 1 − r .
Then, P [Q(τ |x) ∈ Q̂n(τ |x) + Kr ] → 1 − r as n → ∞ so that Q̂n(τ |x) + Kr is asymptotically
a 100(1 − r)% confidence set for Q(τ |x). We next discuss two ways of constructing Kr , which
will be closed and convex.

In the first construction, we take Kr to be a closed ball C(0, cr ) in H centered at 0 ∈ H with
radius cr such that P [‖W‖2 ≤ c2

r ] = 1 − r . Using the Karhunen–Loeve expansion, it is easy
to see that ‖W‖2 = ∑∞

k=1 ζkχk , where {ζk} is the decreasing sequence of eigenvalues of �(x),
and {χk} is a sequence of independent random variables identically distributed as a Chi-square
distribution with degree of freedom 1. In practice, we can estimate the sequence {ζk} by the
decreasing sequence of eigenvalues {̂ζk,n} of an estimate of the covariance operator �(x). c2

r can
be estimated by the (1 − r)-quantile of the real valued random variable

∑∞
k=1 ζ̂k,nχk using the

Monte-Carlo method. However, the drawback of this confidence set is that the ball C(0, cr ) can
hardly be visualized in a plot when the response values are random functions in an L2 space.

We present a second construction, where the confidence sets can be conveniently plotted.
Again from the Karhunen–Loeve expansion, we get that W = ∑∞

k=1
√

ζkZkξ k , where {ξ k} is the
sequence of eigenvectors of �(x) corresponding to the decreasing sequence of eigenvalues {ζk},
and {Zk} is a sequence of independent standard normal random variables. Let z(β) denote the
β-quantile of the standard normal distribution, where 0 < β < 1. Let lk = z((1 − (1 − r)2−k

)/2)

and uk = z(1 − (1 − (1 − r)2−k
)/2) for k = 1,2, . . . . So, P [lk ≤ Zk ≤ uk] = (1 − r)2−k

for all k,
and hence

P [lk ≤ Zk ≤ uk for all k] =
∞∏

k=1

(1 − r)2−k = 1 − r.

The set Kr can be constructed as

Kr =
{

v =
∞∑

k=1

vkξ k ∈ H
∣∣∣∣∣ lk√ζk ≤ vk ≤ uk

√
ζk for all k

}
.

Once again, we can substitute ζk’s by their estimates obtained from an appropriate estimate of
the covariance operator �(x). We plot this confidence set for the estimated conditional spatial
median for simulated and real data examples in [17].
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Both the constructions of the confidence sets for Q(τ |x) require an estimate �̂n(x) of the
covariance operator �(x) of W. We can estimate �(x) by its sample counter-part

�̂n(x) = E(2),n(x)

(E(1),n(x))2

[
ĝ(2)

n

(
Q̂n(τ |x)|x)]−1

γ̂n

(
Q̂n(τ |x)|x)[

ĝ(2)
n

(
Q̂n(τ |x)|x)]−1

,

where

E(i),n(x) =
∑n

i=1 Kj(h−1
n d(x,Xi ))∑n

i=1 I (d(x,Xi ) ≤ hn)
for i = 1,2,

ĝ
(2)
n (Q|x)(·) :H → H is defined by

ĝ(2)
n (Q|x)(v) =

∑n
i=1

[
v

‖Q−Y(n)
i ‖ − 〈v,Q−Y(n)

i 〉(Q−Y(n)
i )

‖Q−Y(n)
i ‖3

]
K(h−1

n d(x,Xi ))∑n
i=1 K(h−1

n d(x,Xi ))
,

and γ̂n(Q|x)(·) : H →H is the sample covariance operator defined by

γ̂n(Q|x)(v)

=
∑n

i=1

〈
Q−Y(n)

i

‖Q−Y(n)
i ‖ ,v

〉
Q−Y(n)

i

‖Q−Y(n)
i ‖K(h−1

n d(x,Xi ))∑n
i=1 K(h−1

n d(x,Xi ))

−
[∑n

i=1

〈
Q−Y(n)

i

‖Q−Y(n)
i ‖ ,v

〉
K(h−1

n d(x,Xi ))∑n
i=1 K(h−1

n d(x,Xi ))
.

