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Let (X, Y) be a random vector such that X is d-dimensional, Y is real valued, and 
0(X) is the conditional ccth quantile of Y given X, where a is a fixed number such 
that 0 < G( < 1. Assume that 0 is a smooth function with order of smoothness p > 0, 
and set r = (p - m)/(2p + d), where m is a nonnegative integer smaller than p. Let 
T(0) der)ote a derivative of 0 of order m. It is proved that there exists estimate ?,, 
of T(B), based on a set of i.i.d. observations (X,, Y,), . . . . (X,, Y,), that achieves the 
optimal nonparametric rate of convergence n + in &-norms (1 < 4 < co) restricted 
to compacts under appropriate regularity conditions. Further, it has been shown 
that there exists estimate F” of T(B) that achieves the optimal rate (n/logn)-’ in 
&,-norm restricted to compacts. 6 1991 Academic Press, Inc. 

1. INTRODUCTION 

Consider a regression setup with a d-dimensional random regressor X 
and a real valued response variable Y, which satisfy Y = 0(X) + E. Here, E 
is an unobservable random variable assumed to be independent of X, and 
8 is an unknown function to be estimated from a set of i.i.d. observations 
(X,, Y1), (X,, Y,), . . . . (X,, Y,,). In usual regression problems, E is assumed 
to have mean 0, and that makes e(X) the conditional mean of Y given X. 
On the other hand, in quantile regression [21, 253, the clth quantile (c( is 
a fixed number such that 0 < c1< 1) of E is assumed to be at 0, and e(X) 
becomes the conditional a th quantile of Y given X. Of particular importance 
is the case when tl = 4 in which case 0(X) becomes the conditional median 
of Y given X. It is well known that the estimates constructed by using the 

Received January 24, 1990; revised April 10, 1991. 
AMS 1980 subject classifications: primary 62605, 62G20; secondary 62635. 
Key words and phrases: regression quantiles, nonparametric estimates, bin smoothers, 

optimal rates of convergence. 
* The research presented here was supported in part by the NSF Grant DMS 86-00409 and 

a Wisconsin Alumni Research Foundation Grant. 

0047-259x/91 $3.00 
Copyright 0 1991 by Academic Press, Inc 
All rights of reproduction m  any form reserved. 

246 



NONPARAMETRIC QUANTILE REGRESSION 247 

method of least squares in usual regression problems are not very robust 
and are very badly affected by the presence of outlying observations in the 
data (see [20, 22, 23, 25, 331 for detailed discussions). Also, the least 
squares estimates often turn out to be quite inefficient when the random 
error E follows a non-normal probability distribution. One of the major 
motivations behind looking at the regression quantiles is to make the usual 
regression robust and to extend the techniques of L-estimation to 
the regression context from location problems with univariate data (see 
[4, 31, 41, 421). 

In the case of a finite dimensional linear parametric model for 8, it is 
assumed that B is a member of a fixed finite dimensional vector space of 
real valued functions. In that case, the problem of estimating 8 boils down 
to the problem of estimating a finite dimensional Euclidean parameter. The 

J- II consistency and the asymptotic normality of the quantile regression 
estimates in linear parametric models have already been established by 
several people [25, 31, 27, 41, 421. Others [l, lo] have investigated the 
almost sure behavior and strong consistency of minimum L,-norm and 
other related estimates in the context of linear regression. Stone in his 1982 
paper on “Optimal Global Rates of Convergence for Nonparametric 
Regression” raised the question whether the optimal nonparametric rates of 
convergence are achievable in the estimation of the conditional median 
function of Y given X. He was motivated by the idea of making the non- 
parametric regression robust. In this paper, we will provide an affirmative 
answer to the above question (see also [40]) by constructing non- 
parametric estimates for the conditional quantile function (which is 
assumed to be suitably smooth) and its derivatives and showing that, 
under mild regularity conditions, such estimates achieve the optimal non- 
parametric rates of convergence in &,-norms (1 Q q 6 co) restricted to 
compact sets. Stone [36] (see also [35]) obtained the lower bounds for the 
global rates of convergence for nonparametric estimates of a regression 
function and its derivatives. It is clear from his work that these lower 
bounds apply also to the nonparametric estimates of conditional quantile 
functions. In fact, the lower bounds are determined by the local behavior 
of the Kullback-Leibler divergence for the family of conditional distribu- 
tions [43] or, more broadly speaking, by the “geometry” of the problem 
[ 141. Results presented in this paper do not require any moment condition 
on the random error si, whereas Stone [36] did use such a condition. It 
implies that the estimates discussed here will perform well even if the ai’s 
have a distribution with heavy tail(s) and they will be resistant to outliers 
among E, , Ed, . . . . E, (see also [3, 11, 12, 16, 17, 18, 19, 24, 28, 29, 391). 

The estimates discussed in this paper are polynomial smoothers 
constructed following the idea of bin smoothers or the histogram type 
estimates. After obtaining the data (X,, Y,), (X,, Y,), . . . . (X,, Y,), we first 
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split the compact set, on which the estimate for the conditional quantile 
function is to be constructed, into an appropriate number of bins of equal 
size. Then a polynomial in X of suitable degree (depending on the assumed 
amount of smoothness of the function being estimated) is fitted to the data 
points that fall inside a bin using the loss function H,(t) = 1 t( + (2cr - 1) t 
(see [25, 34, 151) with each bin being treated separately. Note that in the 
case of estimating the location parameter based on univariate data, the 
estimate constructed by minimizing the loss H, is nothing but the sample 
CI th quantile (just as the estimate constructed by minimizing the squared 
error loss is the sample mean, and the estimate constructed by minimizing 
the absolute error loss is the sample median). The number of bins chosen 
will depend on the sample size, the dimension of X, and the assumed 
amount of smoothness of the unknown conditional quantile function. As it 
is typical in nonparametric function estimation, this involves a subtle and 
complex form of “bias versus variance game.” One of the main objectives 
here is to gain theoretical insights into the asymptotic behavior of non- 
parametric estimates of regression quantiles constructed through piecewise 
polynomial fits. The piecewise polynomial nature of the estimates makes 
them discontinuous at the boundaries of the chosen bins. One resolution of 
this problem is to smooth out these estimates by weighted averaging with 
appropriately chosen weights without affecting their optimal asymptotic 
properties. Such estimates have been constructed and thoroughly discussed 
in Chaudhuri, Huang, Loh, and Yao [9] in the context of regression 
function estimation via recursive partitioning. 

