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Influence of system size on spatiotemporal dynamics of a model for plastic instability:
Projecting low-dimensional and extensive chaos

Ritupan Sarmah* and G. Ananthakrishna†

Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
(Received 1 February 2013; published 10 May 2013)

This work is a continuation of our efforts to quantify the irregular scalar stress signals from the Ananthakrishna
model for the Portevin–Le Chatelier instability observed under constant strain rate deformation conditions. Stress
related to the spatial average of the dislocation activity is a dynamical variable that also determines the time
evolution of dislocation densities. We carry out detailed investigations on the nature of spatiotemporal patterns
of the model realized in the form of different types of dislocation bands seen in the entire instability domain and
establish their connection to the nature of stress serrations. We then characterize the spatiotemporal dynamics
of the model equations by computing the Lyapunov dimension as a function of the drive parameter. The latter
scales with the system size only for low strain rates, where isolated dislocation bands are seen, and at high strain
rates, where fully propagating bands are seen. At intermediate applied strain rates corresponding to the partially
propagating bands, the Lyapunov dimension exhibits two distinct slopes, one for small system sizes and another
for large. This feature is rationalized by demonstrating that the spatiotemporal patterns for small system sizes
are altered from the partially propagating band types to isolated burst type. This in turn allows us to reconfirm
that low-dimensional chaos is projected from the stress signals as long as there is a one-to-one correspondence
between the bursts of dislocation bands and the stress drops. We then show that the stress signals in the regime
of partially to fully propagative bands have features of extensive chaos by calculating the correlation dimension
density. We also show that the correlation dimension density also depends on the system size. A number of issues
related to the system size dependence of the Lyapunov dimension density and the correlation dimension density
are discussed.

DOI: 10.1103/PhysRevE.87.052907 PACS number(s): 05.45.Tp

I. INTRODUCTION

Many physical, chemical, and biological experimental
systems exhibit irregular signals. There is a large body of
literature devoted to determining whether these signals are
of deterministic origin or stochastic origin and designing
algorithms to filter the inevitable noise component and then
analyze the resulting signal. These methods work as long as the
dimension of the attractor is low. However, much less attention
has been paid to quantifying irregular signals that cannot be
classified as low-dimensional (low-d) chaos. This question is
particularly important since one often measures output signals
of spatially extended systems. In such cases, while the internal
degrees of freedom are not accessible to experiments, they are
suspected to be spatiotemporally chaotic, a view supported
by models that capture the basic features of the phenomenon.
Indeed, such scalar output signals, which are some kind of
spatial average over the internal degrees of freedom of spatially
extended systems, are easy to generate from model systems. A
concrete example is the plastic deformation of metallic alloys
subjected to a constant strain rate test. In this case, only stress
can be measured by the load cell placed at one end of the
sample and is the spatial average of dislocation activity in the
entire sample. Moreover, stress is also a dynamical variable
that controls the spatial activity of the internal degrees of
freedom. Under normal conditions, the conventional yield
phenomenon is observed with the stress smoothly changing
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over from the linear elastic limit to nonlinear plastic flow
even though dislocation motion is known to be intermittent
at the microscopic level [1,2]. The latter is indeed evident in
the intermittent bursts of acoustic emission signals observed
during the normal yield process [3]. (Actually, the intermittent
flow is almost the rule when sample sizes are of micrometer
dimensions [2,4–7].) Simulations also suggest the intermittent
motion [8,9]. However, when specimens of dilute metallic
alloys are deformed in a certain window of strain rates and
temperatures, the measured stress signals σ (t) are irregular
and are referred to as serrations in the metallurgical literature.
These serrations are attributed to collective pinning and
unpinning of dislocations from solute atmosphere. The phe-
nomenon is known as the Portevin–Le Chatelier (PLC) effect
[1,10,11]. These serrations are associated with heterogeneous
deformation [1,11]. While dislocation activity in the sample
is not accessible to experiments, dislocation bands seen on
the surface of the sample [1,12] together with the nature
of accompanying acoustic emission signals [13,14] strongly
suggest that the collective dislocation dynamics is intermittent
at the microscopic level. The nature of the stress signals while
remaining irregular throughout the instability domain changes
with the applied strain rate. Furthermore, the qualitative
features of the stress signals such as the amplitude and the mean
periodicity have been correlated with the types of dislocation
bands seen on the surface of the sample. Such experimental
stress signals (in single and polycrystals) have been analyzed
and two types of dynamics have been detected [15–18].
While low-d chaos has been reported at low strain rates,
scale-free power law distributions of stress-drop magnitudes
have been reported at high strain rates [16–18]. The fact that
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the fluctuating stress-time series at low strain rates has features
of low-d chaos suggests the possibility of projecting low-d
chaos from spatiotemporal dynamics. In contrast, the power
law distribution of magnitudes of the stress drops at high
drive rates suggests high-dimensional dynamics and possibly
extensive chaos. Thus it appears that the nature of irregular
stress serrations may exhibit different types of dynamics in
different regimes of drive rates.

A second example is the crackling audible noise, called
acoustic emission (AE), commonly experienced during peel-
ing of adhesive tape [19–23]. Again experimental acoustic
emission signals are found to be irregular over a range of pull
velocities [20,22,23]. The nature of the peel front is found to
be fibrillar [24,25]. A model for the peel front dynamics shows
that the nature of the AE signals is determined by the spatial
average of the local slip rates of the rugged fibrillar nature
of the peel front [21–23]. The experimental AE signals have
been analyzed and have been shown to be low-d chaotic in a
subinterval of pull velocities where the AE signals are irregular
[21,22]. Here again a power law distribution of AE signal
amplitudes has also been detected [22,23], an indication of
high-dimensional chaos. This may again suggest two distinct
types of dynamics in different regimes of forcing. Model AE
signals have also been shown to have features of low-d chaos.
A power law distribution of model AE signal amplitudes has
also been detected [21–23]. Several other examples studied
in the literature fall into this category where the scalar time
series is the average of spatial degrees of freedom such as the
electrocardiogram data [26], the mean rainfall over a certain
localized region [27], and the position and intensity of a light
beam passing through a turbulent medium [28], to cite a few.

The above examples suggest the possibility that the process
of spatial averaging of the internal degrees of freedom
may project low-d chaos and possibly high-dimensional or
extensive chaos in different regimes of forcing. Recently,
using the Ananthakrishna (AK) model for the PLC effect,
we demonstrated that the stress signal, which is directly
related to the spatial average of dislocation activity in the
entire sample, could be unambiguously identified as having
all features of low-d chaos while the full set of equations was
spatiotemporally chaotic [29]. We further showed that this
was entirely due to the one-to-one correspondence between
the randomly nucleated isolated bursts of mobile dislocation
density (or, equivalently, dislocation bands) and the stress
drops. We supported the numerical results by demonstrating
that the full set of model equations can be approximately
reduced to space-independent model equations for the space-
averaged dislocation densities. These reduced equations have
the same form as the space-independent (bare) AK model,
which is known to be low-dimensionally chaotic. However,
the scaling regime for the correlation dimension shrinks
with increasing applied strain rate due to the increasing
propensity for propagation of the dislocation bands. Thus
the irregular stress signals corresponding to the substantial
regime of strain rates of the instability remained unquantified.
Here we propose to quantify the irregular stress-times series in
the region of applied strain rates where partially propagating
to fully propagating bands are seen.