∑n
i=1

Q−Y(n)
i

‖Q−Y(n)
i ‖K(h−1

n d(x,Xi ))∑n
i=1 K(h−1

n d(x,Xi ))

]
.

As stated in the next theorem, �̂n(x) is a consistent estimate of �(x).

Theorem 4.4. Under the conditions in Theorem 4.3, �̂n(x) → �(x) in probability as n → ∞.

5. Data analysis

In this section, quantile regression and conditional maximal depth sets are demonstrated using
simulated and real data. We consider three datasets here. The first one is a simulated data gener-
ated from a heteroscedastic model. The second dataset is a real data concerning per capita GDP
and saving rate in 125 countries over a time period of 26 years. The third dataset is about cigarette
sales and net disposable income in 46 states in the USA over a 30-year period.

In all our analysis, we consider the functional response and the functional covariate as random
elements in appropriate L2 spaces. For the sake of simplicity, we choose the indicator function
on [0,1] as the kernel K(·), and the bandwidth h is chosen by leave-one-out cross validation
in the following way. Let m

(−i)
n (z, h) denote the conditional spatial median estimated at X = z
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using the bandwidth h and leaving out the ith sample observation (Xi ,Yi ). We choose the band-
width hopt such that hopt = arg minh n−1 ∑n

i=1 ‖m(−i)
n (Xi , h)−Yi‖. For a given bandwidth h, let

Cn(x, h) = {Yi |d(x,Xi ) ≤ h} (d(·, ·) is the L2 metric here), and #[Cn(x, h)] be the cardinality
of Cn(x, h). While computing Q̂n(τ |x) taking bandwidth h, we take

dn =
⌊

min
{√

#
[
Cn(x, h)

]
,2

[
#
[
Cn(x, h)

]](1/3)
}⌋

,

where �r� denotes the largest integer less than or equal to r . Then, α = (1/3) and c5 = 2, where
α and c5 are as in Theorem 4.2. To fix the basis {e1, e2, . . . , edn}, we first estimate the conditional
covariance operator of Y given X = x using the same kernel function K(·) and the bandwidth h.
Then, the eigenfunction corresponding to the kth largest eigenvalue of the estimated conditional
covariance operator is taken as ek for k = 1, . . . , dn. The cross-validated bandwidth hopt is used
for all further computations of quantiles, maximal depth sets and spread measures.

5.1. Simulated data

We consider a regression model, where the covariate X(t) = U exp(t) for t ∈ [0,1] with U ∼
Uniform[0,1], and the response Y(t) = ‖X‖B(t), where B(t) is the standard Brownian Motion
on [0,1], and ‖ · ‖ is the L2 norm. We simulate 100 observations from this model, and construct
the quantile regression estimates and conditional maximal depth sets. The sample size is 100.

The value of the bandwidth h obtained through cross validation is 0.68. We compute the 50%
conditional maximal depth sets, the conditional spatial median and conditional spatial quantiles
corresponding to τ = ±0.5u, where u is the first principal component of the estimated condi-
tional covariance operator of the response. To demonstrate the conditional quantile curves and
depth sets, we order the covariate curves by their L2 norms, and choose 5 covariate curves whose
ranks are equidistant in this ordering. The conditional spatial quantiles and the conditional max-
imal depth sets for these 5 covariate curves are plotted in Figure 2. We see that the spatial quan-
tiles and the maximal depth sets clearly capture the change of the conditional distributions of
the response given the selected covariate curves and the heteroscedasticity present in the data.
The conditional spread measures D̂1(p|x) and D̂2(τ |x) for all the covariate curves are plotted
in Figure 3 against the ranks of all the covariate curves in the ordering by their L2 norms. The
heteroscedasticity of the model is also evident from these plots.