2. DESCRIPTION OF THE ESTIMATES FOR CONDITIONAL QUANTILE 
FUNCTION AND ITS DERIVATIVES 

Suppose that (X,, Y,), (X,, Y,), . . . . (X,, Y,) are i.i.d. observations, 
where the Y;s are real valued and the X;.s are d-dimensional. We assume 
that Yi = &Xi) + si, where si is independent of Xi and has a distribution 
with 0 as the crth quantile. Note that the assumption that si has the clth 
quantile at 0 is only a centering assumption to fix the idea and simplify 
notations. One can always make 0 to be the a th quantile of the common 
distribution of the E;S by addition of a common constant to the 6;s and 
subtraction of the same constant from 0, if necessary. 

For u = (ur , . . . . u,), a d-dimensional vector of nonnegative integers, 
let D” denote the differential operator acul/(axf;l ... ax?), where [u] = 
u1+ *.* +u,. 

Let V be a nonempty open subset of Rd and 1 1 denote the usual 
Euclidean norm. Let C be a fixed compact subset of V. For a fixed non- 
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negative integer k and real numbers c and y such that c > 0 and 0 < y < 1, 
let O(c, k, y) be the collection of all functions 8 on V satisfying 

(i) Pi exists and is continuous in x for all XEV and [u] <k, 
and 

(ii) ~O”~(X,)--PY~(X,)~ <clx, -x21y for all x,, .x,EV and [u] =k. 

So, the functions in O(c, k, y) are continuously differentiable up to order k 
on V, and their kth derivatives are uniformly Holder continuous with 
exponent y on V. We refer to p = k + y as the order of smoothness of the 
functions in O(c, k, y). We assume that the conditional quantile function of 
Y given X is a member of the family O(c, k, y) for some fixed c, k, and y 
(see [35, 36, 131). Let T(B)= DUB, where [u] =m < k. An estimate f,,(x) 
of 7’(e)(x) will now be described for x E C. 

From now on, assume that C = [ -0.5, 0.51d. Note that there is no loss 
of generality in assuming C = [ -0.5, 0.51d. Any compact subset of V can 
be covered by a union of finitely many d-dimensional rectangles (i.e., d-fold 
products of compact intervals of real line) in V such that any two of these 
rectangles will either be disjoint or intersect only at their boundaries. The 
purpose of assuming C= [ -0.5, 0.51d is to simplify notations and thereby 
making the proofs more readable. For general C, one only needs to do 
some trivial modifications of the arguments given here. Let J, be a 
sequence of positive integers, which tend to cc as n tends to co, and set 
6, = l/J,. The choice of J, will be described later. Split the cube 
C = [ -0.5, 0.51d into Ji smaller subcubes of equal size each with side 
length 6, and having the boundaries parallel to the standard coordinate 
hyperplanes in Rd. Let C,,,, where 1 < r < Jz, be a typical such subcube 
with center at x,,,. Define random sets S,,, in terms of the data as S,,, = 
{i: 1 <i<n, Xi~C,,,} and set N,.,= #(S,,,). 

Let A be the set of all d-dimensional vectors u with nonnegative integral 
components such that [u] d k and set s(A) = #(A). Let p= (/?u)uEA be 
a vector of dimension s(A). Also, given x,, x2 E Rd, define P&I, x,, x2) 
to be the polynomial CusA p,[(xI -x2)/6,1U. Here, if Z= (z,, . . . . zd) is an 
element of Rd and u = (u,, . . . . ud) is a vector of nonnegative integral 
components, we set zU=nf=, z” with the convention that O”= 1. Let fi,,, 
be a minimizer of 

where H,(t)= ItI +(2a-1)t. Since O<a< 1, H,(t) tends to cc as ItI tends 
to 00. Therefore, the above minimization problem always has a solution. 
In view of Theorem 3.1 below, one does not need to worry about the 
uniqueness of fl,., as long as one is interested in asymptotic results and 
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k 2 1. On the other hand, when k = 0 the polynomial P,(& xi, x2) reduces 
to a constant and p becomes a real number. In this case, as n increases, the 
solution set for the above minimization problem will eventually turn out to 
be a compact interval and /?,,,can be defined to be the right or the left end 
point of that interval, so that p,,, becomes a local quantile of the Y values 
for which the X values fall in the cube C,,,. The existence and the 
uniqueness of regression quantile estimates in linear parametric models 
have been discussed in Koenker and Bassett [25]. Algorithms to compute 
regression quantiles exploiting simplex method have been developed and 
studied in Wellington and Narula [44], Narula and Wellington [30], 
Koenker and D’Orey [26] (see also [S]). 

For x in the interior of C,,, we will set pn(x) = D”P,(/?,,, x, x,,,). Here 
the differential operator D” acts by differentiating with respect to the 
second argument x. For a point, which lies on the boundary of several sub- 
cubes, one can define f,, as the simple average of the different values that 
arise from different subcubes having the point in question as a common 
boundary point. 

3. MAIN RESULTS 

From now on, for two sequences {a, > and { 6,) of positive real numbers, 
the notation a, “6, will mean that a,/b, tends to 1 as n tends to 00. Given 
a real valued function g on V, define ljgj/m = sup,, ,-/g(x)/. Also, for 
1 dq< cr;), we set llgl14= CSc Ig(x)lqdx11/4. 

In order to derive asymptotic results about the estimate f,,, we need to 
impose some conditions on the distributions of Xi and si. 

Condition 3.1. The distribution of Xi is absolutely continuous on V 
with a density w  that is continuous and positive on V. 

Condition 3.2. si has a density f that is continuous and positive in an 
open neighborhood around 0. 

THEOREM 3.1. Let J,, be a sequence of positive integers such that either 
J,,-n” or J,,“(n/log n)“, where 0 < ,I < l/d. Also, assume that ci has a 
continuous distribution and Condition 3.1 is satisfied. Then, there exists event 
C, defined in terms of XI, . . . . X, such that 

(i) P(lim inf C,) = 1. 

(ii) Let E, be the event that @,,r defined in the construction of f” 
exists uniquely for each r with 1 < r < J f. Then, if k 2 1, there is a positive 
integer N, depending on k, d, and Iz such that for n 2 No, the conditional 
probability of E, given that C, has occurred is 1. 
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THEOREM 3.2. Set 1= 1/(2p + d) and r = (p -m)/(2p + d), and let 
J,- (n/log n)‘. Then, under Conditions 3.1 and 3.2, we have the following. 

(i) There exists a constant K, > 0 (K, depends on f, w, and c) such 
that 

lim sup Pe[IITn-T(B)Ij,>K,(n/logn))‘]=O. 
” BE (c.k,y) 

(ii) For 0~ O(c, k, y), IIT,, - T(8)11, is almost surely O[(n/log n))‘] 
as n tends to co. 