As in the previous investigation, hereafter referred to as
I [29], we use the AK model for the PLC effect. We first

elucidate the relationship between the spatiotemporal patterns
(dislocation band types) of the model and the nature of stress
serrations. The model reproduces the three experimentally
observed dislocation bands, namely, the uncorrelated type
C, partially propagating (hopping) type B, and the fully
propagating type A found with increasing applied strain rate.
We also quantify the spatiotemporal dynamics of the model
by calculating the number of positive Lyapunov exponents and
the Lyapunov dimension as a function of the system size for the
entire range of applied strain rates of the instability. In the range
of strain rates of interest corresponding to the partially prop-
agating regime, the Lyapunov dimension exhibits two distinct
slopes as a function of the system size, one for small values
and another for large. The underlying reason for this feature
is traced to the fact that the nature of spatiotemporal patterns
is sensitive to the system size. Specifically, well separated
bands are seen for small system sizes in the region of
strain rates where partially propagative bands are seen for
large system sizes (say N = 100). This property is used
to reconfirm that low-d chaos is projected as long as the
one-to-one correspondence between the isolated bursts of
mobile dislocation density and the stress drops remains valid,
as is the case for the randomly nucleated isolated bands [29]. In
this regime of strain rates corresponding to the partially to fully
propagating bands, we show the existence of the correlation
dimension density. We also show that the magnitude of the
correlation dimension density is affected when the system size
is small in the fully propagative band regime. We conclude the
paper by discussing several questions raised by our study.

II. THE PORTEVIN–LE CHATELIER EFFECT

We begin by briefly summarizing the relevant generic
features of the PLC effect with a view to provide the physical
basis for the AK model. The PLC instability manifests itself as
irregular stress-time signals when samples of dilute alloys are
deformed under constant strain rate conditions. The instability
is seen only in a window of strain rates and temperatures.
Each stress drop of the intermittent flow is associated with
the formation and often the propagation of dislocation bands.
Three distinct types of dislocation bands and the associated
serrations have been identified. At low strain rates (or high
temperature) randomly nucleating uncorrelated static bands
called type C are seen. The associated stress serrations consist
of nearly regular large-amplitude stress drops. At intermediate
strain rates, spatially correlated “hopping” type-B bands with
smaller stress drops are seen. At high strain rates, propagating
type-A bands with numerous small-amplitude stress drops are
observed.

The classical explanation due to Cottrell envisages a
dynamic interaction between mobile dislocations and diffusing
solute atoms [1,11]. The approach was later extended by
others [30–32]. At low strain rates (or high temperatures) the
average velocity of dislocations is low and there is sufficient
time for the solute atoms to diffuse to the dislocations and
pin them (called aging). Thus the longer the dislocations are
arrested (determined by the time scale of the applied strain
rate), the larger will be the stress required to unpin them. When
these dislocations are unpinned, they move at high speeds
until they are arrested again. The characteristic large stress
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drop observed at low strain rates is due to the sufficient time
available for the solute atoms to reach a near-saturation level
at the cores of dislocations. Stress-strain curves in this regime
have typical features of relaxational oscillations. At higher
strain rates, the time available for solute atoms to diffuse to
the dislocations decreases and hence the stress required to
unpin them decreases. Thus the PLC instability manifests in
a range of strain rates and temperatures where these two time
scales are of the same order of magnitude. Much of the above
explanation has remained hand-waving, which, as we will see,
will be made quantitative.

However, relating the irregular stress signal to the under-
lying dislocation dynamics has remained a difficult task for a
long time due to the absence of dislocation-based models. A
simple calculation of the order of magnitude of stress drops
shows that a large number of dislocations need to be pinned
and unpinned simultaneously, i.e., some kind of cooperative
behavior needs to be built up starting from the initial random
configurations of dislocations. However, understanding the
collective behavior of dislocations has been slow largely due
to the lack of techniques describing the cooperative behavior
of dislocations. Since the AK model for the PLC effect uses
a dynamical approach, it serves as a convenient model for
investigating the spatiotemporal patterns and their connection
to the stress serrations.

Several generic features of the PLC effect such as the
existence of the instability within a window of strain rates
and temperature and negative strain rate sensitivity of the
flow stress are captured by the bare AK model (which
excludes the spatial degrees of freedom) [1,33]. One prediction
that is specific to the model is that stress drops could be
chaotic at low strain rates [34]. The prediction has been
subsequently verified using experimental signals from single
and polycrystals [15–18]. Further analysis of experimental
stress-strain curves at high strain rates showed a power law
distribution of stress-drop magnitudes [16–18]. An extension
of the model to include spatial degrees of freedom not
only predicts the different types of bands and the associated
stress serrations [1,35–37], but also recovers the power law
distribution of stress-drop magnitudes observed at high strain
rates corresponding to the propagating type-A bands.

III. THE ANANTHAKRISHNA MODEL

The AK model attributes most generic features of the PLC
effect to the nonlinear interaction of a few dislocation popula-
tions assumed to represent the collective degrees of freedom
of the system [33,35–37]. The well separated time scales
subsumed in the dynamic interaction of dislocations with
solute atoms are captured by the three types of dislocations,
namely, the fast mobile ρm, immobile ρim, and the “decorated”
Cottrell-type dislocations ρc. Here again we ignore the strain
hardening term as was done in I [29] (due its irrelevance
to dynamical properties); the scaled form of the evolution
equations are

∂ρm

∂t
= −b0ρ

2
m − ρmρim + ρim − aρm + φmρm

+ Dφm(t)

ρim

∂2ρm

∂x2
, (1)

∂ρim

∂t
= b0

(
b0ρ

2
m − ρmρim − ρim + aρc

)
, (2)

∂ρc

∂t
= c(ρm − ρc), (3)

dφ(t)

dt
= d

[
ε̇a − φm(t)

l

∫ l

0
ρm(x,t)dx

]
= d[ε̇a − ε̇p(t)].

(4)

The model includes the following dislocation mechanisms:
immobilization of two mobile dislocations due to the formation
of locks (b0ρ

2
m), the annihilation of a mobile dislocation

with an immobile one (ρmρim), and the remobilization of the
immobile dislocation due to stress or thermal activation (ρim).
It also includes the immobilization of mobile dislocations
due to solute atoms (aρm). Once a mobile dislocation starts
acquiring solute atoms, it is regarded as the Cottrell-type
dislocation ρc. As the dislocations progressively acquire more
solute atoms, they eventually stop, at which point they are
considered as immobile dislocations ρc defined by ρc =∫ t

−∞ dt ′ρm(t ′)K(t − t ′), where K(t) is an appropriate kernel.
For the sake of simplicity, this kernel is modeled using a single
time scale K(t) = e−ct . The fifth term in Eq. (1) represents the
rate of multiplication of dislocations due to cross-slip. This
depends on the velocity of the mobile dislocations represented
by Vm(φ) = φm, where φ is the scaled stress and m the velocity
exponent. In terms of unscaled stress σ , φ = σ

σy
, where σy

is the yield stress. The diffusive spatial coupling in Eq. (1)
arises due to a cross-slip mechanism that allows dislocations
to spread into neighboring spatial locations. These equations
are coupled to the machine equation (4), which represents
the constant strain rate deformation experiment. The applied
strain rate in unscaled units is ε̇a = d

dt
dL
L

, where L is the
length of the sample. (The PLC instability is found in the
range of strain rates from 10−6 to 10−3 s−1.) In Eq. (4), ε̇a

is the dimensionless applied strain rate (ε̇a = d
dτ

dl
l

, where
τ is the dimensionless time and l the dimensionless length
of the sample) and d the scaled effective compliance of the
machine and the sample. The scaled constants a, b0, and
c refer, respectively, to the concentration of solute atoms
slowing down the mobile dislocation, the thermal and athermal
reactivation of immobile dislocations, and the diffusion rate of
solute atoms around the mobile dislocations.

The numerical solutions of the Eqs. (1)–(4) are carried
out on a grid of N points by taking the scaled length of the
sample l = N	X, where 	X is the unit grid length. We used
an adaptive step size differential equation solver (MATLAB

ode23), keeping 	X fixed so that N represents the size of
the system. The physically relevant parameter is the applied
strain rate ε̇a with respect to which different types of bands and
the associated serrations are observed. The instability range is
found in the interval 20 � ε̇a < 1650 when the system size
is N = 100. It must be mentioned that the instability limit of
a single oscillator (i.e., the bare AK model) is 3–300. The
instability is suppressed when the system size is small, say,
less than 10, even though the bare model remains unstable in
the region. This already suggests the influence of the system
size on the spatiotemporal dynamics.

