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Leishmaniasis is a neglected protozoan disease that mainly affects the tropical as well 
as subtropical countries of the world. The primary option to control the disease still 
relies on chemotherapy. However, a hindrance to treatments owing to the emergence 
of drug-resistant parasites, enormous side effects of the drugs, their high cost, and 
requirement of long course hospitalization has added to the existing problems of leish-
maniasis containment program. This review highlights the prospects of immunotherapy 
and/or immunochemotherapy to address the limitations for current treatment measures 
for leishmaniasis. In addition to the progress in alternate therapeutic strategies, the pos-
sibility and advances in developing preventive measures against the disease have been 
pointed. The review highlights our recent understandings of the protective immunology 
that can be exploited to develop an effective vaccine against leishmaniasis. Moreover, 
an update on the approaches that have evolved over the recent years are predominantly 
focused to overcome the current challenges in developing immunotherapeutic as well as 
prophylactic antileishmanial vaccines is discussed.
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iNTRODUCTiON

Leishmania, a protozoan parasite, causes a complex form of disease called leishmaniasis. This disease 
is prevalent in 98 countries with major occurrence in the developing world (India, Bangladesh, 
Nepal, Ethiopia, Sudan, and Brazil) (1). Approximately 20,000–30,000 deaths and 0.7–1 million new 
cases of leishmaniasis occur per annum. The clinical forms include visceral (the most serious form 
of the disease, also known as kala-azar), cutaneous and mucocutaneous leishmaniasis (ML) (WHO, 
2017). Leishmania parasites are transmitted in the mammalian host by infected sandfly. These flies 
mostly belong to the genus Phlebotomus and Lutzomyia (2). The control of leishmaniasis mainly 
relies on chemotherapy while other measures include sleeping under nets treated with insecticide, 
and spraying insecticides to kill sandflies. The current therapy against leishmaniasis depends on 
the use of the drugs such as pentavalent antimonials and amphotericin B. Other treatment options 
include miltefosine and paromomycin. The lacunae suffered by these drugs are inherent toxicity 
and requirement of long-term treatment. In addition, the expansion of human immunodeficiency 
virus (HIV) has influenced the epidemiology of the leishmaniasis. 35 out of the 70 countries, 
endemic for visceral leishmaniasis (VL), have documented cases of Leishmania–HIV coinfection 
(3). One of the unfavorable complications amalgamated with HIV coinfection is that it lowers the 
plausibility of a therapeutic response to treatment against Leishmania infantum and it also greatly 
boosts the possibility of a relapse (4). Furthermore, the problem of high cost and the emergence 
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of resistant parasites to these drugs have frustrated the situation 
of leishmaniasis control (5). These issues necessitate alternative 
to chemotherapy like developing new non-toxic antileishmani-
als or different interventions like prophylactic and therapeutic 
vaccine. Interestingly, development of resistance to reinfection 
in individuals cured of Leishmania encourages the feasibility 
of protective vaccine. Moreover, application of cytokines and 
immunomodulators as immunotherapeutic agents that can 
direct curative immune response provides promising approach 
to immunotherapy against leishmaniasis. Since the sequencing 
of complete Leishmania genome has been achieved, advancement 
toward understanding the disease pathogenesis along with its 
defense by the host has paved new opportunities in the way for 
Leishmania vaccine and immunotherapy research. This review 
will discuss the development in the field of prophylactic and 
therapeutic vaccine and the challenges encountered as alterna-
tives to chemotherapy against leishmaniasis.

iMMUNOBiOLOGY OF LeiSHMANiASiS: 
iNSiGHTS OF THe DiSeASe

The basic necessity for developing any form of interventions 
against the disease is the better understanding of the host– 
pathogen interaction. The characteristic that allows the parasite 
to establish chronic infection lies in its ability to dampen as well 
as evade both the innate and adaptive machinery of the host’s 
immune system. The major innate immune cells that play a 
significant role in defense against Leishmania are neutrophils, 
macrophages, and dendritic cells (DCs). When the female sandfly 
sucks blood meal from the vertebrate hosts, flagellate metacyclic 
forms of Leishmania are delivered along with sandfly salivary 
ingredients into the skin of the hosts (6). Initially, the promas-
tigotes are taken up by the neutrophils at the site of infection. 
Following apoptosis in these infected neutrophils, the released 
parasites infect neighboring macrophages (7, 8). These mac-
rophages are recruited by the chemotactic properties of the pro-
teophosphoglycans, delivered to the infection site by the vector at 
the time of its blood meal (9, 10). Binding of Leishmania parasites 
to C3b accelerates phagocytosis after which promastigotes get 
converted to the amastigote form (11). Following phagocytosis in 
macrophages, establishment of infection is determined by several 
survival strategies of the parasites, most prominent of which is the 
modulation and attenuation of immune responses. Leishmania 
parasite suppresses the release of Th1 associated cytokines like 
interleukin (IL)-12 from these cells. This, in turn, restrains DCs 
to present the parasite-specific antigens to the T  cells. Thus 
preventing the activation of the acquired immunity, this is very 
crucial for the containment of the disease (12, 13). Influence of 
Th1/Th2 cytokine has been observed to vary in the progression 
of disease in VL compared with cutaneous leishmaniasis (CL). 
Although the classical Th1/Th2 paradigm of resistance/suscepti-
bility appears to be valid during CL, a mixed Th1/Th2 response 
is required for disease control during VL (14). However, it is yet 
to establish a clear Th1/Th2 paradigm for curative and preventive 
response against both CL and VL. Moreover, for ML, the disease 
manifestation is largely due to inflammatory response than due 
to parasite burden. Therefore, conventional Th1/Th2 paradigm 