THEOREM 3.3. Let A and r be as in Theorem 3.2 and suppose that J,, “n”. 
Then, under Conditions 3.1 and 3.2, we have the following. 

(i) There exists a constant K, > 0 (K2 depends on f, w, and c) such 
that 

lim sup Ps[I/~~-T(B)II,>K,n-‘]=O (l<q<co). 
n O.ze(c.k.y) 

(ii) For 0E O(c, k, y), IIT” - T(fI)ll no is almost surely O(nr ,/log n) 
as n tends to co. 

4. DISCUSSION 

(1) The rates of convergence obtained in Theorem 3.2 and in (i) in 
Theorem 3.3 are optimal by Stone [36]. In the special case when c( = i, 
these two theorems answer question 4 raised by Stone [36] regarding the 
attainability of the optimal global rates of convergence in the non- 
parametric estimation of conditional median. Troung [40] provided a 
partial answer to this question considering the special case p = 1 and using 
local median type estimators. Asymptotic behavior of point-wise estimates 
of a conditional quantile function and its derivatives are explored in 
Chaudhuri [6]. 

(2) Condition 3.2 amounts to assuming that the distribution of the 
random error si has a density which is continuous and positive in a 
neighborhood of its a th quantile. This is satisfied by all classical examples 
of probability density functions. As it will be clear from the proof of 
Theorem 3.1, one needs Condition 3.1 (see Stone [36]) to ensure suf- 
ficiently many observations (at least asymptotically) in each of the cubes 
C,,, defined in the construction of f,,. This is an important requirement for 
T,, to achieve the optimal global rates. 
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(3) In order to understand some intuitive ideas behind the proofs of the 
theorems stated in Section 3, consider Theorem 3.3, where J,, has been 
chosen to be of order nl’(@ + “. Any function 8 in O(c, k, y) can be 
expanded in C,, using Taylor series around x~,~ up to terms involving the 
kth order derivatives, and the remainder term in that expansion will be of 
order K~‘(~~+~‘. The construction of f,, uses approximation of 8 by a 
polynomial in each of the cubes C,,,, and the remainder term mentioned 
above may be viewed as a cause of error (“bias”) in this approximation 
procedure. On the other hand, under Condition 3.1, one would expect that 
N,,, defined in the construction of ri;, will be of order n2p’(2p+d’ (see [36]). 
Hence, in view of the way fi,,r is defined in the construction of f”‘,, it is 
natural to expect that under appropriate conditions, this vector will 
estimate the coefficients (scaled by 6,) in the Taylor expansion (in the cube 
C,, around the point x,,,) of 8 with an error (“variance”: caused by the 
random noise E present in the data) of order n-p’(2pfd). So, one can expect 
that f,, will achieve the optimal rate of convergence globally. The idea 
used here is close to that of Stone [35, 361. However, the “bias-variance 
trade-off” is more complicated here than in his work on non-parametric 
regression. A major source of complication is the non-linear nature of the 
estimates obtained by using the loss function H,(t) instead of the method 
of least squares. These ideas will be more clear from the proofs in Section 5. 

(4) A serious problem in nonparametric function estimation is data spar- 
seness in high dimension (the “curse of dimensionality”). This is reflected 
in the slow rates of convergence for nonparametric estimates when the 
dimension d of the regressor X is high. Stone’s work on “dimensionality 
reduction principle” [37, 381 motivates the following question. Suppose 
that the conditional quantile function 19(x) of Y given X=x can be written 
2% e(X) = pi + . . + e&d), where X = (Xl, . . . . &) E Rd and each 0; 
(1 6 i < d) is a real valued smooth function of a single real variable. Then, 
is it possible to construct estimates of 6’ or its derivatives that will achieve 
the same rates of convergence as the optimal non-parametric rates of 
convergence when d = I? 

5. PROOFS OF THE THEOREMS IN SECTION 3 

Before going into the proofs of the theorems in Section 3 we need to 
introduce some notations and prove a few preliminary results. Let A(d, k) 
be the set of all d-dimensional vectors u with nonnegative integral 
components such that 0 < [u] G k. Note that A(d, k) = A - { (0, 0, . . . . 0)}, 
where A is as defined in the construction of f” in Section 2. Let 
s(d, k)= #A(d, k)= #(A)- 1 =s(A)- 1. For XE Rd, write x(d, k) for the 
s(d, k)-dimensional vector (x~),~~(~,~). 
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PROPOSITION 5.1 (An extended version of the Riemann-Lebesgue lemma). 
Let g be a complex-value function on Rd such that jRd [g(x)1 dx < 00 and 

4 = (~u)u~A~d,W be an element of Rs(d,k). Then 

lim 
s Ibl-‘= Rd 

exp{i(4,4d,k))) dx)dx=O. 

Here i* = - 1, I I is the usual Euclidean norm, and ( , ) is the usual 
Euclidean inner product. 

ProoJ First note that it is enough to prove the assertion when g is a 
probability density function on Rd. The proof will be given by induction on 
d and will make use of the standard Riemann-Lebesgue lemma. Assume 
that d= 1 and in this case, x(d, k) = x(1, k) = (x, x2, . . . . xk), A(d, k) = 
&L k) = { (l), (2), . . . . (k)} and s(d, k)=s(l, k)= k. Also, for #E Rk, 

g x x is the characteristic function of the random j,~;i;$-$l~ 4)) ( )d 
X ), where X is a random variable with probability 

density functib’n’ g. Hence, if k = 1, the assertion in the proposition 
actually reduces to the ordinary Riemann-Lebesgue lemma. For k > 1, let 
Xl 7 x2, *.*, X, be k i.i.d. random variables each with probability density 
function g and form the k-dimensional random vector Y= (Cf=, X,, 
Et= x2 ,;,; (;,> -; I?%. 1 X4). Th en, since the transformation from Rk into Rk that 

> *r..., xk) into (cf= r xi, cf= r x:, . . . . xf=, xf) is smooth and has 
a Jacobian that vanishes only on a set of Lebesgue measure 0, the random 
vector Y must have a probability density h (say). Hence, again by the 
standard Riemann-Lebesgue lemma, we have that 

lim 
141 - CJZ s Rk 

ev{(ih L’)) h(y)&=O. 

The proof for the case d = 1 is now complete by noting that 

jR*exp((i~,y)ih(y)dy= j ew((i4,x(Lk))} g(x)dx 1 
k 

. 
R 

Assume now that the assertion in the proposition is true for dimension 
= d- 1. Define gd, a function on R, as 

gdtxd) = j- 

d-l 

Rd-’ 
g(x,, X2, . . . . Xd-lr xd) n dx,. 