In our model, the spatial dependence of ρim and ρc arises
only through ρm. For our numerical calculations, we use
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the initial values of the densities along the sample drawn
from a uniform Gaussian distribution with a finite spread.
However, since the long-term evolution does not depend
on the initial values, the steady state values are used. The
physical condition that bands cannot propagate into the grips
requires the boundary values ρim(1,t) and ρim(N,t) be two
orders higher than ρim(j ), j = 2, . . . ,N − 1. Furthermore,
we impose ρm(j,t) = ρc(j,t) = 0 for j = 1 and N . The
results reported are for a = 0.8, b = 5 × 10−4, c = 0.08, d =
6 × 10−5, m = 3, and D = 0.25. Stress φ(t) is sampled at
time intervals δt = 0.5 by interpolating the original data after
discarding the initial transients of 20 000 points.

IV. SPATIOTEMPORAL PATTERNS AND ASSOCIATED
STRESS SERRATIONS

Since the stress is a scalar dynamical variable related
to the spatial average of dislocation activity in the entire
sample, it does influence the spatiotemporal patterns. To
understand this, we begin by discussing the basic instability
mechanism operating in the model by examining Eqs. (1)
and (4). From Eq. (1) it is clear that ρm increases abruptly
only when φ exceeds unity (corresponding to the unscaled
stress σ exceeding the yield stress σy). Equivalently, there is a
threshold for nucleation of an isolated burst of mobile density
ρm identified with an isolated dislocation band. However, a
stress drop can only occur when the space-averaged plastic
strain rate ε̇p = φm(t)

l

∫ l

0 ρm(x,t)dx exceeds the applied strain
rate ε̇a . Thus the scalar stress at a given time controls the
production of dislocations, which in turn controls the stress.

As shown in I [29], the model reproduces all three types of
bands (C, B, and A) observed in experiments with increasing
strain rate. While the metallurgical literature identifies the
three band types and the associated stress-strain curves, there
is no clear understanding of the evolution of bands with
increasing ε̇a . In the AK model, for a range of low ε̇a ,
we find the static uncorrelated type-C bands [1,29,37]. As
we increase ε̇a , we find the hopping type-B bands. The
stress-strain curves are more irregular with average amplitude
smaller than that for the type-C bands. At high strain rates,
the continuously propagating type-A bands are seen. The
corresponding stress-time series is very irregular with mostly
small-amplitude stress drops. While the fact that the AK model
predicts the three types of bands has been known for some
time [1,37], whether these distinct band types are due to
successive bifurcations or whether the changes are continuous
has not been addressed. Furthermore, one does not know
what dynamical changes lead to these distinct spatiotemporal
patterns. From a dynamical point of view, what is required is
a clear understanding of the cause-effect relationship between
the changes in the spatiotemporal pattern and the associated
stress fluctuations. In what follows, we attempt to elucidate the
influence of ε̇a on the spatiotemporal patterns (or, equivalently,
the nature of dislocation bands) and its connection to the nature
of the stress-time series. While this aspect was dealt with
briefly in I [29], it will be investigated in some detail as this
is particularly important for understanding the nature of the
dynamics projected from stress signals.

In what follows, the spatiotemporal patterns discussed are
for a system size N = 100. (This size is large enough that the
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FIG. 1. (Color online) (a) Randomly nucleated type-C bands for
ε̇a = 40 and N = 100. (b) The corresponding stress-time plot.

spatiotemporal patterns are not affected by a further increase in
the system size.) At the lower end of the instability, from ε̇a =
20 to 50, randomly nucleated dislocation bands corresponding
to isolated bursts of ρm are seen. From the above discussion
we know that such a burst of ρm can only be nucleated if the
scaled stress φ increases beyond unity. A typical space-time
plot of randomly nucleated bands is shown in Fig. 1(a) for ε̇a =
40. The corresponding stress-strain curve is nearly regular, as
illustrated in Fig. 1(b). Furthermore, in this range of ε̇a , usually
a single burst of ρm contributes to the total plastic strain rate
ε̇p = φm(t)

l

∫ l

0 ρm(x,t)dx as the magnitude of ρm(x,t) at other
spatial locations is insignificant. This implies that whenever the
space-averaged plastic strain rate ε̇p(t) overshoots the applied
strain rate ε̇a , a stress drop occurs [see Eq. (4)]. Thus there is a
one-to-one correspondence between bursts of mobile density
ρm and the stress drops. However, occasionally, one does find
a few low-amplitude stress drops. This can be traced to the
superposition of slightly out-of-phase contributions from two
spatially well separated bursts of ρm(x,t) to the space-averaged
plastic strain rate ε̇p(t). To illustrate this we have displayed
another segment of the space-time plot of ρm(x,t) in Fig. 2(a).
The arrows in Figs. 2(a) and 2(b) show the correspondence
between the two bursts of ρm and the small-amplitude stress
drops.

The extent of spatial correlation between the bursts of ρm

at low ε̇a can be attributed to the interplay of two factors.
First, recall that a burst of mobile dislocation density ρm can
only occur when the stress exceeds unity. Once such a burst
of ρm is created, at low strain rates, there is enough time
for the dislocation burst to die off completely before another
one is nucleated. The second factor is that the mean period
of the stress serrations is proportional to the inverse of the

052907-4



INFLUENCE OF SYSTEM SIZE ON SPATIOTEMPORAL . . . PHYSICAL REVIEW E 87, 052907 (2013)

50

100 0

250

500
0

1000

Time
Position j

ρ m

(a)

0 1000 2000

1.15

1.2

1.25

t

φ 
(t)

(b)

FIG. 2. (Color online) (a) Another segment of the space-time plot
of randomly nucleating type-C bands for ε̇a = 40. Two slightly off-
phase mobile density bursts are shown. (b) The resulting stress-time
curve. The small stress drops shown between the arrows in (b) arise
from the superposition of the two out-of-phase ρm bursts shown by
two arrows. A shorter segment of space-time plot is shown for the
sake of identification of the small stress drop.

applied strain rate. Thus the mean period of the serrations
decreases with increasing ε̇a . Then increasing ε̇a leaves less
time for a dislocation burst to be completed and hence it is
more favorable to nucleate another burst of ρm just ahead
of it before the previous burst has died out completely since
during this time interval, the stress would have relaxed only
partially as the space-averaged plastic strain rate ε̇p(t) still
remains larger than ε̇a . This in turn implies that the stress
required to induce a new burst ahead of the previous one is
less than that required to nucleate an isolated dislocation burst
elsewhere. For the same reason, even the smallest extent of
propagation introduces a short segment of small-amplitude
stress drops in the otherwise long stretches of large-amplitude
drops. Such propagative events increase with increasing strain
rate to accommodate the decreasing period. Concomitantly,
the segments of small-amplitude serrations increase with
ε̇a . The net result is that the average stress-drop magnitude
decreases with increasing ε̇a . The nucleation of a band ahead
of the previous one gives the visual impression of hopping-
type partial propagation (type-B band). Such hopping-type
propagative events are noticeable even at ε̇a = 60. A plot of
ρm(x,t) for ε̇a = 60 is shown in Fig. 3(a). Note that in this
case, the second burst of ρm appears when the first one has
almost vanished. The associated stress-time curve is shown in
Fig. 3(b). The small stress drops shown between the two sets
of arrows in Fig. 3(b) correspond to the two hopping type of
propagating bands between j = 1–22 and 18–46, respectively,
shown by the two sets of arrows in Fig. 3(a). With a further
increase in ε̇a , the tendency for the formation of a new burst
of ρm ahead of the previous ρm burst increases, giving the
impression of hopping character and therefore identified with
the type-B band. A plot of the partially propagating type-B
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FIG. 3. (Color online) (a) Early stages of partially propagating
bands for ε̇a = 60. (b) The corresponding stress-time plot. The small
stress drops shown between the two sets of arrows in (b) correspond to
the two hopping partially propagating bands between j = 1–18 and
12–46, respectively, shown by the two sets of arrows in (a). A shorter
segment of the space-time plot is shown for the sake of identification
of small stress drops.

band is shown in Fig. 4(a) for ε̇a = 90. The corresponding
stress-strain curve is considerably more irregular with small
stretches of small-amplitude stress drops separating the large

0 1000 2000

1.2

1.35

t

φ 
(t

)

(b)

0  

50 

100 0  

250

5000

1000

TimePosition j

ρ m

(a)

FIG. 4. (Color online) (a) Partially propagating (hopping type-
B) bands for ε̇a = 90. (b) The corresponding stress-time plot. The
correspondence between the propagating nature of the band marked
by the arrows in (a) and the stress-time series in (b) is displayed.