5.2. The Penn Table data

We consider now a real data, which is heteroscedastic in nature. The Penn Table dataset is a
panel of 125 observations for the period 1960–1985. It includes real GDP per capita (in 1985
dollars) and saving rate (in percent) of 125 countries for those 26 years. This dataset is available
in the R package “Ecdat” (named as “SumHes”). We take the saving rate curve as the response
and the curve of per capita GDP as covariate and investigate the effect of the covariate on the
response. Both the response and the covariate, which are functions of time, are considered as
random elements in L2[1960,1985].
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Figure 2. Plots of the selected covariate curves (1st row), the corresponding conditional spatial quantiles
(2nd row) and conditional maximal depth sets (3rd row) for the simulated data. The dotted, the dashed and
the solid curves in the 2nd row are Q̂n(−0.5u|x), Q̂n(0.5u|x) and Q̂n(0|x), respectively.

Figure 3. Plots of D̂1(p|x) and D̂2(τ |x) against the ranks of the covariate curves in the ordering by their
L2 norms in the heteroscedastic model.
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Figure 4. Plots of the selected covariate curves (1st row), the corresponding conditional spatial quantiles
(2nd row) and conditional maximal depth sets (3rd row) for the Penn Table data. The dotted, the dashed and
the solid curves in the 2nd row are Q̂n(−0.5u|x), Q̂n(0.5u|x) and Q̂n(0|x), respectively.

The curve of per capita GDP indicates the productivity of an average citizen of the nation. The
bandwidth h obtained through cross validation is 9565.71. The resulting conditional quantiles
and maximal depth sets are plotted in Figure 4 for 5 selected covariate curves.

We note that saving rate increases gradually with the rise in per capita GDP. We notice that
there is a decreasing trend in the saving rate after 1980 in all the plots. This trend is more notice-
able in middle and higher GDP levels as indicated by the plots in the 4th and the 5th columns
of Figure 4. The plots in the 5th column correspond to the countries with very high levels of
per capita GDP, and the saving rates start decreasing around 1970 in those countries. This indi-
cates an increase in consumption only after 1980 in all the countries except those with very high
levels of per capita GDP. The consumption in countries with very high per capita GDP started
increasing even earlier, around 1970.

From the plots of D̂1(p|x) and D̂2(τ |x) in Figure 5, with the covariate curves arranged by
their L2 norms, we notice that the data is heteroscedastic in nature. This observation is also
supported by the shrinking difference between the two chosen spatial quantiles and the upper
and lower boundaries of the maximal depth sets corresponding to the 4th and the 5th chosen
covariate curves in Figure 4.
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Figure 5. Plots of D̂1(p|x) and D̂2(τ |x) against the ranks of the covariate curves in the ordering by their
L2 norms for the Penn Table data.

5.3. The Cigar Data

Our third example deals with the Cigar Data, which is a panel of 46 observations containing
information about the sale of cigarettes in 46 states of the USA for the period from 1963 to 1992.
This dataset is available in the “plm” and the “Ecdat” packages in R and was analyzed earlier
in [1]. In addition to information on sales of cigarettes, it also includes per capita net disposable
income (NDI) for those 46 states over the 30 year period. We consider the curve of per capita
NDI over time as the covariate and the curve of cigarette sales in packs per capita over time as
the response. Both the response and the covariate curves are functions of time over a 30 year pe-
riod from 1963 to 1992, and we view them as random elements in L2[1963,1992]. Choosing the
covariate and the response this way, we can investigate the effect of income over consumption of
cigarettes in different states. The cross validated choice of the bandwidth is 10 061.27. The co-
variate curves are arranged by their L2 norms, and the corresponding conditional quantile curves
and the maximal depth sets are plotted in Figure 6 for 5 selected covariate curves corresponding
to 5 different states.