does not apply to ML. It has been found that Treg (CD4+CD25+ 
regulatory T  cells) as well as Th17 (other subsets of T  cells) 
cells, play a significant role in disease outcome in both CL and 
VL, their role in ML is much more complicated. Studies with 
Leishmania major and L. infantum have shown a protective role 
of IL-17 as well as IL-22 (Th17 cytokines) against intracellular 
parasites (15, 16). Recently it was shown that when recombinant 
IL-17 or IL-23 was administered to mice it caused a considerable 
containment of parasite load in infected organs with significant 
production of factors such as IFN-γ, nitric oxide, etc. Thus, this 
study demonstrated the association of Th17-based cytokines in 
providing protection against the disease (17). As an important 
constituent of the immune system, Treg cells are known to regu-
late immune response of other cells. These cells were observed to 
be present in human cutaneous lesions (18). Increased expression 
of lesional FoxP3 and IL-10 during progressive L. major infection 
in a murine model and similarly during Leishmania braziliensis 
infection in human patients suggest the disease-promoting role 
of these regulatory cytokines (19). The preliminary data suggest 
that despite Th1 polarization production of IL-10 and Treg cells 
is associated with delayed healing of CL (20). Apart from T-cell 
subsets (Treg and Th17) other than conventional T  cells, the 
role of innate immune response has been essentially linked to 
disease outcome. In fact, engagement of the macrophage toll-like 
receptors (TLRs) by the parasites has not only shown to improve 
phagocytosis but also lead to the killing of the parasites due to 
triggering of NF-κB transactivation and concomitant produc-
tion of the downstream mediators including pro-inflammatory 
cytokines. For instance, TLR9 activation has been found to be 
beneficial for the host against these parasites. But this situation 
may not be true for all the TLRs. Lipophosphoglycan, a TLR2 
agonist has been shown to have antagonizing effect on TLR9 
mediated signal cascade in host macrophage, which in turn 
facilitates parasite survival (21, 22). Studies showed that treat-
ment with TLR4 and TLR9 agonists decreased the disease sever-
ity following challenge infection with L. major in BALB/c mice 
(23). However, in human VL, comparison of mRNA expression 
levels between pretreatment and posttreatment splenic aspirate 
samples showed considerably more TLR2 and TLR4 expression 
but no change in TLR9 expression during Leishmania donovani 
infection (24). Despite advances, achieving a comprehensive 
and clear picture of the immunobiology of leishmaniasis is still 
required to develop effective interventions such as type-specific 
vaccine and immunotherapy for leishmaniasis.

wHAT NeCeSSiTATeS A vACCiNe?

Chemotherapy is the key intervention to control leishmaniasis. 
The existing drugs for the treatment of leishmaniasis in the 
market are pentavalent antimonials, amphotericin B, miltefosine, 
paromomycin, and amphotericin B in liposomal forms. But 
the major setback of these drugs include toxicity, cost, route of 
injection, treatment duration, and the predominant one being 
blooming of drug-resistant parasites (5). Pentavalent antimonials 
are the first line course of medication for leishmaniasis worldwide 
except Indian subcontinent. In India, about 90% of all infec-
tions are resistant to pentavalent antimonials (25). Accordingly, 
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amphotericin B has been used as the leading drug to treat patients 
infected with Leishmania. But high toxicity and reports of drug-
resistant parasites have narrowed down their use (26). Miltefosine, 
an oral medication, came up with promising results in the 
beginning but there is increasing occurrence of relapses in cases 
prescribed with this drug (27–29). Lately, in a multicentric clini-
cal trial, it was found that Ambisome (liposomal amphotericin B)  
was effective enough in a single-dose treatment with a lesser 
degree of toxicity compared with mainstream treatments (30). 
However, this line of medication protocol raises the possibility 
of advancement in the development of drug-resistant parasites. 
Consequently, there is a development of combinatorial drug 
therapy for use in endemic regions (31, 32). Nevertheless, mouse 
model studies imply that even the combinatorial drug treatment 
can develop drug resistance L. donovani (33). Regardless of the 
advances in antileishmanial chemotherapeutics, it is implausible 
that chemotherapy solely will facilitate disease eradication. Since 
leishmaniasis is predominantly a disease of the poverty-stricken 
community, chemotherapy proves inadequate and less accept-
able. This socioeconomic concern calls for a preventive and/or 
immunotherapeutic alternative to chemotherapy. Hence there is 
an imperative need for an effective prophylactic and therapeutic 
vaccine if enduring ambition of managing and eliminating this 
disease are to be accomplished.

PROSPeCTS OF vACCiNe DeveLOPMeNT

Even though the global share of leishmaniasis is limited to selec-
tive parts of the world, the number of individuals being affected 
and are at risk is noteworthy. The ongoing scope to deal with this 
concern includes vector control, development of technologies for 
easy and quick diagnosis, refinement of drugs for improved treat-
ment and developing vaccine approaches both prophylactically 
and therapeutically.

Prophylactic vaccine Approaches
Admittedly, at present, there is no human administrable vaccine 
against leishmaniasis. However, development is in progress. At 
present, the vaccine designing approaches (Table 1) are broadly 
grouped as follows: (a) genetically manipulated live vaccines;  
(b) preparation of whole killed parasites or their fractions; and  
(c) vaccines based on defined molecules, which include recom-
binant protein vaccines and/or DNA vaccines as single or multi-
antigen combinations.

Live but Attenuated Leishmania Parasites As Vaccine
Vaccination with live parasites has always been an appealing 
approach as it mimics the natural infection. An effective vaccine 
comprising of live and virulent parasites termed as leishmaniza-
tion has existed in the past. However, development of nonheal-
ing lesions in some individuals led to the issue of questionable 
safety of this approach and it was discontinued in most of the 
countries except Uzbekistan (6). More recently, the aptness in 
expertise to edit the Leishmania genome to design genetically 
engineered parasites by deleting essential virulent genes rejuve-
nates the dormant utility of live attenuated Leishmania vaccine. 
Recently, in an approach to test the feasibility of live attenuated 

vaccine, researchers attenuated live L. donovani parasites by 
deleting centrin which on immunization exhibited protective 
immunity against L. infantum infection in dogs (35). In another 
study, mutant L. donovani obtained by deleting gene of ascorbic 
acid was shown to confer long-term protection against VL (37). 
Similarly, attenuated Leishmania parasites derived by deleting 
promising genes including cysteine proteases (CPs), biopterin 
reductase, and dihydrofolate reductase manifested significant 
protection in vaccinated mice against challenge infection with 
virulent parasites (36, 69). Studies on p27 gene knocked out live 
attenuated L. donovani parasites in BALB/c shows induction of 
long-term protective immunity (34). Recently, growth arrested 
live attenuated amastigotes of Leishmania have been explored 
as an encouraging technique for vaccine development against 
VL (35). Even though genetically attenuated live vaccines have 
been shown to be efficacious in experimental model, the safety 
of these mutants following mass vaccination cannot be affirmed 
because in immunocompromised individuals and HIV-positive 
persons the possibility of vaccine-induced leishmaniasis still 
remains.