052907-5



RITUPAN SARMAH AND G. ANANTHAKRISHNA PHYSICAL REVIEW E 87, 052907 (2013)

0

50

100 0

50
0

10
00

0

1200

Tim
e

Position j

ρ m

(a)

0 500 1000
1.25

1.3

1.35

t

φ(
t)

(b)

FIG. 5. (Color online) (a) Continuously propagating bands for
ε̇a = 240. (b) The corresponding stress-time plot.

stress drops. Note also that a large stress drop can only be seen
after ρm has nearly vanished followed by the nucleation of a
burst of ρm. With a further increase in ε̇a , the separation in
time and space between successive bursts of ρm is not even
noticeable. Note that at high ε̇a , the instantaneous value of the
stress would be such that φ̇(t) has just turned negative before
another burst is created. This also implies that a new burst is
created just after the burst has marginally dropped from its
peak value, leading to an increased level spatial correlation
to such an extent that the bands propagate fully. This kind
of fully propagating band is identified with the type-A band
in the literature. The corresponding serrations have numerous
small-amplitude stress drops with a few large-amplitude drops
[1,37]. The latter can be identified with the band reaching the
edge of the sample (in both the model and experiments). A
typical plot of the fully propagating band (type A) is shown
in Fig. 5(a) with some interruptions and distortions, as can
be seen from the figure. The corresponding stress-time plot is
shown in Fig. 5(b). Undistorted solitary wavelike solutions are
rare, but not impossible to find. (For example, one such plot has
been shown in Fig. 65 of Ref. [1].) For the fully propagative
bands, we have demonstrated earlier that Eqs. (1)–(4) can
be reduced to the Fisher-Kolmogorov equation for the fast
variable ρm(x,t) by projecting the full dynamics onto the fast
manifold (see Ref. [1], p. 224). This then permits us to obtain an
analytical expression for the velocity of the propagative wave
using the marginal stability hypothesis [1,38]. However, we
do not find solitonlike solutions that after interacting remain
unaffected once the two solitary waves move beyond the
range of interaction. Indeed, distortions arise as bands can be
nucleated at other spatial locations or there could be reflections
at the end of the specimen. From the above discussion, the
succession of small stress drops can be taken to be the signature
of the extent of spatial correlation. The discussion also points

to the presence of two length scales, one corresponding to the
mean width lb of the bursts of ρm and another to the extent of
propagation lp.

For the sake of completeness, and in view of the fact that
the model reproduces the three types of bands reported in
experiments, we briefly compare the model stress-time curves
with those from experiments for a few strain rate values.
Since the stress signals are directly related to the spatial
average over the dislocation activity in the entire sample,
a proper comparison would be in terms of statistical and
dynamical properties. [Such a comparison has been reported
elsewhere (see Refs. [1,35]).] Figures 6(a) and 6(b) show
two stress-time curves for low (ε̇a = 3.3 × 10−6 s−1) and
high (ε̇a = 8.3 × 10−5 s−1) strain rates, respectively, obtained
from the deformation of samples of Cu10%Al alloy. Despite
the fact that these two time series have significantly sharper
upturns from those of the model time series [Fig. 1(b) and
Fig. 5(b)], some average features such as the mean amplitude
compare well [39]. First consider comparing the model stress
signal at low strain rates in Fig. 1(b) (type-C bands) with
the low strain rate experimental signal in Fig. 6(a). It is
clear that both stress signals exhibit mostly large-amplitude
stress drops. In contrast, the model stress signals in Fig. 5(b)
corresponding to ε̇a = 240 (type-A propagating band) and
the experimental stress signals in Fig. 6(b) have numerous
small-amplitude stress drops with very few large stress drops.
Indeed, over the small stretch presented, it is clear that the
amplitude ratio between the low and high strain rate model
and experimental time series decrease approximately by a
factor of 1

2 .
The distribution of the stress-drop magnitudes (the dif-

ference between a maximum and the following minimum)
corresponding to the experimental stress-time series D(	σ )
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FIG. 6. (Color online) Stress-strain series from the deformation
of Cu10%Al alloy samples for strain rates of (a) 3.3 × 10−6 s−1 and
(b) 8.3 × 10−5 s−1.
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FIG. 7. (Color online) Distribution of stress drop magnitudes for
experimental and model time series: (a) D(	σ ) for the experimental
stress-time series for a strain rate of 3.3 × 10−6 s−1, (b) D(	φ) for the
model stress-time series for ε̇a = 40, (c) D(	σ ) for the experimental
stress-time series for a strain rate of 8.3 × 10−5 s−1, and (d) D(	φ)
for the model stress-time series for ε̇a = 240.

[Fig. 6(b)] and that of the model D(	φ) for low strain rates
[Fig. 1(b)] show a peaked nature, as is clear from Figs. 7(a)
and 7(b). The sharp peak at the lower end of D(	σ ) in Fig. 7(a)
for the experimental signal can be attributed to fluctuations
at small scales due to the machine inaccuracy. The peaked
nature of the distribution is a generic feature of stress signals
from most low strain rate cases (see Fig. 4 of Ref. [18]).
As the applied strain rate is increased, the distributions for
experimental and model signals develop increasing skewness
to the right. Eventually, at high strain rates corresponding
to type-A propagating bands, the distributions of stress-drop
magnitudes show long tails starting from peaks located at small
values. The corresponding distributions for the experimental
and model time series are shown in Figs. 7(c) and 7(d),
respectively. When these distributions are plotted on a log-log
scale, we find that they follow a power law with an exponent
value close to −1.1 (see Fig. 2 of Ref. [35], where a log-log
plot is shown). Finally, it must be stated that the reconstructed
attractor from the low strain rate experimental time series using
the first three principle components (obtained from singular
value decomposition) look quite similar to the model attractor
for an arbitrary site (see Fig. 2 of Ref. [35]).

V. SPATIOTEMPORAL DYNAMICS OF THE MODEL

We first consider characterizing the spatiotemporal dy-
namics of the model. Towards this end, the spectrum
of Lyapunov exponents for the model equations (1)–(4)
has been calculated using the standard method due to
Benettin et al. [40].

Three different types of calculations have been carried out.
Unlike most reports in the literature, the dynamical invariants
such as the Lyapunov dimension or Kolmogorov-Sinai entropy
depend on the system size, as we show below. Even though the
largest Lyapunov exponent λmax also depends on the system
size, for purposes of locating the instability domain, we shall
use a system size N = 100, which is large enough to be
regarded as a large system size. The instability domain is found
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FIG. 8. (Color online) Plot of the largest Lyapunov exponent for
N = 100 as a function of ε̇a .

to be 20 < ε̇a � 1625. A plot of the largest Lyapunov exponent
for N = 100 is shown in Fig. 8.

However, as stated, λmax also depends on the system size.
The minimum system size Nmin for which the system is
spatiotemporally chaotic also depends on ε̇a . At the lower
end of the instability Nmin is large. For instance, for ε̇a = 25,
Nmin = 45. However, Nmin decreases rapidly as we increase
ε̇a . For instance, even for ε̇a = 40, Nmin ∼ 15, and beyond
ε̇a = 60, Nmin drops to about 11, staying constant around 9
for higher values of ε̇a . Note that the value of ε̇a at which the
partial propagation of dislocation bands are seen is ε̇a = 60.
The fact that Nmin is large at the lower end of the instability
can be appreciated by noting that at low ε̇a , only a single
dislocation burst is nucleated at any given instant of time.

