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ABSTRACT: Color purity is a critical prerequisite for full color
displays. Creation of deep-red phosphorescent materials with high
PLQYs is particularly challenging because of the “energy gap law”.
Simultaneously achieving high yielding solution processable Pt(II)
complexes further complicates this challenge. In this report, we
developed a high-yielding synthetic route to a solution processable/
deep-red Pt(II) complex with a rigid tetradentate structure, in which
we identified an octahedral Pt(IV) complex as a major side product
formed under the standard complexation conditions. We managed to
effectively transform the octahedral Pt(IV) species into a highly
luminescent deep-red square-planar Pt(II) complex through a base-
promoted reduction. The Pt(II) complex was found to exhibit high
solution and blend film PLQYs. X-ray crystal structure and DFT calculations of the Pt(II) complex showed that perpendicular
orientation of molecular dipoles enhanced the luminescence properties. In neat films, there was no luminescence enhancement
due to interdigitation of the attached hexyloxy tails, preventing strong Pt···Pt interactions in the solid state. Solution-processed
OLEDs based on the Pt(II) complex showed a low turn-on voltage of 3.3 V (at 1 cd/m2) with a maximum brightness of 2000
cd/m2 and a maximum EQE of ≈6% (4% at 100 cd/m2). A narrow electroluminescence with a full width at half-maximum of
≈50 nm was observed with a peak at 623 nm and deep-red emission with 1931 CIE coordinates of (0.65, 0.35). Transient
electroluminescence measurements were used to investigate the EQE roll-off of the OLEDs.

KEYWORDS: deep-red phosphorescence, solution processed, OLEDs, rigid tetradentate, platinum complex, base-promoted reduction

■ INTRODUCTION

Organic light-emitting diodes (OLEDs) have retained research
attention due to several characteristic features including their
ability to emit efficiently with fast response times, the tunability
of desirable properties, mechanical flexibility, and the ability to
incorporate them into devices by using fast, low-temperature,
and cheaper solution-processing methods. These advantages
have facilitated commercialization of high-end OLED products
such as full color displays for televisions and mobile phones as
well as solid-state lighting.1,2

While many factors contribute to OLED performance, there
is a large dependence on the type of material used. In
accordance with spin statistics, conventional fluorescent
emitters tend to have low device external quantum efficiency
(EQE) as electroluminescence (EL) is limited to singlet

excitons, which only represent 25% of all excitons generated in
the device. The other 75% of excitons are generated as triplets,
which do not emit light as it is a spin-forbidden process.3

Device EQEs can be increased by harnessing the otherwise lost
triplet excitons, using phosphorescent materials or, more
recently, materials that exhibit thermally activated delayed
fluorescence (TADF).4 Phosphorescent transition metal
complexes achieve triplet harvesting through strong spin−
orbit coupling, which facilitates effective intersystem crossing.
Highly efficient phosphorescent OLEDs have been demon-
strated by using Ir(III), Os(II), and Pt(II) complexes.5−12
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Color purity is critical for full color displays, where highly
efficient deep-blue, green, and red phosphorescent emitters are
required. Phosphorescent materials with deep-red emission are
challenging to develop as they generally suffer from low
photoluminescence quantum yields (PLQYs) due to the
“energy gap law”.13−18 This law describes the strong coupling
of ground and excited states by vibronic overlap. Con-
sequently, nonradiative decay rates (knr) are exceptionally
high, ultimately decreasing PLQYs. Nevertheless, a number of
octahedral Ir(III) complexes have been reported to show
efficient solution-processed OLEDs with CIE coordinates that

match commercial red emitters (CIE ≈ 0.65, 0.35).19 These
complexes include [Ir(Th-PQ)3], TPQIr-ET, and Ir(DPA-
Flpy-CF3)2acac, and the associated OLEDs showed excellent
maximum EQEs of 17−21%.20−22 Comparatively, square-
planar Pt(II) complexes have been much less studied even
though they provide unique properties beneficial to red
phosphorescent OLEDs and organic light-emitting field-effect
transistors (OLETs).23−25