Killed or Avirulent Leishmania Parasites As Vaccine
Pioneering work of the late 1930s by Brazilian scientists has 
shown the therapeutic and prophylactic efficacy of killed parasite 
vaccines against CL and VL. From then, it was realized that if the 
biochemical composition including antigenicity of these killed 
Leishmania parasites remains unperturbed it could be used as a 
promising vaccine candidate. In 1990s, Mayrink and coworkers, 
using merthiolated sound-disrupted L. braziliensis and BCG 
vaccine, showed 90% protection in phase I and II clinical trial 
against experimental canine VL challenged with Leishmania 
chagasi. However, in a well-designed field Phase III trial, this 
vaccine formulation failed to show any significant difference in 
dogs as compared with placebos (38, 39). The authors speculated 
that the difference between the artificial and the natural chal-
lenge could account for this failure in the field assay. Giunchetti 
et  al. experimented with killed L. braziliensis vaccine along 
with saponin and/or sandfly saliva extract and got some quite 
significant results (40, 41). However, these speculations were 
little hindered because the whole-parasite based vaccine failed 
to confer significant protection to humans against leishmaniasis 
(70). Recently, an attempt was made to improve the efficacy of 
whole-cell vaccination. For this first promastigote of L. chagasi 
was exposed to low dose of UV radiation to generate Leishmania 
organism termed killed but metabolically active. Further using 
this processed cells in combination with amotosalen, S-59; a 
psoralen compound, this vaccine conjugate was shown to have 
promising results comparable to vaccination with the virulent 
live organisms (42). However, to develop vaccines out of the 
whole cell is still a challenge that limits its widespread use. 
Therefore, despite being a safe and dependable option, killed 
parasite vaccines demand further in-depth investigation for a 
stable alternative.

Purified Fractions of Leishmanial Lysate
Purified fractions, as well as subfractions, of the Leishmania 
parasites have shown significant immunoprotective profile when 
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TABLe 1 | Prophylactic vaccine approaches against leishmaniasis.

Description of antigen vaccine approaches Animal model Adjuvant Reference

p27 gene knockout Leishmania donovani parasites Live attenuated Mouse – (34)

Centrin-deficient parasites of L. donovani Live attenuated Dogs – (35)

Live mutants of Leishmania lacking genes like dihydrofolate 
reductase, biopterin reductase, and cysteine proteases (CPs)

Live attenuated Mouse – (36)

Ascorbic acid-deleted live mutants of L. donovani Live attenuated Mouse – (37)

Merthiolated sound-disrupted Leishmania braziliensis Killed vaccine Dogs BCG (38, 39)

Killed L. braziliensis Killed vaccine Dogs Saponin (40, 41)

KBMA Leishmania infantum chagasi Killed vaccine Mouse – (42)

Soluble leishmanial antigens of L. donovani promastigotes Fractioned vaccine Mouse MPL-TDM (43)

115 kDa soluble serine protease Fractioned vaccine Mouse IL-12 (44)

L. braziliensis promastigote proteins Fractioned vaccine Dogs Saponin (45)

Leishmune (purified L. donovani fraction FML) Fractioned vaccine Dogs Saponin (46)

L. donovani p45 (rLdp45) Recombinant protein Hamster and human – (47)

Leishmania tarentolae expressing L. donovani A2 antigen along 
with CPs [CPA and CPB without its unusual C-terminal extension 
(CPB-CTE)]

Recombinant vaccine and 
DNA vaccine

Mouse, dogs – (48–50)

Leishmania major ribosomal protein L3 or L5 Recombinant protein Mouse CpG-ODN (51)

Recombinant L. tarentolae stably expressing CP (CPA and CPB) 
with PpSP15 (protein from the sandfly Phlebotomus papatasi) DNA

Recombinant vaccine Mouse – (52)

Lactobacillus lactis expressing LACK and mouse IL-12 Recombinant vaccine Mouse – (53)

Leish-Tec (L. donovani amastigote-specific protein A2) Recombinant protein Dogs Saponin (54)

L. infantum acidic ribosomal P0 Recombinant protein Hamsters – (55)

Recombinant L. tarentolae secreting PpSP15 Recombinant vaccine Mouse CPG-ODN (56)

Cocktail of L. donovani CPs types I, II, and III Recombinant protein cocktail 
vaccine

Hamsters MPL-TDM (57)

Cocktail of rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1 Recombinant protein cocktail 
vaccine

Dogs – (58)

Recombinant L. donovani protein disulfide isomerase DNA vaccine Hamsters and 
human

– (59)

L. major TSA DNA vaccine Mouse Aluminum phosphate (60)

Leishmania amazonensis iron superoxide dismutase DNA vaccine Mouse – (61)

Cocktail of L. major CPs type I, II, and III Cocktail DNA vaccine Mouse – (62)

T-cell epitope of KMP11, CPA, CPB, EF1α, and TSA 
(LEISHDNAVAX)

Multiantigenic T-cell epitope 
fusion DNA vaccine

Mouse – (63)

L. donovani surface GP63 Recombinant protein, DNA 
vaccine, and T-cell epitope 
peptide vaccine

Mouse, human MPL-TDM and CPG-ODN (64–66)

Chimeric peptides containing HLA-restricted epitopes from three 
immunogenic L. infantum proteins (CPA, histone H1, and KMP 11)

Peptide vaccine Transgenic mouse Poly(lactic-co-glycolic) acid 
nanoparticles and/or MPL-A

(67)

Chimeric peptides containing HLA-A2 restricted epitopes from six 
immunogenic L. major proteins (CPB, CPC, LmsTI1, TSA, LeIF, 
and LPG-3)

Peptide vaccine – – (68)