We have studied the system size dependence of the number
of positive exponents n+

λ , the Lyapunov dimension DL, and
Kolmogorov-Sinai entropy H for a range of values of the
system size Nmin � N � 150. We begin with the results on the
Lyapunov dimension DL since the dependence on the system
size can be seen unambiguously. As reported in I [29], for low
strain rates where isolated bursts of ρm are seen at any given
time and in the region of fully propagating bands at high ε̇a , DL

scales with the system size with a slope close to 0.37. [See Figs.
4(a) and 4(b) of I [29].] However, in the midregion of ε̇a where
the partially propagating bands are seen (50 < ε̇a < 220), two
distinct slopes can be easily detected. (The range of values
of N from Nmin to N = 150 is adequate for this purpose.)
Even for ε̇a = 60, where the extent of propagation is small,
the change in slope (occurring at N = 56 from 0.53 to 0.31) is
easily noticeable. As ε̇a is increased, the larger slope is limited
to smaller N values. The magnitudes of the two slopes and the
N value at which the slope changes depend on ε̇a . For instance,
as we increase ε̇a to 90, the slope change occurs at N = 40.
A typical such plot of DL versus N is shown for ε̇a = 150 in
Fig. 9. It is clear that there are two slopes, one for N � 30
with a slope ∼0.7 and another for N � 30 with a slope ∼0.31.
As we increase ε̇a , the value of N at which the slope change
occurs gets smaller and eventually one finds only a single slope
with a value ∼0.37. The value of ε̇a at which we find a single
slope can be identified with the fully propagative band regime.

The underlying cause for the two distinct slopes can be
understood by examining the space-time plots for various
system sizes. Indeed, we find that for small system sizes,
the nature of spatiotemporal patterns is affected due to finite
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FIG. 9. (Color online) Lyapunov dimension DL as a function of
N for ε̇a = 150. Note the two distinct slopes.

system size. More specifically, keeping the ε̇a value fixed
at a value where the partially propagative bands are seen
for a large system size N = 100, we find that the spatial
patterns are significantly altered when the system size is
reduced to small values. For instance, for ε̇a = 120, we find the
partially propagative bands for N = 100. Keeping ε̇a = 120
and using a small N value, say, N = 20, however, changes the
partially propagating character to burst-type spatiotemporal
pattern. The bursts in ρm are well separated in space and time.
Even though these bursts are well separated in time, each
burst is followed by another burst ahead of it instead of the
hopping-type partially propagating bands seen for N = 100.
(Recall that for N = 100 and ε̇a = 120, successive bursts have
considerable overlap in space and time, quite unlike for the
N = 20 case.) A space-time plot for ρm(j,t) is shown in
Fig. 10(a). Moreover, since only a single burst contributes
to the plastic strain rate ε̇p(t) at any given time, the stress-time
plot is nearly regular with mostly large-amplitude stress drops,
as can be seen from Fig. 10(b), a feature that is usually seen
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FIG. 10. (Color online) (a) Space-time plot of the mobile dis-
location density for ε̇a = 120 and N = 20. (b) The corresponding
stress-time plot.

for low ε̇a and large N [compare with Fig. 1(b)]. The only
difference in the nature of stress-time plots for ε̇a = 120,N =
20 [Fig. 10(b)] and that for ε̇a = 40,N = 100 [Fig. 1(b)] is
that the mean period has decreased. Similar behavior is seen
for all values of ε̇a in the hopping-type propagative regime.
This change in the spatial pattern for small system sizes can
be attributed to the fact that the length scale corresponding to
the spatial extent of the band lb (typically 12–15 in this case)
is comparable to the length scale of propagation lp. Thus,
at any given time only a single burst can be accommodated
in a system size of N = 20. Thus finite boundary appears to
influence the spatiotemporal dynamics when the system size
is small and when ε̇a is in the propagative regime. This view
is supported by the fact that partially propagating nature is
restored as we increase the systems size to N = 50 for this
value of ε̇a .

Having explained the origin of the two-slope nature of the
Lyapunov dimension DL as a function of the system size N in
the region of ε̇a where partially propagative bands are seen, we
need to rationalize the linear dependence of DL versus N both
for low ε̇a , where uncorrelated bands are seen, and for high ε̇a ,
where fully propagative bands are seen. We have examined the
space-time plots for various system sizes for low and high ε̇a . In
both these cases, the basic character of the spatial patterns is not
altered when the system size is small. For instance, for small
ε̇a , the burstlike character of ρm is not altered when N values
are small. Similarly, for ε̇a values corresponding to the fully
propagative regime, say, ε̇a = 240, choosing a small system
size retains the propagative character. A space-time plot for
ε̇a = 240 and N = 20 shows this feature in Fig. 11(a). Indeed,
one difference between this and the spatial pattern for N = 100
is that the band is reflected several times [compare Fig. 5(a)].
Due to the propagative nature, only small-amplitude serrations
are seen as in the case of large system sizes. However, the stress
serration amplitude and frequency are larger than that for an
equivalent system N = 100 shown in Fig. 5(b).

Since the dependence of n+
λ and H on the system size is

less pronounced due to a small number of positive exponents,
we will not discuss this point.

We have also calculated the distribution of Lyapunov
exponents D(λ) for the entire range of the instability domain.
The distribution evolves with the applied strain rate. The
changes in the distribution of Lyapunov exponents with ε̇a

are illustrated using typical plots in the regimes of strain
rates corresponding to the randomly nucleated bands, the
partially propagating bands, and the fully propagating bands,
respectively. (These results are for N = 100, but the results
hold for system sizes up to N = 150 examined. We note
that N > 150 system sizes have not been studied due to the
high computing time required for each run and the range of
values of ε̇a investigated.) The evolution of the distribution
with respect to ε̇a is shown in Figs. 12(a)–12(c). As can be
seen from the figures, in general, D(λ) is bimodal with peaks
around zero and −0.08. At low strain rates corresponding to
the randomly nucleated bands (ε̇a = 40), the peak at −0.08
is strongly skewed to right, while that at zero is less skewed.
The region between these two peaks has no exponents. As we
increase ε̇a , the peaks spread out, reducing the skewness of
the bimodal distribution. A typical plot of D(λ) for ε̇a = 90
corresponding to the early stages of the partially propagating
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FIG. 11. (Color online) (a) Space-time plot of the mobile dislo-
cation density for N = 20 and ε̇a = 240 corresponding to the fully
propagative band. (b) The corresponding stress-time plot.

band regime is shown in Fig. 12(b). As we increase the applied
strain rate further, the two peaks at zero and −0.08 of D(λ)
spread out even more to fill the gap between the peaks. These
features are illustrated in Fig. 12(c), where a plot of D(λ)
for ε̇a = 280 corresponding to the fully propagative regime is
shown. It should be mentioned here that the fully propagating
bands are seen for values of ε̇a beyond 240.

VI. DYNAMICAL ANALYSIS OF STRESS SIGNALS

As discussed in the previous section, the stress signals
from the model are irregular in the entire interval of the
instability. Furthermore, the nature of stress serrations changes
with the applied strain rate and is correlated with the extent of
propagation of the dislocation band. In our earlier work, we
demonstrated unambiguously that the irregular stress signals at
low strain rates (ε̇a < 50) are low-dimensionally chaotic [29].
However, no effort was made to quantify these stress signals in
the region of strain rates where partially propagating to fully
propagative bands are seen. This is undertaken in this section.
For this purpose, we use a slightly modified algorithm for
analyzing spatiotemporal chaotic systems [41,42]. In addition,
the results of the previous section on the altered spatiotemporal
patterns from the partially propagative nature (for large N ) to
the burst type for small system sizes raises the question of
whether these stress signals also project low-d chaos. We will
also address this question by using the same algorithm that
was used in I [29].