The plots in Figure 6 illustrate several features of cigarette consumption, both over income
and over time, in the states. The difference of the temporal trends in cigarette consumption over
different levels of income is noticeable. We can observe from the conditional quantile curves that
the sale of cigarettes has a peak around 1980 for each of the selected covariate curves. This peak
sale of cigarettes around 1980 is the highest over the time period considered for all the selected
covariate curves except the one in the 5th column, which corresponds to the state with the highest
income level among the selected covariate curves. In the 5th column of the plots in Figure 6, the
sale of cigarettes around 1980 is slightly lower than the sale around 1963, the beginning of the
time period considered here. A small dip is noticeable in the spatial quantile curves and the upper
and the lower boundaries of the maximal depth sets around 1970 in all the plots. This means a
decrease in cigarette consumption around 1970 in the states. The conditional quantile curves
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Figure 6. Plots of the selected covariate curves (1st row), the corresponding conditional spatial quantiles
(2nd row) and conditional maximal depth sets (3rd row) for the Cigar Data. The dotted, the dashed and the
solid curves in the 2nd row are Q̂n(−0.5u|x), Q̂n(0.5u|x) and Q̂n(0|x), respectively.

start rising again after 1970 and peak around 1980. After that time, those curves are consistently
decreasing. The difference of the two conditional quantile curves is significantly lower after
1980 in the 5th column in Figure 6. This indicates that cigarette consumption decreased more
homogeneously in states with very high income levels. In lower income states corresponding to
the 1st and the 2nd columns in Figure 6, the high difference between the two conditional quantile
curves after 1980 indicates high variation in the prevalence of smoking in those states. This is
further supported by the plots of the corresponding conditional maximal depth sets in the 1st and
the 2nd columns in Figure 6.

Our preceding observations coincide with several important events in the history of smoking
in the US in the previous century (see [4], p. 16), and those offer additional insights into the
effects of these events. It was observed in [4], p. 15, that the per capita cigarette consumption
in the US was the highest in 1963. However, we saw in the preceding analysis that the cigarette
sales in the low and middle income states did not reach their highest levels until around 1980,
while the sales of cigarettes in some very high income states were at their highest levels in 1963.
So, that peak of 1963 reported by [4] was probably due to high consumption in some very high
income states. In 1964, the US Surgeon General’s report asserted that cigarette consumption is
a leading cause of cancer, and counter-advertising on television against smoking was run in the
period 1967–1970. These are likely reasons for the small drop in cigarette sales around 1970.
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Figure 7. Plots of D̂1(p|x) and D̂2(τ |x) against the ranks of the covariate curves in the ordering by their
L2 norms for the Cigar Data.

We saw that sales of cigarette again started to rise in all the states after 1970. This may be due
to the renewed effort to increase sales by the tobacco industry, like introducing special cigarette
brands targeted at women, and the end of free time to anti-smoking advertisement in television
broadcasting. Nonsmokers’ rights movement began after 1970, and gained force by the beginning
of the ’80s. In 1983, Federal tax on cigarette was increased, and the Surgeon General’s report in
1986 linked environmental smoking to lung cancer. The decrease in cigarette sales throughout
the ’80s and the beginning of the ’90s may be explained as the combined effect of these events.

We plot the conditional spread measures D̂1(p|x) and D̂2(τ |x) in Figure 7, with the covariate
curves arranged by their L2 norms. From these plots, we notice that the data is fairly homoscedas-
tic over the covariate curves except for some extreme covariate curves. The variations in D̂1(p|x)

and D̂2(τ |x) for those extreme covariate curves appear due to the fact that those covariate curves
have very few observations in their neighborhoods, and among those observations there seem to
be some outliers.

Appendix A: Computation of ̂Qn(τ |x)

We describe here the computational procedure of Q̂n(τ |x) in detail, when the response space H
is infinite dimensional. Observe that

ĝn(Q|x) =
∑n

i=1(‖Q − Y(n)
i ‖ − 〈τ (n),Q〉)wi∑n
i=1 wi

,

where wi = K(h−1
n d(x,Xi )) for 1 ≤ i ≤ n. Since ĝn(Q|x) is convex, Q̂n(τ |x) minimizes

ĝn(Q|x) in Zn if and only if the Gâteaux derivative

lim
t→0+ t−1[ĝn

(
Q̂n(τ |x) + th

∣∣x
) − ĝn

(
Q̂n(τ |x)

∣∣x
)] ≥ 0
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for all h ∈ Zn. Denote In = {i|Y(n)
i = Q̂n(τ |x)}. So, for all h ∈ Zn, we need to have that the

Gâteaux derivative, which equals

∑
i /∈In

wi

[〈
Q̂n(τ |x) − Y(n)

i

‖Q̂n(τ |x) − Y(n)
i ‖

,h
〉
− 〈

τ (n),h
〉] +

∑
i∈In

wi

[‖h‖ − 〈
τ (n),h

〉] ≥ 0.