I= 1 

So, g, is the marginal probability density of the dth coordinate obtained 
from the joint probability density g. Set g* = g/g, on the set in Rd on 
which the dth coordinate is such that gd # 0. Then g* is the conditional 



254 PROBAL CHAUDHURI 

density of the first d - 1 coordinates after fixing the dth coordinate. Define 
A**(d,k) to be the set {ur, u2, . . . . u,}, where ui is the d-dimensional vector 
Q-4 0, . . . . 0, j). Then consider the set A*(d, k) = A(d, k) - A**(d, k), and 
let s*(d,k)=#A*(d,k)=s(d,k)-k. For #ERR and xeRd, define 
4* = b?tha4*(d,k) and x*(d, k)= (x~),,~.(~,~). So, d* and x*(d, k) are 
elements of Rs’(d*k’. With these notations in hand, we can write 

s Rdev{i(43 44 k))l g(x) dx 

where 

s 

d-l 

yt@*~ xd) = Rd-, exP{ i(d*, x*(4 k) > > g*(x, > X2, . ..> xd- 1, xd) fl dxl. 
I=1 

(5.2) 
Suppose now that {#n> is a sequence in Rscdk) such that ld,l tends to cc 
as n tends to co. There are two cases that may occur. 

Case 1. Assume that Id,*1 tends to cc as n tends to co. Then, from (5.2) 
and using the induction hypothesis, Y(d,*, xd) must tend to 0 as n tends 
to cc for all non-zero values of xd for which g,(x,) is positive. Hence, an 
application of Lebesgue’s dominated convergence theorem to (5.1) gives 

lim 
s n-cl: Rd exp{K4,,x(d,k))) g(x)dx=O. 

Case 2. Assume now that Id,*1 remains bounded as n varies but 
I(A,,n, du,,m . ..Y duk,“)l tends to cc as n tends to 00 (here dU,,n is the compo- 
nent of 4, indexed by uj). In this case, one can extract a subsequence {dn,} 
of {dn} such that 4f tends to &j, an element in R”““k’. Hence, an 
application of the dominated convergence theorem to (5.2) implies that 
ul(4:, xd) converges to Y(fjo*, xd) for all values of xd for which gd is 
positive. Further, since 1 Y(v$, xd)l d 1, in view of the arguments in the 
case d = 1, we have that 

yu(d,* 3 xd) gdtxd) dxd = O. (5.3) 

Equation (5.3) together with (5.1) implies through an application of the 
dominated convergence theorem that 

lim 
s n’-m Rd exp{~<~,~, x(4 k))) g(x) dx=O. 

This completes the proof of the proposition. 1 
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An immediate and useful consequence of this proposition is the fact that 
whenever X has a density g on Rd, the random vector X(d, k) defined 
above has a characteristic function that satisfies “Cramer’s condition.” 

For LED, = [0.5( - 1 + 6,), OS(1 -S,)]‘, where {S,} is a sequence of 
positive numbers (smaller than 1) such that 6, tends to 0 as n tends to co, 
let us define 

where x E [ -0.5, 0.51d. Recall that w  is the density of Xi in V as mentioned 
in Condition 3.1. So, w,“(x, y) is the conditional density of (Xi-y) 6;’ 
given that Xi falls in the cube with center y and side length 6,. Let u(x) be 
the uniform density on [ -0.5, 0.51d, which is identically 1 on the set 
[ -0.5, 0.51d and identically 0 outside this set. In view of the continuity of 
w  assumed in Condition 3.1, wg, converges to u as n tends to co, and this 
convergence is uniform in both x and y. This leads to the following fact as 
an immediate consequence of Proposition 5.1. 

Fact 5.1. Under Condition 3.1, for any q such that O< q < 1, there is 
M, > 0 and an integer N, > 0 (which may depend on q as well as on w  and 
the sequence {6,}) such that 

sup sup sup 
?7ZNI l)l.MI liE& Ii [ -0.5. o.sy 

exp{ i<O, 44 k) > > W&G Y) dx < VI. 

The following fact will be used in the proofs of Theorem 3.2 and (ii) in 
Theorem 3.3. 

Fact 5.2. Let F be a distribution function on the real line with the 
property that F(0) = a, where 0 < CI < 1. Assume that F has a densityf that 
satisfies Condition 3.2. For x E Rd, denote by x(A) the s(A)-dimensional 
vector (x”), E A, where A is as defined in the construction of f,, in Section 2 
and s(A) = #(A). Let A = (dJucA be a vector in R@), and for 0 < 6 < 1, 
let R(6, x) be a real valued function with the property that there is M2 > 0 
such that IR(6, x)1 GM, 6 for all XE [ -0.5, 0.51d. Define an s(A)-dimen- 
sional vector valued function G,,.,(d, 6) as 

Gn,,(4 Q= j [ -0.5,0.5]d 
Cf’{ (4 44) > + Nk xl) - aI d-4) w&, Y) dx. 

Then, under Condition 3.1, there exist positive constants ci , M,, E, , E* and 
a positive integer N, such that we have IG,,(d, S)l >min(s, and c,lA/) for 
all YED,, n3N2, 66~ and Id1 3M6, where M>M,. 
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For the special case when w  is the uniform density implying that wgn is 
also the uniform density on [ -0.5, OS]‘, a proof of this fact can be found 
in Chaudhuri [7, Proposition 6.11. Since wd, converges uniformly to the 
uniform density as n tends to co, the proof of the above fact can be 
obtained by minor modifications of this special case. Technical details can 
be found in Chaudhuri [6,8]. 

In several places of the proofs of the theorems stated in Section 3, the 
following simple facts will be used: 

Fact 5.3. Let X be a random vector in Rd with a distribution, which is 
absolutely continuous with respect to the Lebesgue measure, and let p(X) 
be a nonzero polynomial in X. Then the probability of the event 
{p(X)=O} is 0. 

Fact 5.4. Let X be a random matrix of dimension m x m where m is a 
positive integer. Denote by X V) the ith row of X (1 d id m). Assume that 
$1) $2’ , J?) are independent random vectors, and that each Xci) has 
a diitribution with the property that for any fixed vector subspace H of R” 
such that dim(H) < m - 1, P(X”’ E H) = 0. Then X has full rank = m with 
probability 1. 