We begin by briefly recapitulating the algorithm used in our
earlier work [29]. The standard Grassberger-Procaccia (GP)
algorithm involves reconstructing the attractor using delay
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FIG. 12. Distribution of Lyapunov exponents for N = 100 and
ε̇a = 40 (a), 90 (b), and 280 (c). The inset shows the distribution over
the entire range.

embedding technique [26,43–45]. Given a stress-time series
defined by {φ(k),k = 1,2, . . . ,M}, where k is in units of δt

and M is the number of data points, the d-dimensional vectors
are defined by �ξk = {φ(k),φ(k + τ ), . . . ,φ[k + (dE − 1)τ ]};
k = 1,2, . . . ,[M − (dE − 1)τ ], where τ is the delay time
and dE is the embedding dimension. The correlation integral
defined as the fraction of the pairs of points �ξi and �ξj whose
distance is less than a specified value r is given by

C(r,dE) = 1

Np

∑
i,j

(r − |�ξi − �ξj |), (5)

where (· · ·) is the step function and Np is the number of
vector pairs used in the sum [44]. If the attractor is self-similar,
the correlation dimension is given by

D2 = lim
r→0

lim
d→∞

ln C(r,dE)

ln r
(6)

if the limit exists. In practice, however, the slope D2(r,dE) =
d ln C(r,dE)/d ln r converges to a finite value D2 for some
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intermediate length scales. The improved method used in our
earlier work combines several improvements suggested in the
literature for making the conventional GP algorithm more
effective. For instance, we use an optimum value of (dE − 1)τ
that maximizes the scaling regime [46]. Further, to enhance the
scaling region at the upper end of the scale, we compensate for
the finite size of the attractor by normalizing the local slope
D2(r,dE) of the attractor by half the local slope of the attractor
in two dimensions D2(r,2)/2. (See for details Ref. [29].) Thus
we use following expression for the correlation dimension:

D2s(r,dE) = 2d ln C2(r,dE)

d ln C2(r,2)
, (7)

where C2(r,2)1/2 has been used in place of C2r (r,dE), corre-
sponding to an equivalent random attractor, as was done in
Ref. [41]. When D2s(r,dE) remains constant over a fair range
of ln r , it is taken to represent the correlation dimension D2.
The choice of C2(r,2)1/2 is motivated by the fact that any
dimension less than the true dimension of the attractor gives
essentially a uniform distribution and thus using C2(r,2)1/2

would not only serve to correct for the edge effects of the
attractor as does C2r (r,dE), but it would also take into account
the contribution arising from finite delay time. The delay time
used is the value of τ for which the slopes D2(r,2) converge
for large scales (see [47]).

When the slope D2s(r,dE) keeps increasing with the em-
bedding dimension as found for stress signals in the partially
to fully propagative band regime of ε̇a , or when there is a lack
of appreciable scaling regime for D2s(r,dE), it might suggest
a more complex dynamics that might reflect the spatially
extended nature of the full system. In such cases it would
be more appropriate to calculate the correlation dimensional
density ρ2s(r,dE). [Most calculations in the literature that
estimate ρ2s(r,dE) have been carried out for coupled map
lattices.] For extensive chaos, Bauer et al. [41] suggest
normalization using the equivalent random attractor for which
D2r = d ln C2r (r,dE )

d ln r
is expected to scale with dE . Here C2r (r,dE)

is the correlation integral of an equivalent random attractor
[41]. Then the correlation density is given by Ref. [41]

ρ2s(r,dE) = 1

dE

D2(r,dE)

D2r (r,dE)
= 1

dE

d ln C2(r,dE)

d ln C2r (r,dE)
. (8)

Another prescription suggested is to compensate for the
edge effects by normalizing Dn

2 (r,dE) corresponding to near-
neighbor vectors with respect to that corresponding to well
separated vectors [42]. However, in our work we use D2(r,2)/2
for normalization and thus the corresponding correlation
density is given by

ρ2s(r,dE) = D2s(r,dE)

dE

= 2

dE

d ln C2(r,dE)

d ln C2(r,2)
. (9)

When ρ2s(r,dE) remains constant for at least two orders
in ln r , it is taken to represent the correlation dimension
density. We note that the scaling regime is always found at
large scales due to the inevitable limited data and the high
embedding dimensions required to obtain the scaling regime.
For this reason, it is also referred to as a large-scale dimension
density [42]. For the spatiotemporal chaotic systems (studied
mostly using coupled map lattices), the scaling region is
typically found at large length scales from half the attractor

size down to a length scale where there is a sufficient number
of points for such high embedding dimensions used. For this
reason, the constant slope, though seen essentially at large
scales (compared to low-dimensional chaos), is taken to be
representative of the correlation dimension density ρ2. (For
instance, the scaling regime is found to be −3.5 � log2 r �
−0.8 in studies on coupled lattice maps [41].) We shall also
adopt the same convention.

In the present problem, we are faced with an additional
complication of having to obtain the stress-time series by
solving 3N + 1 sets of equations. This is very demanding
in terms of computational time when the number of sites N is
large. It is compounded by the fact that our study requires that
we scan a range of values of the drive parameter ε̇a and N .
For this reason, we use N = 100. The maximum length of the
time series used for our calculations was 1.1 × 105 time steps
of 	t = 0.5 after discarding initial 20 000 points.

A. Results

As shown in I [29], the algorithm outlined above for
calculating D2 [Eq. (7)] works very well even for short time
series for low-d attractors such as the the Lorenz model as
well as for higher-dimensional attractors such as the sum of
two Lorenz time series. Here we first verify if our earlier result
that low-d chaos is projected as long as there is a one-to-one
correspondence between the bursts of mobile density and the
stress drops is correct. For this, we use the stress signals
from a small system size N = 20, keeping ε̇a = 120. The
small system size altered the spatiotemporal pattern from
one of partially propagating band type for N = 100 to one
of isolated dislocation band type. A plot of D2s(r,dE) is
shown in Fig. 13(a), where we have used (dE − 1)τ = 24. The
normalization used is with respect to D2(r,2)/2 for τ = 15.
[The value of the τ used for the normalization of D2(r,2)
is that value of τ leading to converged values of D2(r,2) for
large scales.] It is clear that there is nearly five orders of scaling
regime. The value of D2 is ∼2.1, which is the same as that for
large system size and low ε̇a (�50). For the sake of comparison,
we have also plotted D2s(r,dE) in Fig. 13(b) for N = 100
and ε̇a = 40 [(dE − 1)τ = 36 where the normalization is with
respect to D2(r,2)/2 for τ = 24]. It is clear that the scaling
region for N = 100 size [Fig. 13(b)] is slightly larger than that
for N = 20 shown in Fig. 13(a). The shorter scaling region in
Fig. 13(a) can be attributed to the bursts of ρm occurring at the
boundaries. [See Fig. 10(a).] This confirms our assertion that
low-d chaos is projected whenever the stated correspondence
between isolated bursts of ρm and stress drops holds.

As shown earlier, for higher values of ε̇a , say, 90, D2s(r,dE)
keeps increasing without saturating for smaller scales until
fluctuations take over as was shown in I [29] (see Fig. 8(b) of
I [29]). A similar trend is seen for the entire range of values
of ε̇a in the partially propagative band regime. Since the stress
signals remain irregular, it is possible that the stress-strain
time series reflect the spatiotemporal chaotic nature of the
full system. Thus we consider evaluating dimensional density
ρ2s(r,dE) using Eq. (9) by embedding the stress-time series in
successively higher dimensions. The length of the time series
used is 1.1 × 105. The results presented in Fig. 14 are for
ε̇a = 150, for which there is considerable band propagation.
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FIG. 13. (Color online) (a) Plot of D2s(r,dE) as a function of ln r

for N = 20 and ε̇a = 120; (dE − 1)τ = 24 and the normalization
used is D2(r,2)/2 for τ = 15. (b) Plot of D2s(r,dE) as a function of
ln r for N = 100 and ε̇a = 40; (dE − 1)τ = 36 and the normalization
used is D2(r,2)/2 for τ = 24.
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FIG. 14. (Color online) (a) Dimensional density for ε̇a = 150 for
embedding dimension dE = 14–16, keeping τ = 12. The normaliza-
tion used is D2(r,2) for τ = 25. The horizontal (red) dashed line is a
guide for the eye and the value of ρ2 = 0.55. A two orders of scaling
region from ln r = −3.75 to −1.7 is clear. (b) Dimensional density
for ε̇a = 240 for embedding dimension dE = 17–20, keeping τ = 11.
The normalization used is D2(r,2) for τ = 22. The horizontal (red)
dashed line is a guide for the eye and the value of ρ2 = 0.51. A nearly
three orders of scaling region from ln r = −3.25 to −0.5 is clear.