Replacing h by −h, we get another version of the above inequality. Since |‖h‖ ± 〈τ (n),h〉| ≤
(1 + ‖τ (n)‖)‖h‖, we get from the two inequalities that∥∥∥∥∑

i /∈In

wi

[
Q̂n(τ |x) − Y(n)

i

‖Q̂n(τ |x) − Y(n)
i ‖

− τ (n)

]∥∥∥∥ ≤ (
1 + ∥∥τ (n)

∥∥)∑
i∈In

wi (A.1)

if the set In is non-empty. On the other hand, if In is an empty set,

n∑
i=1

wi

[
Q̂n(τ |x) − Y(n)

i

‖Q̂n(τ |x) − Y(n)
i ‖

− τ (n)

]
= 0. (A.2)

Now, we state the algorithm for computing Q̂n(τ |x), when Y(n)
1 , . . . ,Y(n)

n do not all lie on

a straight line in Zn. For each i, denote the set Ji = {j |Y(n)
j = Y(n)

i }. In the first step of our
computation, we check whether the condition∥∥∥∥∑

j /∈Ji

wj

[ Y(n)
i − Y(n)

j

‖Y(n)
i − Y(n)

j ‖
− τ (n)

]∥∥∥∥ ≤ (
1 + ∥∥τ (n)

∥∥) ∑
j∈Ji

wj

is satisfied for any 1 ≤ i ≤ n. If it is satisfied for some i, we take Q̂n(τ |x) = Y(n)
i . Otherwise, we

move to the next step and try to solve equation (A.2).
To solve equation (A.2), we take an initial approximation Q1 of Q̂n(τ |x) to start the iteration.

Q1 may be taken as the estimated pointwise conditional median of Y(n)
1 , . . . ,Y(n)

n given X = x
if the response is a random function. Let Q1, . . . ,Qm be the m successive approximations of
Q̂n(τ |x) obtained in the first m consecutive iterations. Denote gm = min{ĝn(Qj |x)|1 ≤ j ≤ m}.
To compute Qm+1, we first compute

V =
n∑

i=1

wi

[
Qm − Y(n)

i

‖Qm − Y(n)
i ‖

− τ (n)

]
and

A =
n∑

i=1

wi

[
Id(Zn)

‖Qm − Y(n)
i ‖

− (·,Qm − Y(n)
i 〉〈Qm − Y(n)

i , ·)
‖Qm − Y(n)

i ‖3

]
,

where Id(Zn) is the identity map on Zn, and (·,y〉〈z, ·) is the outer product of y and z in Zn.
Since Zn is finite dimensional, A is a positive definite operator on Zn because Y(n)

1 , . . . ,Y(n)
n do
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not all lie on a straight line. We set Q′ = Qm − A−1V. If ĝn(Q′|x) ≤ gm, we take Qm+1 = Q′.
Else, we set Qm+1 = fmQm + (1 − fm)Q′, where fm = ĝn(Q′|x)/(ĝn(Q′|x) + gm). We stop
iterating when two successive approximations of Q̂n(τ |x) are sufficiently close.