Unlike the problem of minimizing the squared error loss, the solution(s) 
to the minimization problem in the construction of f,Z does (do) not have 
a nice closed form. We will be using Theorems 3.1 and 3.3 in Koenker and 
Bassett [25] several times in the proofs that follow. These two theorems 
enable us to exploit some fundamental algebraic properties of the elements 
in the solution set for the minimization problem that arise in the construc- 
tion of the estimate f,,. For the rest of the paper, we will refer to this 
minimization problem as problem (P). 

Suppose that we have a matrix (vector) X with rows (components) 
indexed by the elements of a nonempty finite set S (e.g., a nonempty finite 
subset of the set of integers). Then, for any nonempty subset h of S, denote 
by X(h) the submatrix (subvector) of X with rows (components) which 
are indexed by the elements of h [25]. Write X,,, for the matrix with A!“,r 
rows and s(A) = #(A) (A is as defined in the construction of T,) 
columns, where the rows of X,,, are the vectors Xi(x,,,, 6,, A)= 
((X.-x )“6~cu3),EA with ieS . 
rows of”‘;i’,,, 

n So, we may naturally assume that the 
are indexed by th:’ elements of S, ,, and its columns are 

indexed by the elements of A. Also, denote by Yi,, the vector of Y;s for 
which in S,,,. Let H,, be the collection of all subsets of S,, of size s(A). 
For h in H,,,, write h’ for the set theoretic complement of h in S,,,. Let B,,, 
be the s(A)-dimensional vector (/?,,r,u)uEA, where /I,,,,, = DV(x,,,) 
6,$‘1(u!)-‘. Here, for u = (u,, ZQ, . . . . ud)EA, we define u! =ny=‘=, ui! with 
the convention that O! = 1. Set e:,(x) =x,,EA j?,,~,u(x-x,,,)u g;[“I = the 
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Taylor polynomial of 8 around x,,, up to the kth order terms. Also, set 
e(x) = e&(x) + R,,(x). In view of the definition of O(c, k, y), we can find 
c, >O such that I&(x)1 <c+ S{ for all tl~O(c,k,y) and XEC,,,. 

Proof of Theorem 3.1. First note that, under Condition 3.1, w  is 
bounded away from 0 and cc on the compact set [ -0.5, OS]‘. Recall from 
the construction of f,, in Section 2 that N,,, is a binomial random variable 
that counts the number of X,‘s that fall in the cube C,,,. Now, for the 
present choices of 6, = J; ‘, we can choose positive constants 1-i and A2 
(which may depend on W) such that, in view of Condition 3.1, we have 
I, 8:~ P(X,E C,,) < A2 Sz for all n and 1 d r < Jz. So, the expected value 
of N,,, is going to lie between il,n 6: and A,n 6:. Hence, we can choose 
positive constants c2, c~, cd, cg (which may again depend on w) such that 
an application of Bernstein’s inequality (see e.g., [32]) gives 

P({c,n6f<N,,,Qc3n6f for all r with 1 <r<Jf}) 

3 1 - c,Jt exp( - c,nbz) 

for all n. The assertion (i) in the theorem now follows by defining C, to be 
the event enclosed in { } above and using Borel-Cantelli lemma as, for the 
present choices of J,, C,“= i Jf exp( - c,n Sf) < CO. 

Next, fix an r such that 1 6 r < Ji. Recall that the conditional distribu- 
tion of (Xi - x,,,) 6;’ given that Xi E C,,, is absolutely continuous with 
density w,“(x, x,,,). Also, note that given the set S,,, (i.e., given the indices 
of the Xi’s which fall in C,,), the vectors (Xi-x,,,) ST’ for in S,,, are 
conditionally independently distributed. So, in view of Facts 5.3 and 5.4, 
any s(A) x s(A) submatrix of the matrix X,., is going to have rank = s(A) 
with conditional probability 1 given the set S,,,. Theorem 3.1 in Koenker 
and Bassett [25] now implies that if N n,r>~(A), problem (P) has at least 
one solution of the form j?,,r = [X,,,(h)] -’ Y,,,(h) for some h E H,,, with 
conditional probability 1 given the set S,,,. 

For hEH,,, and fl,,,= Cx,,Ah)l-’ Y,.,(h), set 

-L(h) = c Cl/2 - l/2 sgn{ Y, - GK(x~,~~ L 4, i&J> - ~1 
ishC 

x CJJ,,,VW’ Xikz,,, J,, AL 

where sgn(x) is + 1 or - 1 depending on whether x is positive or negative 
respectively. So, L,,(h) is an s(A)-dimensional random vector. It is now 
immediate from Theorem 3.3 in Koenker and Bassett [25] using the con- 
tinuity of the distribution of &i and its independence from Xi that for some 
h E Z-f,,,, b,,, = Cxn,Ah)l --I Y,,,(h) is a unique solution to problem (P) if 
and only if L,,,(h) E (c1 - 1, a) W) Further, it follows from the arguments in . 
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the proof of Theorem 3.3 in Koenker and Bassett [25] that if, for some 
h E Hn,r, an,, = Cxn,r(h)l-l Y,.,(h) is a solution (not necessarily unique) to 
problem (P), we must have L,,(~)E [a- 1, ~(1~~~). Here (a- 1, u)‘(A) and 
[cd - 1, aIS are s(A)-dimensional intervals in RscA’. Hence, if we choose a 
positive integer N, in such a way that 12 3 IV,, implies that c2n 6: z s(A), the 
assertion (ii) in the theorem follows from Fact 5.3 in view of the absolute 
continuity of the conditional distribution of (Xi-x,,,) S;’ given that 
XiECn,,. I 

Proof of Theorem 3.2. Assume that n > IV,. Recall that 6, = J; I, where 
J, is as defined in the statement of the theorem, so that 6, - (log n/n)1(2P+d). 
Fix a positive integer r such that 1 < r Q J,” and for some constant K;F > 0, 
let U,, be the event defined as 

Note that any derivative T(B) of 8 of order m Q k can be expanded locally 
in Taylor series around the center x,,, of the cube C,, (here r is such that 
the argument of the function 0 falls in C,,,) up to degree k-m with a 
remainder term which is uniformly (with respect to the family O(c, k, y)) of 
order O(S;-“’ ). Further, since C,“= I P(Cz) < co, it is enough (in view of 
the definition of 6, and the construction of f”) to prove that there is a 
K: > 0 such that 

f sup P,(U,nC,)<co. 
n=l flE@(r.,k,y) 

Define now V,,, to be the event { I/?,,,--B,,,I >Kj+ S:}, so that 

J,” 
Pf?(U,~C”)~ c P,(V,,,nC,). 

r=l 
(5.5) 

We will try to get an upper bound for Ps( V,,, n C,), where 8 E O(c, k, y). 
For A,,, E RscA), consider the s( A )-dimensional random vector 

Zn,r,i= [$-tsgn{Ei- (A,,, Xi(x,,,, d,, A)) 

+ Rn,,(Xi)} -aI Xi(Xn,r, dnt A). 