KBMA, killed but metabolically active; FML, fructose mannose ligand; CPA, cysteine protease A; CPB, cysteine protease B; rCDV, recombinant canine distemper virus; LACK, 
Leishmania homolog for receptors of activated C kinase receptor; TSA, thiol-specific antioxidant; LmTSI1/LmsTI1, L. major homolog of eukaryotic stress-inducible protein 1; KMP11, 
kinetoplastid membrane protein 11; EF1α, elongation factor 1-alpha; LeIF, Leishmania elongation initiation factor; MPL-A, monophosphoryl lipid A; MPL-TDM, monophosphoryl 
lipid A-trehalose dicorynomycolate; ODN, oligodeoxynucleotide; GP63, glycoprotein 63; HLA, human leukocyte antigen; CPC, cysteine protease C; LPG-3 lipophosphoglycan 
biosynthetic protein; CPG-ODN, CpG-oligo-deoxy-nucleotides; IL, interleukin.
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used in several vaccine models. For example, cationic liposomes 
encapsulating soluble antigens isolated from L. donovani  
promastigotes (SLA) when mixed with the adjuvant [monophos-
phoryl lipid A-trehalose dicorynomycolate (MPL-TDM)] and 
given subcutaneously to BALB/c mice conferred long-term 
protection against experimental VL (43). Similarly, fructose 
mannose ligand (FML), isolated from L. donovani, when used 
in combination with saponin (adjuvant) conferred significant 

protection against canine VL (46). Moreover, the vaccine not 
only provides a promising tool to prevent canine VL but is 
also advantageous in controlling transmission of zoonotic VL 
(71). Recently, the LiESP/QA-21 vaccine was licensed for com-
mercialization under the name of CaniLeish® in Europe. It is 
composed of purified excreted-secreted proteins of L. infantum 
(LiESP) adjuvanted with QA-21 (saponin) (72). However, 
problems associated with purification, as well as the large-scale 
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production of these fractioned vaccines, are some of the limiting 
factors in their extensive use. Therefore, development of alterna-
tives having vaccine potential including recombinant proteins, 
polyproteins, DNA vaccines are in the process as discussed in 
the following sections.

Immunogenic Recombinant Antigen Based Vaccine
The advent of the recombinant DNA technology has boosted 
enormously the vaccine development program against leish-
maniasis. It has allowed generating leishmanial recombinant 
proteins as desired. These proteins owing to their high purity 
and yield provide an advantage of developing promising vac-
cine candidates. For example, recombinant GP63 expressed in 
bacteria was used as encapsulated form in cationic liposomes 
to immunize BALB/c mice in combination with TLR4 agonist-
MPL-TDM. This combinatorial vaccine formulation was found 
to confer significant protection against murine VL through 
activation of both CD4 and CD8 T  cell-mediated immune 
responses (64). Similarly, combination of CpG-oligo-deoxy-
nucleotides, a known TLR9 agonist with recombinant riboso-
mal antigen L3 or L5 from L. major, improved the protection 
in two different murine models against homologous challenge 
infection (51). In addition, recently a new approach was taken 
to improve vaccine potential of the recombinant proteins. For 
instance, Katebi et  al. genetically engineered (56) the non-
pathogenic Leishmania tarentolae species to express and deliver 
a specific sandfly salivary antigen, PpSP15. Use of this recom-
binant L. tarentolae-PpSP15 with CpG conferred a significant 
protection against infection to L. major. Similarly, Saljoughian 
et al. developed (48) L. tarentolae that expresses L. donovani A2 
antigen. When they used this genetically engineered cell along 
with CPs for immunization of BALB/c mice in a prime-boost 
manner, it showed significant protection against L. infantum 
challenge. Another group evaluated the immunogenicity and 
protective efficacy of L. tarentolae expressing a trifusion pro-
tein containing L. donovani A2 antigen along with CPs A and 
B without its unusual C-terminal extension (CPB-CTE) against 
L. infantum infectious challenge with prime-boost regimen in 
dogs. Vaccinated dogs showed higher levels of Th1 immune 
response with a strong DTH response and low parasite burden 
representing a promising candidate against canine VL (49). 
The strongest defensive efficacy in the mice models (C57BL/6 
and BALB/c) against infection to L. major was observed by 
Zahedifard et al., when they primed these animals with PpSP15 
DNA and boosted them with the combination of PpSP15 DNA 
and L. tarentolae (live) that was engineered to stably express 
genes for CPs (52). Recently, Lactobacillus lactis (alr-) strains 
are being used as an expression and delivery vehicles of bio-
logical compounds, such as cytokines and antigens, in mice 
and humans. In one such study, live L. lactis solely expressing 
the Leishmania antigen, Leishmania homolog for receptors 
of activated C kinase receptor (LACK) and mouse IL-12 was 
generated for orally immunizing BALB/c mice against L. major 
challenge. Immunization with the L. lactis expressing both 
LACK and IL-12 in secretory form induced LACK-specific Th1 
immune response demonstrating the use of L. lactis as a live oral 
vaccine against leishmaniasis (53).

After a lot of effort in developing a vaccine against leishma-
niasis, Leish-Tec, an amastigote-specific A2 recombinant protein 
vaccine against canine VL, is now commercially available in Brazil. 
Leish-Tec® was found to be immunogenic in different breeds of 
canine population (54). Despite that these above vaccine formula-
tions exhibited significant protection against various Leishmania 
models, scientists believe that a cocktail of different conserved 
antigens could provide better protection. In lieu of that a cocktail 
of recombinant canine distemper virus (rCDV)-LACK, rCDV-
thiol-specific antioxidant (TSA), and rCDV-LmSTI1 was used to 
immunize dogs. This vaccine formulation provided significant 
protection to dogs against parasite challenge (58). Further, the 
use of cocktails of CPs in a hamster model of VL was found to 
be more effective when encapsulated in a liposome and delivered 
along with MPL-TDM (57). It is challenging to ensure persistent 
delivery of protein based antigens in intracellular milieu as a 
mimic of pathogenesis, therefore alternatively DNA-based vacci-
nation strategy for cell-mediated immunity against leishmaniasis 
is sought to be explored.