Appendix B: Mathematical details and proofs

Proof of Theorem 4.1. Let Ŝ(y|x) − S(y|x) − Mn(y|x) = An/Bn, where

An = n−1
n∑

i=1

[
y − Yi

‖y − Yi‖ − S(y|Xi )

]
K(h−1

n d(x,Xi ))

En

and Bn = n−1 ∑n
i=1 E−1

n K(h−1
n d(x,Xi )). Using Assumptions C(ii) and A-1, we get Bn → 1

as n → ∞ almost surely. From assumption C(iii), we get ‖γ (y|z)(·, ·) − γ (y|x)(·, ·)‖ → 0 as
d(x, z) → 0 for any y ∈ H. So, using assumption A-1 and Theorem 1.1 in [29], it follows that√

nφ(hn|x)An → W in distribution as n → ∞, where W is as described in Theorem 4.1. Hence,√
nφ(hn|x)

(
Ŝ(y|x) − S(y|x) − Mn(y|x)

) → W

in distribution as n → ∞.
Using Taylor expansion of the norm function at S(y|x) + Mn(y|x), we get[

ŜD(y|x) − (
1 − ∥∥S(y|x) + Mn(y|x)

∥∥)]
= −∥∥S(y|x) + Mn(y|x)

∥∥−1〈(
S(y|x) + Mn(y|x)

)
,
(
Ŝ(y|x) − S(y|x) − Mn(y|x)

)〉
+ o

(∥∥Ŝ(y|x) − S(y|x) − Mn(y|x)
∥∥)

.

So, ∣∣ŜD(y|x) − SD(y|x)
∣∣

≤ ∣∣ŜD(y|x) − (
1 − ∥∥S(y|x) + Mn(y|x)

∥∥)∣∣ + ∥∥Mn(y|x)
∥∥

≤ ∥∥Ŝ(y|x) − S(y|x) − Mn(y|x)
∥∥ + o

(∥∥Ŝ(y|x) − S(y|x) − Mn(y|x)
∥∥) + ∥∥Mn(y|x)

∥∥.

By the asymptotic normality of
√

nφ(hn|x)(Ŝ(y|x) − S(y|x) − Mn(y|x)), we get∥∥Ŝ(y|x) − S(y|x) − Mn(y|x)
∥∥ = OP

(
1√

nφ(hn|x)

)
as n → ∞. Under Assumptions A-1 and A-2, ‖Mn(y|x)‖ = O(hn) as n → ∞ almost surely.
Hence, ∣∣ŜD(y|x) − SD(y|x)

∣∣ = OP

(
1√

nφ(hn|x)
+ hn

)
as n → ∞. �
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The following result yields the convergence rate of Q̂n(τ |x), and is required for the proof of
Theorem 4.2. Some other intermediate results are kept in the supplement [17].

Proof of Theorem 4.2. See the definition of Q̄n in (2.1) in the proof of Proposition 2.7 in [17]
and the definition of Gn(Q|x) in Lemma 2.8 in [17]. Note that

ĝ(1)
n (Q̄n|x) − ĝ(1)

n

(
Q̃n(τ |x)|x)

= [
ĝ(1)

n (Q̄n|x) − ĝ(1)
n

(
Q̃n(τ |x)|x) − Gn(Q̄n|x)

]
+ [

Gn(Q̄n|x) − g̃(2)
n

(
Q̃n(τ |x)|x)(

Q̄n − Q̃n(τ |x)
)]

+ g̃(2)
n

(
Q̃n(τ |x)|x)(

Q̄n − Q̃n(τ |x)
)
.

Using Lemmas 2.8 and 2.10 in [17], we get[
ĝ(1)

n (Q̄n|x) − ĝ(1)
n

(
Q̃n(τ |x)|x) − Gn(Q̄n|x)

] = O
(
ε2
n

)
and [

Gn(Q̄n|x) − g̃(2)
n

(
Q̃n(τ |x)|x)(

Q̄n − Q̃n(τ |x)
)] = O

(
ε2
n

)
as n → ∞ almost surely. From inequality (2.3) in the proof of Proposition 2.7 in [17],
we have ĝ

(1)
n (Q̄n|x) = O(ε2

n) for all sufficiently large n almost surely. From Lemmas 2.5

and 2.6 in [17], we get that for all sufficiently large n, g̃
(2)
n (Q̃n(τ |x)|x)(·) is invertible and