The norm of this random vector Zn,r,i is bounded by {s(A)}“~ whenever 
iE S,,,. Also, for fixed A,,,, the conditional expectation of Zn,r,i given that 
iES R(6,n;L) 1” yy(:p ~+$f~~~:~ We Y = x,,.~, A = L, 6 = f:, 

m the statement of Fact 5.2). Using 
Theorems 3.1 “ind 3.3 in Koenk+er and Bassett [25], we can choose a 
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positive constant c* depending on s(A) such that the event Vn,,n C, is 
contained in the event 

For some h E H,,,, 
I I 

1 Zn,r,i G c*, where A,, = P^,,, - P,.,, 
ishC 

Given the set S,,, (i.e., the indices of the Xi’s which fall in the cube C,,,) 
and the X;s and Yis for i E h (h is some fixed element of H,,) the vectors 
Zn,r,i for i E h’ are conditionally independently and identically distributed 
each with conditional mean G,,“,JA, r, 6;), where we can have 
A,.,= Wn,,VW’ Y(h)-P,,,,. So, in view of Bernstein’s inequality (see 
[32]) and Fact 5.2, we can choose K: appropriately large to get hold of 
constants c6 > 0 and c, > 0 and a positive integer N, > N, such that 

P,( V,,, n C,) d ~,(ndf)“‘~’ exp( -c,n St+2p), (5.6) 

whenever n > N, and 8 E O(c, k, y). Inequalities (5.5) and (5.6) together 
imply 

sup P,(u, n C,) < c&(n 6$“‘A’ exp( -c,n S4+‘“). 
oEe(L..k,y) 

Further, Fact 5.2 implies that by choosing K: appropriately large, c, can 
be chosen as large as desired. Finally, since 6, - (log n/n)1’(2p + ‘), a suitable 
choice of K: giving an appropriate value of c7 depending on p and d 
ensures (5.4). 1 

Proof of Theorem 3.3. We begin by proving assertion (ii). The proof of 
this assertion is very similar to the proof of Theorem 3.2. Assume again, as 
in the proof of Theorem 3.2, that n 2 No (note that this N, may be different 
from that in Theorem 3.2 depending on the choice of J,,). Also, recall that 
6, =J;i, where J, is as defined in the statement of the theorem (so that 
~n-n-“%-‘+4), d an assume that r is a positive integer such that 1 < r < Jf. 
For some constant K: > 0, let U,* be the event defined as 

In view of the arguments preceding (5.4) in the proof of Theorem 3.2, it is 
enough to prove that there is a KT > 0 such that 

f sup Ps( U,* n C,) < co, 
n = 1 BE @(C.k,Y) 
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where C, is as defined in the proof of Theorem 3.1. Arguments, which are 
very similar to that used in the proof of Theorem 3.2 making use of 
Fact 5.2, Theorems 3.1 and 3.3 in Koenker and Bassett [25], and 
Bernstein’s inequality (see [32]), now imply that we can choose a positive 
integer N4 > N, and two positive constants cs and cg (depending on K:) 
such that for n 2 N,, we have 

sup Ps( U,f n C,) < c,Jf(n hf)s(A) exp( -cgn 6:” log n). (5.8) 
t’e6Yr.k.y) 

Also, as in the case of Theorem 3.2, cg can be chosen as large as desired by 
choosing K; appropriately large. Finally, since ~n-n-“(2p+d), (5.8) implies 
(5.7) by an appropriate choice of Kf depending on p and d, and this 
completes the proof of assertion (ii). 

In order to prove assertion (i), assume as before that n > N,,, and 
once again, in view of the arguments preceding (5.4) in the proof of 
Theorem 3.2, assertion (i) will follow if we can show that there is a positive 
constant K: such that 

4 
lim sup Pe Jid c I&,-&.,PK:S; (5.9) 

n-m Bs8(c.k.y) r=l 

Define random variables Y”,, for 1 < r < Jf as 

=o otherwise, 

where KT is as chosen in the proof above of assertion (ii) of the present 
theorem, so that (5.7) is ensured. So, ‘y,,,‘s are obtained from 
$,,,-/I,,,1 8;* by truncation. For a positive constant K:, denote the 
event {J;“C$= 1 !Pn,, > Kt} by I’,*. Hence, in view of (5.7), to prove (5.9) 
it is enough to prove that there is a positive constant Kz such that 

lim sup P,(V:nC,)=O. 
n- 00 f3ee(c,k,y) 

(5.10) 

Now, given the sets S,,,‘s for 1 < r < Jz (i.e., given the indices of the Xi’s 
which fall in the cubes Cn,,‘s), the random variables fl,,r’~ (and hence the 
random variables Y,,,‘s) are conditionally independently distributed. Also, 
for fixed r, the conditional distribution of fl,,, (and hence that of Y,,,) 
given the sets Sn,,‘s with 1 < r < Jf depends only on S,,, (in fact, it depends 
only on #(S,,) = N,,,). Let Ez,,( Iv:,,) denote the conditional expectation 
of Yi,, given the set S,,, . So, (5.10) will follow if we can show that there 
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is a positive integer N# and a positive constant M, such that for all 
nbN#, l<r<JiandOEO(c,k,y),wehave 

(5.11) 

whenever c,n St< N,, < c3n Sz, where c2 and c3 are as defined in the proof 
of Theorem 3.1. Since the proof of (5.11) is complicated and tedious, it will 
be given in the appendix. 1 

APPENDIX 

From now on, r will denote a positive integer such that 1 < r < Jt and 
9 will denote a member of the class O(c, k, y). Recall at this point that 
J -r~“(~~+“) as mentioned in the statement of Theorem 3.3 and 6, = J;‘. 
A”ssume, as before, that n >, N,. Since the proof of (5.11) is complicated, it 
will be split into several steps. 

Step 1. For 1 < i < n, let Zn,r,i be the s(A)-dimensional random vector 
as defined in the proof of Theorem 3.2 in Section 5. So, Z,,,, = 
4n,r,i(dn,r) xi(xrz,r3 6,, A), where, for A E R@), 

4n,r,i(A)= [(l/2)- (11’2) sgn(Ej- <A, Xi(Xn,r, 6,, A)) +R,,,(Xi)} --al. 