The delay time used for D2s(r,dE) is τ = 12. [The value of τ

used is 24 for the normalization factor D2(r,2)/2.] For clarity,
we have presented plots of ρ2s(r,dE) as a function of ln r

for dE = 13–15 in Fig. 14. One can clearly see a scaling
regime of −3.75 � ln r � −1.7, which is nearly two orders
scaling regime. (This roughly corresponds to three orders in
log2 base.) The value of ρ2 ∼ 0.55 ± 0.02. The extent of the
scaling regime in our case is better than that reported by Bauer
et al. [41] and that reported in Ref. [42]. [See Fig. 1(b) of
Ref. [41], where the scaling regime is about one and half
orders in log2 base for coupled map lattices and two and a
half orders of scaling in log2 base in Ref. [42].] We have also
calculated the dimensional density ρ2s(r,dE) for several values
of strain rates ε̇a in the range 60–240. The range includes the
fully propagating bands for ε̇a = 240. A plot showing a nearly
three orders of scaling regime in loge base for ρ2s is shown
in Fig. 14(b) for dE = 17–20 and ε̇a = 240. In each case,
we find a scaling regime that spans two to three orders. In
this sense, our estimates of ρ2 have a better confidence level
than those in Refs. [41,42]. However, the dependence of the
value of ρ2s(r,dE) on ε̇a does not show any particular trend.
The value of ρ2 increases from 0.515 ± 0.01 for ε̇a = 120 to
0.55 ± 0.02 for ε̇a = 150 and then decreases to 0.51 ± 0.017
for ε̇a = 240 corresponding to the region of fully propagating
bands. On the basis of this, we conclude that the stress-time
series corresponding to the partially propagative region to fully
propagative band regime of strain rates exhibits features of
extensive chaos.

VII. SUMMARY, DISCUSSION AND CONCLUSIONS

The focus of this paper was to examine what kind of infor-
mation about the internal degrees of freedom is contained in
the irregular scalar stress signals. Since the stress signal is a dy-
namical variable that determines the time evolution of the mo-
bile dislocation density even as it is directly related to the spa-
tial average over dislocation activity in the entire sample, our
first task was to elucidate the connection between the spa-
tiotemporal patterns and the nature of the irregularity of the
stress signals. In our earlier work [29], we had demonstrated
the one-to-one correspondence between the stress drops and
the uncorrelated band types seen at low strain rates [29].
However, this correspondence breaks down in the region
of partial propagation. For instance, even a small extent of
propagation of the dislocation bands observed at ε̇a = 60
leads to the interruption of the sequence of large stress drops
by small-amplitude stress drops. A further increase in ε̇a

leads to the increased extent of propagation, which in turn
introduces longer stretches of small-amplitude stress drops.
For a further increase in ε̇a , say, for ε̇a = 240, fully propagating
bands are seen where numerous small-amplitude stress drops
with few large stress drops are seen. In essence, our study
shows that there is a direct correlation between the temporal
extent of small-amplitude serrations and the spatial extent of
propagation.

Better insight into the different types of bands can be
obtained by noting that there are two length scales in our
problem, namely, the mean burst size of the dislocation bands
lb and the (mean) propagation length lp apart from the system
size N . Both are functions of ε̇a . If the propagation length
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scale lp is larger than N , then one sees the fully propagating
bands. In contrast, if lp < N , there are two possibilities.
When lp < N but comparable and lp � lb, one sees the
partially propagating bands; when lp is comparable to but
larger than lb, a burst-type dynamics is seen. (Note that lb is
typically ∼10–15.) This case was studied by taking N = 20
and ε̇a = 120 where we found isolated bursts of ρm for which
lb ∼ N . However, the propagation length lp increases with
ε̇a . At high strain rates, taking small N does not affect the
fully propagating character of the bands. Indeed, we have
investigated the effect of small system size on the spatial
patterns in the fully propagating regime. We showed that for
small system sizes (for example, N = 20) and high ε̇a (say,
240), the extent of propagation is increased in the sense that the
band gets reflected at the boundaries several times, as is clear
from Fig. 11. The amplitude and frequency of the associated
stress signal are larger than those for N = 100. Our analysis
also shows that the nature of the patterns evolves continuously
due to the dependence of the two length scales lb and lp on
the applied strain rate. Thus the changes in the nature of band
types are not associated with any bifurcation.

Our earlier work demonstrated that a characteristic feature
of the small-amplitude stress drops in the propagative band
regime is that they follow a scale-free power law distribution
[1,35], an indication of high-dimensional dynamics. Since
small-amplitude stress drops also dominate at intermediate
values of ε̇a corresponding to the partially propagating bands,
it might suggest the possibility of a high-dimensional attractor
for this range of strain rates as well. Indeed, it is in this regime
of partially to fully propagating bands that we find a finite
correlation dimension density in the stress signals with ρ2 ∼
0.51–0.55. We find two to three orders of scaling in loge r ,
which is better in extent than those reported in the studies
of coupled map lattices [41,42]. Note that the breakdown of
the scaling regime for smaller scales has more to do with the
poor statistics (as in the low-d chaotic attractors), i.e., very
few points are present at length scales lower than ln r < −4.0
in such high embedding dimensions. Furthermore, the finite
correlation dimension density obtained from stress-time series
analysis demonstrates that the scalar stress signal does contain
information about the extensive nature of the spatiotemporal
chaotic dynamics of the internal degrees of freedom, which
can be detected by an appropriate algorithm.

Although, we are primarily interested in characterizing the
stress signals in the region of strain rates where partially
propagating to fully propagating bands are seen, the altered
dynamics from the partially propagating band type for large N

[see Fig. 10(a)] to the burst type bands for small system sizes
(N = 20, for example) gives us an opportunity to reconfirm
our earlier result that low-d chaos is projected as long as
there is a one-to-one correspondence between bursts of the
mobile dislocation density and stress drops [29]. We find a
more than four orders scaling regime for D2 giving a well
converged value of D2 ∼ 2.1, which is slightly less than
that seen for N = 100 and ε̇a = 40. This difference can
be seen to be due to the presence of bursts in ρm at the
boundaries.

The Lyapunov spectrum of the model equations has been
calculated for the entire instability domain. The Lyapunov
dimension scales with N only for small strain rates (isolated

burst regime) and at high strain rates (fully propagating
band regime). However, for intermediate ε̇a values where the
partially propagating bands are seen, the Lyapunov dimension
DL(N ) exhibits two distinct slopes as a function of N (see
Fig. 9). The larger slope in the DL versus N plot seen for
small system sizes has been traced to the influence of the
boundary that alters the nature of spatiotemporal dynamics
from one of the partially propagating bands to one of well
separated bursts of ρm, a characteristic feature that is seen for
low ε̇a < 60 (and large N ). The smaller slope in the DL versus
N plot is representative of a large system size. For large N , the
Lyapunov density ρL = DL/N ranges from 0.32 to 0.38 for
the entire instability domain of strain rates. Thus, in essence,
the model equations are spatiotemporally chaotic.

However, the calculated values of the correlation dimen-
sion densities ρ2 ∼ 0.51–0.55 are larger than the values of
Lyapunov density ρL = DL/N , which ranges from 0.32 to
0.38 for large system sizes (in the regime of partially to the
fully propagating bands regime of ε̇a). Instead, we should
have expected that ρL obtained from the full set of equations
is larger than ρ2 obtained from the stress signals. Indeed, this
relation does hold for small system sizes, but not for large N .
In contrast, our detailed study of the model demonstrates that
the nature of spatiotemporal patterns changes when the system
is small, which is the basic reason for the two-slope nature of
DL(N ). This may imply that under the conditions when the
spatiotemporal patterns are sensitive to the system size, the
inequality ρL � ρ2 may not hold. We will revert to this point
soon.