DNA-Based Vaccines
DNA-based vaccines use bacterial plasmids, which are geneti-
cally engineered to encode antigens of interest. The advantage 
of these vaccines compared with the conventional live virus or 
protein subunit vaccines is that these are flexible, can be manu-
factured rapidly, are cost effective, and are able to induce cellular 
immunity (73). Immunization with DNA vaccine for expression 
of iron superoxide dismutase from Leishmania amazonensis is 
shown to protect BALB/c mice partially against challenge with 
the parasite (61). Tabatabaie et  al. (60), however, showed that 
in addition with aluminum phosphate, TSA-based DNA vac-
cine confers significant protection against L. major infection in 
murine model. Shahbazi et  al. did immunological comparison 
of electroporation and cationic solid–lipid nanoparticle delivery 
systems to administer a trifusion DNA vaccine A2-CPA-CPB-CTE  
in dogs demonstrating both the systems as equally efficient 
vaccine delivery systems against canine VL (50). Interestingly, 
efficacy of CPs cocktail DNA vaccine was found to be enhanced 
following delivery in cationic lipid nanoparticles against murine 
model of CL exhibiting robust protective T-cell response (62). 
Besides these cocktail and fusion DNA vaccines, multiantigenic 
T-cell epitope-enriched DNA vaccine, LEISHDNAVAX has also 
developed showing significant protection. Its preclinical safety 
and tolerability studies have shown promising results. Moreover, 
distribution of the DNA vectors was systemic with no accumula-
tion upon repeated injections. These results prompted initiation 
of clinical trials with the aim to use it for preventive as well as 
therapeutic applications (63). Heterologous immunization with 
DNA vaccine for priming followed by protein boosters using 
model antigen gp63 with CpG was shown to induce strong 
protective immune responses in mice. Moreover, it confers a 
long-term immunity to fight against the intracellular pathogens. 
The findings indicate that DNA-prime/protein-boost vaccination 
modality is superior to other possible combinations (65). Overall, 
these observations suggest that DNA vaccines are promising 
alternatives to conventional protein vaccines for controlling 
leishmaniasis. However, though DNA vaccines have proven their 
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TABLe 2 | Immunotherapeutic approaches against leishmaniasis.

Description of agent Type of agent Type of strain Disease 
model

Reference

Acetyl salicylic acid Immunomodulator Leishmania major Mouse (82)
Pam3Cys and miltefosine Chemoimmunotherapy Leishmania donovani Mouse (84)
Cisplatin, 78 kDa antigen and MPL-A Vaccines as immunotherapy L. donovani Mouse (89)
rIL-2/anti-IL-2 Ab complex Cytokine and immunomodulator Leishmania panamensis Mouse (90)
Killed parasite (L. donovani), SSG, MPL-A, cisplatin, and antimony Vaccines as chemoimmunotherapy L. donovani Mouse (91)
Radio-attenuated L. donovani Vaccines as immunotherapy L. donovani Mouse (92)
Anti-hIL-10 Cytokine and immunomodulator Leishmania amazonensis Human (78)
Liposomal amphotericin B and LEISHDNAVAX Vaccines as chemoimmunotherapy L. donovani Mouse (93)
Anti-IL-10R and anti-GITR Cytokine and immunomodulator L. donovani Mouse (79)
Leishmania tarentolae secreting HNP1 Vaccines as immunotherapy L. major Mouse (80)
L. tarentolae expressing CXCL-10 Vaccines as immunotherapy L. major Mouse (81)
Chitin and chitosan Cytokine and immunomodulator L. major Mouse (83)
Recombinant CP from Leishmania infantum chagasi and Propionibacterium 
acnes

Vaccines as immunotherapy L. infantum Dog (88)

L. infantum lysate and antimony Vaccines as chemoimmunotherapy L. infantum Dog (94)
Leish-110f, MPL-SE, and antimony Vaccines as chemoimmunotherapy Leishmania chagasi Dog (95)
LEISH-F1, MPL-SE, and glucantime Vaccines as chemoimmunotherapy L. infantum Dog (87)
L. major antigen, Mycobacterium vaccae, and meglumine antimoniate Vaccines as chemoimmunotherapy L. infantum Dog (96)
Saponin-enriched Leishmune Vaccines as immunotherapy L. chagasi Dog (85)
Saponin-enriched Leishmune and allopurinol or allopurinol/amphotericin B Vaccines as chemoimmunotherapy L. chagasi Dog (86)

Pam3Cys, tripalmytoil-cysteine; MPL-A, monophosphoryl lipid A; IL, interleukin; Ab, antibody; GITR, glucocorticoid-induced TNF receptor-related protein; SSG, sodium 
stibogluconate; HNP1, human neutrophil peptide-1; CXCL-10, interferon-gamma-induced protein 10; CP, cysteine protease; MPL-SE, monophosphoryl lipid A-stable emulsion; 
hIL-10, human monoclonal Ab.
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efficacy in animal models, they are strictly regulated for human 
use. Therefore, to potentially exploit DNA vaccines for the human 
use further effort are needed to make DNA vaccines safer avoid-
ing autoimmune and cancer-related adverse effects.

Peptide-Based Vaccines
The peptide-based vaccine designing combines the benefits of a 
computational prediction with defined experimental validation 
to identify immunogenic epitopes within protein antigens. The 
boon of peptide-based vaccine design relies on their capability 
to trigger immune response solely dedicated to relevant epitopes 
overriding other irrelevant responses or unwanted side effects. 
Although the host defense mechanisms against leishmaniasis is 
not raveled completely, till date studies decipher the requirement 
of T cell-mediated response in controlling parasite infection. In 
silico approach of mining the proteome of parasites and analysis 
of the candidate antigens have helped in identifying both MHC 
class I- and class II-restricted T-cell epitope against L. donovani 
and L. major, which may serve as highly promiscuous peptides 
for developing subunit vaccine (74–76). Seyed et al. used in silico 
prediction to screen six L. major antigens for potential CD8+ 
T  cell-activating epitopes presented by HLA-A*0201 (68). In 
another in silico approach, researchers refined 10 epitopes after 
screening thousands of epitopes derived from 8,000 proteins 
conserved in different Leishmania species. They tested the 
immunogenicity of these epitopes by stimulating the PBMCs of 
cured CL patients and only 50% of them were able to stimulate 
the proliferation of lymphocytes (77). Therefore, developing 
a plausible peptide-based vaccine needs to overcome quite a 
few considerable adversities. These include curbing the low 
immunogenicity and poor population coverage of individual 