‖[g̃(2)
n (Q̃n(τ |x)|x)]−1‖ ≤ b−1

M , where ‖Q̃n(τ |x)‖ ≤ M . Therefore, we get

Q̄n − Q̃n(τ |x) = −[
g̃(2)

n

(
Q̃n(τ |x)|x)]−1(

ĝ(1)
n

(
Q̃n(τ |x)|x)) + rn(x),

where ‖rn(x)‖ = O(ε2
n) as n → ∞ almost surely. Since from (2.2) in the proof of Proposition 2.7

in [17] it follows that ‖Q̂n(τ |x) − Q̄n‖ = O(ε2
n) almost surely for all sufficiently large n, we

finally have

Q̂n(τ |x) − Q̃n(τ |x) = −[
g̃(2)

n

(
Q̃n(τ |x)|x)]−1(

ĝ(1)
n

(
Q̃n(τ |x)|x)) + Rn(x),

where ‖Rn(x)‖ = O(ε2
n) as n → ∞ almost surely. �

Proposition B.1. Under Assumptions B-1, B-2 and B-3, ‖Q̃n(τ |x)− Qn(τ |x)‖ → 0 as n → ∞.
In addition, suppose that there exist a constant C4 > 0 and an integer N3 > 0 such that whenever
d(x, z) ≤ C4 and n ≥ N3, we have, for each C > 0,(

d(x, z)
)−1∥∥g(1)

n (Q|z) − g(1)
n (Q|x)

∥∥ ≤ s3(C)

for all Q ∈ Zn with ‖Q‖ ≤ C, where s3(C) is a positive constant depending on C. Then,
‖Q̃n(τ |x) − Qn(τ |x)‖ = O(hn) as n → ∞.
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Proof. Define

Sn(Q|x) = E
[∥∥Q − Y(n)

∥∥−1(Q − Y(n)
) ∣∣X = x

]
and

S̃n(Q|x) = E
[∥∥Q − Y(n)

∥∥−1(Q − Y(n)
)
E−1

n K
(
h−1

n d(x,X)
)]

.

By assumptions B-1, B-2 and using arguments similar to those in the proof of Theorem 3.1 in
[8], we get that Sn(Q|x) and S̃n(Q|x) are continuous invertible maps with the entire open unit
ball in Zn as their range, and

Sn

(
Qn(τ |x)

∣∣x
) = S̃n

(
Q̃n(τ |x)

∣∣x
) = τ (n).

Under assumption C(iii), we get∥∥Sn

(
Q̃n(τ |x)

∣∣x
) − τ (n)

∥∥ = ∥∥Sn

(
Q̃n(τ |x)

∣∣x
) − S̃n

(
Q̃n(τ |x)

∣∣x
)∥∥ → 0

as n → ∞. Using Lemma 2.5 in [17], it follows that the Fréchet derivative of S−1
n (·|x) exists,

and for some c6 > 0,∥∥Q̃n(τ |x) − Qn(τ |x)
∥∥ = ∥∥S−1

n

(
Sn

(
Q̃n(τ |x)

∣∣x
) ∣∣x

) − S−1
n

(
τ (n)

∣∣x
)∥∥

≤ c6
∥∥Sn

(
Q̃n(τ |x)

∣∣x
) − τ (n)

∥∥
for all sufficiently large n. Therefore, ‖Q̃n(τ |x) − Qn(τ |x)‖ → 0 as n → ∞. If the additional
condition in Proposition B.1 holds, we have∥∥Sn

(
Q̃n(τ |x)

∣∣x
) − S̃n

(
Q̃n(τ |x)

∣∣x
)∥∥ = O(hn)

as n → ∞. So, in that case, ‖Q̃n(τ |x) − Qn(τ |x)‖ = O(hn) as n → ∞. �

Proof of Theorem 4.3. Define

Tn = n−1
n∑

i=1

[
Q̃n(τ |x) − Y(n)

i

‖Q̃n(τ |x) − Y(n)
i ‖

− τ (n)

]
K(h−1

n d(x,Xi ))

En

.