Given Xi, h,JA) is a random variable which takes values (1 - tx) and - c1 
with conditional probabilities F{ (A, Xi(~,,r, 6,,, A)) - R,,,(X,)} and 
1 -F{ (A, Xi(Xtz,r, 6,, A)) - R,,,(Xi)}, respectively. Now, for fixed 
h E Hn,,, let n,,,(h, A) denote the conditional probability of the event 

given the set S,, (i.e., the indices of the Xls which fall in the cube C,,). 
Recall here that h’ is the complement of h in S,,, and c* is a positive con- 
stant, which depends on s(A) and occurs also in the proof of Theorem 3.2. 
Also, note at this point that given the set S,,, the random vectors (ci, Xi) 
for i E S,, are conditionally independently and identically distributed with 
S;‘(Xi - x,,,) having the conditional density w6,(xi, x,,,). Hence, ~!,,,(h, A) 
is the same for all h E H,,,. 

Now, in view of the arguments (which make use of Theorems 3.1 and 3.3 
in Koenker and Bassett [25]) in the proofs of Theorems 3.1 and 3.2 (also 
see the proof of Theorem 4.2 in Koenker and Bassett [25]) and the 



262 PROBAL CHAUDHURI 

construction of Bn,,, we have, for any fixed positive constant K (the choice 
of which will be specified later), 

G CK12+ N-L,,)~ 
[-o.s,o.s]~x [-0.5.0.5]~x ... x [-OS,O.S]~ 

IWI iyA 

J(A) 

X 
(LIER~%Y<~A~<K;~) 

IdI n fiCd6;9 xi(A)) 

i=l 

X n Wa,(Xi, Xn,r) dx<, 
i= 1 

(A.11 

where Z is the O-l valued indicator function and K: is as in the proof of 
assertion (ii) in Theorem 3.3, so that (5.7) is ensured. Ifl, which occurs as 
a part of the integrand above, is the determinant of the s(A) x s(A) matrix 
2 whose rows are the vectors xi(A) for 1 <i<s(A) (here xi(A) is as 
defined in the statement of Fact 5.2 with xic Rd). Here it is assumed that 
N,, > s(A), which is true if n 2 No and the condition for the occurrence of 
the event C, defined in Theorem 3.1 is satisfied. 

Clearly, for x E [ -0.5, 0.51d the components of the vector x(A) are each 
bounded by 1. Recall also from Section 5 that x E [ -0.5, 0.51d implies that 
IR,,,(~nx + xn,,)I G c, C F ur th er, in view of Condition 3.2, the densityfis 
bounded in a neighborhood of 0. Hence, using the fact that 6,,“~“‘*~+~), 
one can find an integer N, > No and a positive constant M, such that (A.l) 
gives 

E:,,( Y;,,) G [K]’ + d;pS(A)M4 

X 
s (d~R~(~‘;K$(dldKffi) 

IAl* At,,(k Ad:) dA (‘4.2) 

whenever n 2 N, and c2n 6:~ N,,, = #(S,,) < cjn Sf (which is a condition 
equivalent to the occurrence of the event C’, and implies that 
# W,,,) < [c,n syA)). 

Step 2. For fixed h E H,,, let PX,(h, A) denote the conditional 
probability of the event 
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given the set S,,,. Define 

So, given the set S,,, the random variables d,,,i(dS;) for in S,, are con- 
ditionally independently distributed, and each of them takes values (1 - a) 
and --CI with conditional probabilities p,,(d) and 1 - p,,(d) respectively. 

So, on the event C,, we can choose an integer N, > N, and a positive 
constant M, such that using Stirling’s approximation for factorials and the 
fact that 6,“n-“‘2p+d), we have 

P&(/z, A 6;) GM, s~[a-‘p”,,(A)] #(hc)a 

x [(l -cl)-1 (1 -&J4)}]#(hC)(1--) (A.3) 

whenever n > N,. 
K: fi 

Also, when I&,(6,x + x,,,)I <c+ 6; and IdI < 
o n, we can choose an integer N, > N6 such that n 2 N, implies, 

under Condition 3.2 via the mean value theorem of differential calculus, 
that 

[ -o.s,o.s]d 
{(As~,x(A))-R,,,(6*x+x”,,)} 

xf(L,,(x)) w,n(x, xn,,) dx, 

where t,,,(x) may depend on A and R,, and satisfies 

ILr(x)I G I (Ad:> x(A)) - L4k~ + xn.r)I. 

Hence, we can write 

(A.4) 

(A.5) 

where 

~n,,W=j 
[ -o.s,o.s]d 

W)f(Sn,r(x)) w&,x,,,) dx 

and 

t,,(A)=j 
[ -os,o.qd 

6,’ R,,,(&J + xn,,) f(L,r(x)) wan& xn,r) dx. 

Once again, in view of Condition 3.2, N, can be appropriately chosen so 
that we can get hold of a positive constant M, such that 

sup sup sup sup If,,,U)l GMg. (A-6) 
n2N, l<r<Jf oEe(c,k,y) Idl<K;&G 

683/39/2-4 
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Further, in view of Conditions 3.1 and 3.2, we have 

lim SUP SUP sup l&&f-PI =o, (A-7) 
n-m l<r<J,d eEe(c,k,y) lAl<Fg~ 

where p is the s(A )-dimensional vector given by p =f(O) 
~j~-~,~,~,~~~x(A)dx. Finally, (A.3) and (A.5) imply that on the event C,, 
we can choose an integer N, > N, and a positive constant 44, such that 

(A.81 

whenever n > N,, IdI <K,* ,/log n, and h c H,,,. 

Step 3. Let X:(x,,,, 6,, A) denote the random vector of dimension 
s(A) - 1 obtained from the s(A)-dimensional random vector Xi(x,,,, 6,, A) 
by dropping the component 1. So, 

where A(d, k) is as defined at the beginning of Section 5. Now, given the set 
S,, and the random variables d,.,i(dS$ for YES,,,, the random vectors 
S;‘(Xi-x,,) for YES,,, are conditionally independently distributed. 
Further, the conditional distribution of 6; ‘(Xi - x,,,) for i E S,, depends 
only on d,,,,i(d 6:). In fact, given the set S,,, and the random variable 
q4,,,,i(d6f:), the conditional density of 6; ‘(Xi-x,,,) for i E S,,, is given by 