peptide due to MHC restriction by combining multiple epitopes 
along with some immune response boosting adjuvant to target 
the adaptive immune response. Athanasiou et  al. designed a 
chimeric peptide encapsulated in nanoparticle with monophos-
phoryl lipid A (MPL-A) or surface modification targeting TNF 
receptor II aimed to study their capability of stimulating the 
immunomodulatory properties of DCs. Chimeric peptide from 
three antigens incorporated in PLGA nanoparticle along with 
MPL-A were shown to induce maturation and activation of DCs 
imparting strong protective immunity against L. infantum infec-
tion in HLA A2.1 transgenic mice (67). Thus incorporation of 
multiple peptide-based epitopes in immunomodulatory delivery 
vehicles particles is a promising strategy for vaccine develop-
ment against leishmaniasis.

immunotherapy
Immunotherapy comprises the use of biological and/or syn-
thetic substances to modulate immune responses to that of cure. 
Strategies for immunotherapy include cytokine or chemokine 
treatment, antibody (Ab) blocking, immune modulation by 
vaccine antigens or adjuvants alone or in combination with 
chemotherapy. Different immunotherapeutic approaches 
against leishmaniasis have been listed in Table 2. In one such 
study, Castellano et al. administered antihuman monoclonal Ab 
in L. braziliensis SLA (soluble leishmanial antigens) stimulated 
cells from CL patients of endemic area with active or healed 
lesions to block IL-10 production, which showed decreased 
levels of IL-10, IL-4, and TNF-α in most of the patients except 
with active lesions. Moreover, there was limited alteration 
in production of an IFN-γ dependent chemokine, CXCL-10 
(78). Another study examined the therapeutic efficacies of 
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anti-glucocorticoid-induced TNF receptor-related protein and 
anti-IL-10R in L. donovani-infected C57BL/6 mice. Blocking 
IL-10 controlled parasite burden but combinatorial therapy 
using both the Abs could not suppress parasite proliferation 
in both liver and spleen even if there was low dose challenge. 
In addition, there was significant increase in TNF-α and IFN-γ 
in combinatorial therapy in comparison with single Abs (79). 
Abdossamadi et al. and Montakhab-Yeganeh et al. checked the 
suitability of transgenic L. tarentolae expressing leishmanial 
antigens such as human neutrophil peptide-1, and chemokines 
such as interferon-gamma-induced protein 10 or CXCL-10, 
respectively, as immunotherapeutic tools against L. major-
infected BALB/c mice (80, 81). Both the approaches represented 
a promising immunotherapeutic strategy to improve treatment 
of CL. Immunomodulators, depending on their properties, can 
direct immune system response both negatively and positively. 
These immunomodulators can be exploited in a manner that 
can modulate immune response to control the infection. In an 
approach, researchers orally administered acetyl salicylic acid 
(ASA) as immunomodulator in L. major-infected BALB/c mice. 
ASA induced NO production, reduced proliferation of amastig-
ote in macrophages, lesion size, and visceralization of parasites 
(82). Hoseini et al. used chitin and chitosan microparticles (MPs) 
as immunomodulators against L. major infection in BALB/c 
mice. Chitosan, acetylated form of chitin is a homopolymer 
extracted from shells of shrimp. Both the chitinous MPs showed 
reduced lesions and parasite load, induced cell proliferation and 
chitin but not chitosan induced TNF-α and IL-10 production 
(83). There are attempts to see the synergistic effect of various 
immunomodulators with chemotherapeutic agents as a com-
binatorial therapy against leishmaniasis. In one such attempt, 
studies were conducted to determine the lower dose effect of 
an antileishmanial drug, miltefosine, in combination with a 
single dose of tripalmytoil-cysteine (Pam3Cys) in BALB/c mice 
infected with L. donovani. The authors found this combination 
to be significantly effective in comparison with groups receiving 
Pam3Cys or miltefosine due to enhanced production of ROS, 
Th1 cytokines, and increase in phagocytosis index (84). Vaccines 
that can elicit cell-mediated immune response can be consid-
ered as potential candidate for immunotherapy, and there are 
various studies that are considering vaccine components with or 
without chemotherapy as immunotherapeutic tool. In one such 
study, Santos and coworkers found that Leishmune (saponin 
enriched) could significantly reduce the clinical symptoms 
and parasite load in the liver, spleen, bone marrow, and blood 
in seropositive and symptomatic dogs infected by L. chagasi  
(85). Borja-Cabrera et al. continued the study to compare the 
Leishmune (saponin enriched) with immunochemotherapy 
(saponin-enriched Leishmune in combination with allopurinol 
or AmB/allopurinol). They saw that immunochemotherapy 
cleared all the disease symptoms along with reduced infection 
and increased survival of the dogs infected with L. donovani 
(86). In an another canine VL study, glucantime treatment was 
compared with human trial candidate LEISH-F1 + monophos-
phoryl lipid A-stable emulsion (MPL-SE) in an Open Trial and a 
Blinded Trial. Glucantime alone failed to treat most of the cases 
whereas LEISH-F1 + MPL-SE was found to be effective not only 

for mild cases also but reduced the symptoms of severe canine 
VL as well (87). Recently, a study showed recombinant CP from 
L. infantum chagasi (rLdccys1) to be an effective immunothera-
peutic agent against naturally infected dogs from Teresina, Piauí, 
a region of high incidence of VL in Brazil (88). Both murine and 
dogs along with human studies indicate immunotherapy to be 
a favorable alternative to conventional chemotherapy. However, 
there is lack of standardized immunotherapeutic protocols for 
use in treatment of leishmaniasis.