The discussion about the relationship between the nature of
the band types and the Lyapunov density raises the following
question: Should we not see the influence of system size on
the correlation dimension density? This question cannot be
addressed in the case of the partially propagating band types
since the small system size alters the dynamics drastically
from the fully propagating type to the isolated band type
and the corresponding stress signal has a low-d character.
However, this can be addressed in the region of high ε̇a where
the spatiotemporal patterns remain in the fully propagating
class even when N is reduced, but the stress-time curves are
slightly altered with respect to the mean amplitude and the
mean frequency, being more for low N values. To understand
this question, we have calculated the correlation dimension
density using stress signals from N = 20, 40, 60, and 80,
keeping ε̇a = 240 in the regime of fully propagating bands.
Plots of ρ2s for N = 20 and 40 are shown in Figs. 15(a)
and 15(b), respectively. It is clear from the figures that the
scaling region −4.75 � ln r � −0.85 is about four orders
for N = 20. The value of ρ2 ∼ 0.3 ± 0.01 is much smaller
than that for N = 100 for which ρ2 ∼ 0.51 ± 0.017 [see
Fig. 14(b)]. The correlation dimension density ρ2 increases to
0.365 ± 0.01 as we increase N to 40 (with a slightly smaller
scaling regime −4.2 � ln r � −0.85) as can be seen from
Fig. 15(b). As we increase N further, the value of ρ2 reaches
the large N limit of 0.51 for N = 100. Thus, indeed, the system
size does affect the value of the correlation dimension density
as well. Here it is worth noting that part of the reason for the
larger scaling regime for N = 20 and ε̇a = 240 compared to
that for N = 100 is the lower value of ρ2 that improves the
statistics at lower length scales.
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FIG. 15. (Color online) (a) Correlation dimensional density ρ2s

for ε̇a = 240 for a small system size N = 20. The embedding
dimensions used for the stress signals are dE = 18–20, keeping τ = 8.
The normalization used is D2(r,2) for τ = 25. The horizontal (red)
dashed line is a guide for the eye and the value of ρ2 = 0.30. A
four orders of scaling region from ln r = −4.75 to −0.85 is clear.
(b) Correlation dimensional density for ε̇a = 240 for a small system
size N = 40. The embedding dimensions used for the stress signals
are dE = 13–15, keeping τ = 7. The normalization used is D2(r,2)
for τ = 19. The horizontal (red) dashed line is a guide for the eye
and the value of ρ2 = 0.365. A three orders of scaling region from
ln r = −4.2 to −0.85 is clear.

One question that needs to be answered is whether the
scaling regime found at large length scales for the correlation
dimension density would continue to smaller length scales
when the length of the time series is increased. While it is
difficult to verify this proposition due to the computational
difficulties in handling long time series in such high em-
bedding dimensions, the present results appear to support
this possibility. (Any detectable change in the scaling region
requires increasing the length of the time series by at least
a factor of 10.) In contrast, a decrease in the magnitude of
the correlation dimension density affords an easier way to
check this statement. This is what we see when we analyze
the time series corresponding to a small system size, keeping
the applied strain rate at a value corresponding to the fully
propagating band. In this case, the value of the correlation
dimension density decreases from ρ2 ∼ 0.51 to 0.3, which is
clearly responsible for the scaling regime extending to scales
less than −ln 4. This length scale is even comparable to the
lower limit of scaling (−ln 5.5) found in the case of the sum
of two independent x components of the Lorenz model (see
Fig. 6 of Ref. [29]).

Having recognized that both the correlation density and
Lyapunov dimension depend on the system size, it would be
interesting to estimate the extent to which a finite system size

contributes to ρL. Clearly, this issue cannot be addressed for
small systems sizes N < Nmin since the nature of the spa-
tiotemporal patterns is drastically altered. Furthermore, even
for the fully propagating regime, we have just demonstrated
that ρ2 ∼ 0.365 for N = 40, which is smaller than ρL ∼ 0.37.
Thus this issue cannot be addressed for small N . The simplest
case for estimating the effective ρeff

L is the large N case of
the fully propagating bands for which ρL = DL/N = 0.37.
We first note that the stress-time series used for the time
series analysis is for a system size N = 100. Since stress
is determined by the spatial average of dislocation activity
in the entire sample, it would contain effects arising from
the influence of the boundary due to the finite width of
burst of ρm. The effective system size Neff can be taken to
Neff = N − 2lb. The value of lb for the propagating band is
typically 15. Using this, we find ρeff

L ∼ 0.528, which is larger
than ρ2 ∼ 0.51 for this value of strain rate. Thus it appears that
the effective Lyapunov dimension density is larger than the
correlation dimension density ρ2 (0.51). However, a similar
exercise for the region of strain rates corresponding to the
partially propagating bands is less straightforward since DL

versus N exhibits two slopes. Assuming that the mean slope
of the DL versus N plot is a reasonable choice for the slope of
a large systems size, we have estimated ρeff

L . We find that for
the entire interval of partially propagating bands (and using
the effective system size Neff as earlier) ρeff

L is always larger
than ρ2 obtained from the time series analysis.

A few comments are in order regarding the Lyapunov
dimension. A standard way to calculate the Lyapunov spec-
trum of spatiotemporal chaotic systems is to use increasing
subsystem sizes and extrapolate it as a function of system
size [48,49]. However, the method assumes that the subsystem
dynamics is not altered when the size of the subsystem is
increased. This method cannot be followed in our case as the
nature of the spatiotemporal dynamics is affected even when
the system size is not too small, say, N = 40 for the midrange
of ε̇a . At best the method works when the system size is large
enough that the spatiotemporal patterns are not affected. Then
the utility of the method is lost. At a technical level, this method
is not meaningful for our model since the variation of the stress
rate equation [Eq. (4)] contains contributions arising from all
the variables defined at all sites. Thus, using the truncated
Jacobian of the subsystem would introduce considerable error
if we leave out the contribution arising from the entire set of
sites of the full system.

It is useful to contrast our results with the earlier studies
on the spatiotemporal dynamics of spatially extended systems.
Most studies on the calculation of the correlation dimension
density for spatiotemporal chaotic systems are based on
coupled map lattices. These studies use vectors constructed
from n site variables [41,42]. However, we are not aware of
a time series analysis carried out using a scalar signal derived
from some kind of spatial average of site variables.

In the AK model, stress is not some artificially generated
spatial average, but is a dynamical variable that couples to
other variables. Specifically, while the stress at a given time
is determined by the spatial average over the dislocation
activity in the entire sample, the subsequent growth or
decay of ρm(x,t) (and hence other densities) at the next
moment is itself determined by its current value of the
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stress. In this sense, the system could be a special sys-
tem where the dynamical invariants depend on the system
size.

The surprising result from our study is that low-d chaos
is projected from the scalar stress signals even though the
internal degrees of freedom exhibit spatiotemporal chaotic
dynamics. Even though this result is obtained from the AK
model, we believe that it should hold at least in situations
where one can set up a one-to-one correspondence between
the abrupt variation of a scalar time series and localized
excitations of the internal degrees of freedom. Indeed, the
altered spatiotemporal patterns from the partially propagating
band type to burst type when N is taken to be small supports
the result. Furthermore, projecting low-d chaos holds at least in
one other case we have examined [22,23]. In our recent studies
on the spatiotemporal dynamics of peeling of adhesive tape,
we represented the acoustic energy dissipated as the spatial

average of local strain rates of the peel front [22,23]. These
studies show that the model equations are spatiotemporally
chaotic while the AE signals are low-d chaotic. Furthermore,
a simple spatial average over the variable defined on all spatial
elements may show low-d chaos in contrast to the AK model
where stress is a dynamical variable. This also suggests that
the nature of a spatial average may not be relevant for the
study since there is no feedback to other variables as in the AK
model equations.
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