CP”,,kf)l --I VI (W, x(A))-R,,,(6,x+x,.)}l ~,“(x~xn,r) 

if h,JW) = (1 -a) 

and 

Cl - Pn,,(d-’ Cl -~{w:> x(A)) -&,r(~nx+x,,JH W&Y xn,,) 

if 4n,r,i(AS~)= -4 

where p,,,(d) is as defined in Step 2 above and x E [ -0.5, 0.51d. So, Condi- 
tion 3.2 and the fact that 6n*n-1’(2J’+d) imply that 

lim SUP SUP sup 
n-m l<r<Jf eEe(C.&,y) *E[-o.5,0.5]d 

SUP I~{(~~~,x(~))-~,,(~,x+x,,,)}-~l=0. 
lAl<rq<JliG 

(A.91 

For w  E R@- ‘, let c,,,(o, dn,r,i (da;)) with i E S,,, denote the conditional 
characteristic function of the random vector q4n,r,i(dS:) X,? (x,.,, S,, A) 
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given the set S,,, and the random variable d,,,.i(d6f:). In view of 
Condition 3.1, Fact 5.1 and (A.9), for any ‘I# such that 0 < q# < 1, we can 
choose an integer N, > N, and a positive constant K, so that 

Recall that d,,,i(d6z) takes only two values, namely -a and 1 - a. 
For in S,,,, let Q,?&(A, 4,,i(d61)) denote the conditional dispersion 

matrix of X#(X~,~, 6,, A) given the set S,,, and the random variable 
d,,,,i(dSf:). Then, using (A.9), Condition 3.1, and the form of the condi- 
tional density of S;‘(Xi-x,,,), we obtain 

lim sup sup sup 
n-33 I<r<J,d eEe(c.k,y) I&4l<fqJLgi 

where Q+ is a positive definite matrix given by 

Q# = J[-0.5.0.5,~ [x(4 k)lCx(d k)l= dx 

T  

- 
44 k)dx f x(d, k) dx 

[ -0.5,0.5]~ 1 . [ -0.5.0.53d 

Here x(d, k) is a column vector of dimension s(A) - 1 as defined at the 
beginning of Section 5. So, Q# is nothing but the dispersion matrix of 
X(d, k) when X is a d-dimensional random vector uniformly distributed on 
[ -0.5, 0.51d. Define, for fixed hi H,,,, @,,(h, AS;) to be the random 
vector (b,.,,i(dS:))iche with dimension #(h’). Let Q&(/r, A, @,,,(/I, AS;)) 
denote the conditional dispersion matrix of 

given the set S,, and the random vector @,,,(h, AS:). Equation (A.11) 
implies that on the event C,, 

SUP lQ,Z.,(h, A, O,,,(h, Ah;))-~(1 -a) Q#l =O. (A.12) 
t?Ee(c,k,y) 
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Next, let p&(/z, d, @,,(h, d6:)) denote the conditional mean of 

given the set S,, and the random vector @,,,(h, AS:). At this point, recall 
from (A.4) in Step 2 that for n > N7, we can write 

F{ (A~27 x(A)) - KI,AhJ + xn.,,> 
=a+ WC x(A))-R,,(6,x+x,,,)}f(r,,tx)). 

This and the form of the conditional density of 6;‘(Xi- x,,,) for i E S,, 
given the set S,, and the random variable #,,,,i(dS:) imply that there is an 
integer N,, > N9 > N, such that for n 2 N,, and on the event C,, we have 
(assuming A to be a column vector) 

d,M, A, @,,rV, Ad:)) = 6: ,/‘%@ {Qn,,(h, A, @n,,tk Ad:)) A 

+ C,,@, 4 @,,h WJ)), (A.13) 

where t&(h, A, @,,(h, AS:)) is a vector of dimension (s(A)- 1) with the 
property that there is a positive constant M, such that 

and S2z,,(h, A, @,,,(/I, ASf,)) is a matrix of dimension (s(A) - 1) x s(A) with 
the property that 

lim sup sup sup sup 
n-m l<rSJ,d BsB(c,k,y) lAl<K;fi hsH,,, 

sup IQ:,(h A, @,,,(k AW) - {f(O)} Ql =O. (A.15) 
~~,~hC~n.r,ikf~:)~ CC’ 

Here IR is a matrix of dimension (s(A) - 1) x s(A) with all the entries in the 
first column equal to 0 and the remaining s(A) - 1 columns identical with 
the columns of Q#. So, in the partitioned form it looks like 8= (0 : Q#). 

Step 4. Define, for fixed he H “,,, Az,,(h, A, @,,,(/I, AS;)) to be the 
conditional probability of the event 
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given the set S,, and the random vector Qp,,,(h, AS;). Now, it follows from 
(AlO), (A.12), (A.13), (A.14) and (A.15) in Step 3 via arguments along the 
same line as in the proof of Theorem 20.1 and Corollaries 20.3 and 20.4 
(in particular, 20.49 in Corollary 20.4) in Chapter 4 of Bhattacharya and 
Rao [2] (also see Theorem 20.6 in the same chapter) that there is an 
integer N,, > N,, and positive constants M, and M,, such that assuming 
&(h, A, @,,(h, AS:)) to be a column vector, we have 

4Xk 4 @,,,(h, AS:)) 

<~$s(A)-‘7Mg exp{ - ($)[@,(h, A, @“,,(h, AS;))IT 

x [Q&V, 4 @Ah, &3)1~’ CP:,,@, 4 @n,,V, A6:))l) 
+~,opJC4+-l 

” IJO (A.16) 

whenever n > N, r, IAl G K2* Jlogn, h EH,.,, ICi.hc 4,,j(Ah:)l < C* and 
the event C, occurs. 

Step 5. For fixed h E H,.,, let us define 

%(h, A, @,,(A~:)) 

=a -‘(l-a)-’ CPL,,.WICP~.,WI~ 

+ CC,r(k 4 @n,,(h, AS91’ CQ,*,,(h, 4 @,,(h, AS:))] -’ 

x CQ:r(h> A, @,,(h, Ad:))1 -a-‘(1 -a)-’ (f(O)}‘Q, 

where Q is a positive definite matrix of dimension S(A) x S(A) given by 

Q=J C~(~)lCx(~)l’d~~ 
[-o.s,o.sy’ 

Now, it follows from (A.7), (A.12), and (A.15) that 

lim SUP SUP SUP SUP 
n-+cc l<r<J,d OEc9(C,k,Y) idIcK;& hsff,,, 

SUP lK,,(k 4 @n,,@, A~:))1 =O. 
EIEF ~..,.,W~)l cc* 

Hence, (A.6), (A.8), (A.13), (A.14) and (A.16) imply that there are positive 
constants rc, M,,, M,,, and K and an integer N # > N,, such that on the 
event C,, 

A,,(h, Adz) < d:Cs(A)l Ml1 exp( --IclA12) + J”& (A.17) 
I 

whenever n > N”,K< IAl < KT & and he H,,,. 
Finally, (A.17) above and (A.2) in Step 1 together imply (5.11). 
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