STATUS OF FieLD TRiALS

Following success of a number of vaccine candidates at labora-
tory evaluation, a few have been tested in the field and are listed 
in Table 3. Notably, Canileish, recently licensed for prophylaxis 
against canine VL has demonstrated Th1 biased persistent 
antileishmanial immunity (72, 97, 98). The success of other two 
licensed canine vaccines: Leish-Tec (L. donovani A2 protein-
adenovirus) and Leishmune (FML-saponin formulation) have 
persuaded researchers to develop human leishmaniasis vaccine. 
LEISH-F1 (formerly Leish-111F), comprising of a fusion of 
three relatively conserved L. major antigens (TSA, LmStI1, and 
Leishmania elongation initiation factor) formulated as stable 
emulsions of MPL-A in squalene oil, is the first among defined 
vaccines for leishmaniasis to be clinically evaluated (99, 100). It 
has been reported that in animal models LEISH-F1 + MPL-SE 
stimulated partial protection against VL. However, Phase III 
trial of LEISH-F1  +  MPL-SE showed unsuccessful results in 
defending dogs against infection (101). Human phase I trials of 
LEISH-F1 + MPL-SE targeting VL and CL were conducted in 
Colombia (2007), Brazil (2007), Peru (2007), and India (2008) 
demonstrating the formulation to be safe, immunogenic, and 
well tolerated in people irrespective of their serostatus (102). 
Moreover, the LEISH-F1  +  MPL-SE was also found to have 
therapeutic significance when used with chemotherapy in 
patients with ML (100). The noteworthy early success of the 
LEISH-F1  +  MPL-SE has encouraged IDRI researchers to 
redesign this vaccine candidate into a new construct LEISH-F2. 
The new candidate has a deleted N-terminal histidine tag 
so as to keep the recombinant molecule close to its original 
form with replacement of a residue Lys274, a potential site for 
proteolytic activity, with Gln (102). Promising phase I trial of 
LEISH-F2 + MPL-SE has lead to a phase II trial where the safety, 
immunogenicity, and efficacy were studied in evaluation with 
standard chemotherapy in adolescent and adults participants 
infected with CL [www.ClinicalTrials.gov. A study of the efficacy 
and safety of the LEISH-F2 +  MPL-SE vaccine for treatment 
of CL; 2013]. A third candidate LEISH-F3 under investigation 
by IDRI, a tandemly fused polypeptide of open reading frame 
of two Leishmania proteins: L. infantum/donovani nonspecific 
nucleoside hydrolase protein (aa 1–314) and L. infantum sterol 
24-c-methyltransferase protein (aa 2–353), is in a phase I trials 
in USA. These trials aims to assess the safety and immunogenic-
ity of unadjuvanted LEISH-F3 with variety of adjuvants likely 
to be glucopyranosyl lipid A formulated as stable emulsion 
(GLA-SE), MPL-SE, second generation lipid adjuvant stable 
emulsion (SLA-SE) in different studies [www.ClinicalTrials.
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TABLe 3 | Vaccine field trials.

Description of antigen Disease Clinical 
trial phase

vaccine type Adjuvant Reference

Canileish (Leishmania infantum ESP) Canine visceral 
leishmaniasis (VL)

Licensed Prophylactic QA-21 (72, 97, 98)

Leish-Tec (Leishmania donovani A2 
protein-adenovirus)

Canine VL Licensed Prophylactic Saponin (54)

Leishmune (purified L. donovani  
fraction FML)

Canine VL Licensed Prophylactic Saponin (46)

Gentamicin-attenuated L. infantum Canine VL Preclinical Prophylactic – (104)

LEISH-F1 (fusion of Leishmania major 
TSA, LmStI1, and LeIF)

VL and cutaneous 
leishmaniasis (CL)

Phase II Prophylactic and 
immunotherapeutic

MPL-SE (99, 100)

LEISH-F2 (fusion of L. major TSA, 
LmStI1, LeIF-deleted histidine tag, and 
Lys274 replaced with Gln)

CL Phase II Prophylactic MPL-SE www.ClinicalTrials.gov. A study of the efficacy and safety 
of the LEISH-F2 + MPL-SE vaccine for treatment of 
CL; 2013

Leish-F3 (fusion of L. infantum/
donovani non specific NH protein and 
L. infantum SMT)

Healthy volunteers Phase I Prophylactic GLA-SE www.ClinicalTrials.gov. Phase 1 LEISH-F3 vaccine trial 
in healthy adult volunteers; 2014, LEISH-F3 + GLA-SE 
and the LEISH-F3 + MPL-SE Vaccine; 2016, Phase 
1 LEISH-F3 + SLA-SE Vaccine Trial in Healthy Adult 
Volunteers; 2016 (103)

ChAd63-KH [adenovirus expressing 
synthetic gene (KH) encoding two 
Leishmania proteins KMP11 and 
HASPB]

Healthy volunteers Phase I Prophylactic – (105)

ESP, excreted-secreted proteins; FML, fructose mannose ligand; TSA, thiol-specific antioxidant; LmTSI1, L. major homolog of eukaryotic stress-inducible protein 1; LeIF, Leishmania 
elongation initiation factor; NH nucleoside hydrolase; SMT, sterol 24-c-methyltransferase; MPL-SE, monophosphoryl lipid A-stable emulsion; GLA-SE, glucopyranosyl lipid A; 
KMP11, kinetoplastid membrane protein 11; HASPB, hydrophilic acylated surface protein B.
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gov. Phase 1 LEISH-F3 vaccine trial in healthy adult volun-
teers; 2014, LEISH-F3 + GLA-SE and the LEISH-F3 + MPL-SE 
Vaccine; 2016, Phase 1 LEISH-F3  +  SLA-SE Vaccine Trial in 
Healthy Adult Volunteers; 2016] (103).

Other group has explored the safety, tolerability, and immu-
nogenicity of vaccine candidate ChAd63-KH for human VL and 
post kala azar dermal leishmaniasis (PKDL) in Phase I clinical 
trials. ChAd63-KH is a simian adenoviral vaccine with defective 
replication, which expresses a novel synthetic gene (KH) encod-
ing two Leishmania proteins kinetoplastid membrane protein 11 
and hydrophilic acylated surface protein B. Phase I trial showed 
induced innate response characterized by activation of DCs and 
production of IFN-γ along with robust CD8+ T-cell response, 
which suggests the further development of ChAd63-KH as vac-
cine for VL and PKDL (105).