Clearly, Tn is an average of n i.i.d. zero mean random elements in Zn. Define the bilinear operator
γ̃(n)(Q|x)(·, ·) :H×H → R as

γ̃(n)(Q|x)(v,w) = Cov
[〈

Vn(Q),v
〉
,
〈
Vn(Q),w

〉]
,

where

Vn(Q) =
[

Q − Y(n)

‖Q − Y(n)‖ − τ (n)

]
K(h−1

n d(x,X))

En

.
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Using Assumptions C(iii) and B-1, we get∥∥γ̃(n)

(
Q̃n(τ |x)

∣∣x
)
(·, ·) − γ

(
Q(τ |x)

∣∣x
)
(·, ·)∥∥ → 0 (B.1)

as n → ∞. One can show that g(2)(Q(τ |x)|x)(·) is invertible using similar arguments as in the
proofs of Lemmas 2.5 and 2.6 in [17]. Also, using arguments similar to those in the proof of
Theorem 3.4 in [8] and Assumptions C(iii) and B-3, one can show that√

nφ(hn|x)
∥∥[

g̃(2)
n

(
Q̃n(τ |x)

∣∣x
)]−1

Tn − [
g(2)

(
Q(τ |x)

∣∣x
)]−1

Tn

∥∥ → 0 (B.2)

in probability as n → ∞. Applying Theorem 1.1 in [29] and using equation (B.1), it follows that√
nφ(hn|x)

[
g(2)

(
Q(τ |x)

∣∣x
)]−1

Tn → W (B.3)

in distribution as n → ∞, where W is the Gaussian random element described in Theorem 4.3.
Therefore, from equations (B.2) and (B.3) we get√

nφ(hn|x)
[
g̃(2)

n

(
Q̃n(τ |x)

∣∣x
)]−1

Tn → W

in distribution as n → ∞. Since n−1 ∑n
i=1 E−1

n K(h−1
n d(x,Xi )) → 1 as n → ∞ almost surely,

we have

√
nφ(hn|x)[g̃(2)

n (Q̃n(τ |x)|x)]−1Tn

n−1
∑n

i=1 E−1
n K(h−1

n d(x,Xi ))
→ W

in distribution as n → ∞. Using the assumptions stated in Theorem 4.3 and the discussion before
Theorem 3.4 in [8], one can show that

√
nφ(hn|x)[Qn(τ |x) − Q(τ |x)] → 0 in probability as

n → ∞. From assumption B-1 and Theorem 4.2, it follows that
√

nφ(hn|x)Rn(x) → 0 as n →
∞ almost surely. The proof is complete using the representation of Q̂n(τ |x) in Theorem 4.2. �

Proof of Theorem 4.4. Under the conditions in Theorem 4.3, it can be established using the
Bernstein inequality, the Borel–Cantelli lemma and arguments similar to those in the proof of
Lemma 2 in [19] that (

E(1),n(x)
)−2

E(2),n(x) → (
E(1)(x)

)−2
E(2)(x)

as n → ∞ almost surely. Also, using Chebyshev-type arguments, one can show that

ĝ(2)
n

(
Q̂n(τ |x)

∣∣x
)
(·) → g(2)

(
Q(τ |x)

∣∣x
)
(·)

in probability as n → ∞. So, using arguments similar to those in Lemma 2.5 in [17], it follows
that [

ĝ(2)
n

(
Q̂n(τ |x)

∣∣x
)]−1

(·) → [
g(2)

(
Q(τ |x)

∣∣x
)]−1

(·)
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in probability as n → ∞. Similarly, one can establish that

γ̂n

(
Q̂n(τ |x)

∣∣x
) → γ0

(
Q(τ |x)

∣∣x
)

in probability as n → ∞. Therefore, the estimate �̂n(x) → �(x) in probability as n → ∞. �
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Supplementary Material

Supplement to “Nonparametric depth and quantile regression for functional data” (DOI:
10.3150/17-BEJ991SUPP; .pdf). We present here the plots of confidence sets for conditional
spatial medians in the examples considered in the paper. In addition, some mathematical details
required for the proofs of the theorems are provided.
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