CHALLeNGeS

For the effective control and complete eradication of any 
infectious disease, the potential approach that can be exploited 
as an economical means is vaccination. Over the past two 
decades, immunotherapy, either alone or in combination with 
chemotherapy, has been developed as an additional approach 
to combat leishmaniasis. Lifetime immunity against reinfection 
manifests possibility of developing an effective vaccine (pro-
phylactic and therapeutic) against leishmaniasis. Nevertheless, 
an antileishmanial vaccine for human administration is still 
unavailable. Therefore, the present scenario augments ques-
tions concerning the issues or limitations in the advancement 
of effective interventions against eradication of leishmaniasis. 

Some of the major challenges that need to be addressed are as 
follows:

 1. Vaccines against leishmaniasis, malaria, schistosomiasis and a 
number of other bacterial and viral diseases are unappealing to 
the industry considering limits of financial benefits (300–800 
million US dollars) (1). According to the G-Finder, over US$ 
66 million has been granted for research and development of 
vaccine, preventative, and therapeutic, against leishmaniasis 
largely from chief public sector and charitable trusts (from 
the year 2007 to 2013). Some of the major funding sources 
are Carlos Slim Foundation, Bill & Melinda Gates Foundation, 
Wellcome Trust, Indian Council of Medical Research, 
European Commission, Institute Pasteur, German Federal 
Ministry of Education and Research (BMBF), and the U.S. 
National Institutes of Health (Policy Cures. G-Finder; 2015). 
In addition, new and enhanced funding from public–private 
joint ventures and pharmaceutical companies will be encour-
aging to boost vaccine (preventive and therapeutic) research.

 2. Leishmania-infected individuals gain considerable lifelong 
immunity to reinfection, suggesting the feasibility of vaccina-
tion. However, regardless of many potential vaccine candi-
dates, translation of these to develop a human administrable 
antileishmaniasis vaccine is still arduous. Selection of promis-
ing vaccine candidates has persistently been a complex issue. 
As reviewed in this article, a number of antigens (Table 1) have 
been tested with varied success based on the animal model and 
the vaccine formulation. The difference in opinion regarding 
the choice of antigens has resulted in a never-ending argument 
where some proclaim for a molecularly outlined formulation 

http://www.ClinicalTrials.gov
http://www.ClinicalTrials.gov
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://www.ClinicalTrials.gov


9

Didwania et al. Alternative to Chemotherapy against Leishmaniasis

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1779

whereas others postulate for a live attenuated vaccine. For a 
human administrable vaccine and/or immunotherapy, there 
is an imperative need to imply a coordinated approach that 
minimizes the toxicity of live vaccine and maximizes the 
immunogenicity and efficacy of defined vaccines and immu-
notherapeutic agents.

 3. An appealing approach to maximize the immunogenicity of 
the defined vaccine is the use of a suitable adjuvant (immu-
nomodulators). The factors considerably determining the 
suitability of an adjuvant are the route of administration, 
the nature of antigens like solubility, the course of immu-
nization, and the nature of immune response required. 
Development of an efficient antigen-adjuvant formulation 
primarily requires an in-depth knowledge of the mode of 
action, toxicity, and human administrability of the adjuvant. 
Chemically defined and licensed adjuvants that can elicit 
cell-mediated immune responses seem to be encouraging 
candidates for development of antileishmanial vaccines and 
immunotherapy.

 4. Leishmania infection follows a complex clinical outcome 
varying from the cutaneous to visceral form as the parasite 
is equipped for generating an extensive assortment of atypi-
cal and uncommon variations. The virulence factors as well 
as in the immune responses induced by the different strains 
and species of Leishmania is not fully understood. Improved 
understanding of the immunobiology and vaccine (prophy-
lactic and therapeutic) development prerequisites for the 
different forms of leishmaniasis will provide tools that can be 
exploited to overcome the virulence dynamics of Leishmania 
species.

 5. Suitability of mouse and hamsters as disease model for leish-
maniasis is questionable as it imitates only some facets of the 
leishmaniasis in human. For example, the elicited immune 
response and the resultant disease are governed by the choice 
of mouse strains, route and mode of challenge infection. The 
immune responses leading to protection in humans have not 
been fully elucidated due to lack in correlation to the immune 
response in the animal model. In order reduce the mismatch 
between laboratory disease models and human trials, geneti-
cally modified animal model expressing human leukocyte 
antigen (HLA) molecules in mice were generated (106), but 
the immune responses generated in these preliminary models 
were more restricted toward mouse MHC than human HLA. 
Replacement technique of MHC with HLA can be potentially 
exploited to generate optimized humanized animals for pre-
clinical studies.

CONCLUSiON

Most conventional treatment option for leishmaniasis is highly 
expensive and toxic drugs. Vaccination (prophylactic and/or 
therapeutic), if possible, can be considered to be the most efficient 
strategy to control this infectious disease. Leishmaniasis is not 
an exception as patients cured of the disease become impervious 
to further infection. A plethora of vaccine candidates against 
leishmaniasis has been explored ranging from live vaccine to 
recombinant polyprotein and multiantigenic T-cell epitope-based 
vaccines. Moreover, chemotherapy along with immunotherapy 
that can elicit protective immune response can clear infection 
more effectively providing better possibility of recovery in patients. 
Subunit vaccine candidates—Leish-F1, Leish-F2, Leish-F3, and 
ChAd63-KH—are currently in different stages of clinical trials 
have kept alive the optimism for a licensed human vaccine (pro-
phylactic and/or therapeutic) in near future. Although, licensed 
vaccines for canine leishmaniasis are available, the scope for 
improvement with newer approaches remains undaunted. With 
the rapid progress in understanding the propagation of protec-
tive immunity during leishmaniasis, development of better cor-
relates of immunity to evaluate vaccines, novel delivery systems, 
immunotherapy with or without drugs, immunomodulators and 
adjuvant together with updated revelation in genetic information 
about the parasite have opened up opportunities for advanced 
research in the vaccine field. Moreover, if funding trust can lead 
the long road of vaccine development, the unmet goal of alterna-
tive approaches to chemotherapy will be achieved very soon.
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