A plausible strategy to counteract the “energy gap law” is to
suppress knr. For example, by limiting geometric reorganization
between the ground and excited states, rigid multidentate

Figure 1. Examples of rigid multidentate cyclometalated Pt(II) complexes.29−33

Scheme 1. Synthetic Route to Pt(II) Complex 8a

aReagents and conditions: (i) K2CO3, 1-bromohexane, acetone, heat, Ar(g); (ii) 10% Pt/C, H2, EtOAc, MeOH, RT, Ar(g); (iii) CuI, t-BuOK, 1,10-
phenanthroline, 1-bromo-3-iodobenzene, xylene, heat, Ar(g); (iv) n-BuLi, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, THF, −78 °C to
RT, Ar(g); (v) 2-bromopyridine, 2 M Na2CO3(aq), Pd(PPh3)4, toluene, EtOH, heat, Ar(g); (vi) (a) PtCl2, benzonitrile, heat, Ar(g), (b) t-BuOK, THF,
heat, Ar(g).
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cyclometalated Pt(II) motifs have been shown to achieve this.
Furthermore, rigid tetradentate chelates offer enhanced
chemical and physical stability, thereby significantly increasing
the device lifetime.23,26−28 Although rigid Pt(II) complexes
offer moderate to high PLQYs with impressive OLED device
performance (Figure 1), efforts toward synthesis of Pt(II)
complexes (both rigid and nonrigid) have, in general, suffered
from low to moderate yields.26,29−33 There has been no report
on the origin responsible for the low reaction yields which
deters their advancement and potential use. More importantly,
a subsection of these gave efficient deep-red OLEDs, but were
exclusively fabricated by vacuum deposition,31−34 rendering
them unsuitable for fast, low-temperature, and low-cost device
manufacturing methods such as spin-coating or inkjet printing.
To the best of our knowledge, no solution processable deep-

red Pt(II) complexes exploiting the aforementioned strategy
have been reported. There have, however, been reports of
solution processable Pt(II) complexes with orange-red
emission peaks at ≈580 nm with good EQEs of about 3−
10%.35−37

In addition, square-planar Pt(II) chromophores can
potentially show efficient π−π stacking and strong Pt···Pt
interactions at their vacant axial sites, which in turn promote
molecular aggregates or excimers in solid state. These
aggregates, instead of suffering from typical aggregation caused
quenching (ACQ) of luminescence, exhibit an enhancement
through long-range order facilitated by a unique metal-metal-
to-ligand charge transfer (MMLCT) process.38−40 The
MMLCT transition also features a bathochromic shift and
featureless emission spectrum. MMLCT has given rise to a
high neat film PLQY (up to 96%) and a comparatively short
emission lifetime (<400 ns).41 An extremely high EQE of
>45% has been theoretically predicted if the transition dipole
moments of the complexes can be horizontally aligned to the
device substrate, leading to a high light outcoupling efficiency
without the aid of any refractive index structures. Recently, by
exploiting these aggregate phenomena and the orientation of
emitting dipoles, Kim et al. demonstrated a vacuum-deposited
Pt(fppz)2 device with a record EQE of ≈39% and an EL peak
at ≈620 nm.41

In this article, we report the synthesis, photophysical
properties, and electroluminescent studies of a solution
processable deep-red Pt(II) complex 8 (Scheme 1) with a
rigid structural motif. In the key step of material synthesis, we
isolated a major octahedral Pt(IV) side product formed in
standard complexation conditions along with a trace amount of
the desired square-planar Pt(II) complex. We found the side
product can be readily converted into a luminescent deep-red
Pt(II) complex under a base-promoted reduction. Compared
to its parent Pt(II) complex 5, the attachment of a hexyloxy
solubilizing moiety to the aminophenyl bridge not only enables
solution processability but also leads to a high solution and
blend-film PLQYs (50 ± 3% and 55 ± 4%, respectively).
Solution-processed OLEDs based on 8 showed a low turn-on
voltage of 3.3 V (at 1 cd/m2) with a maximum EQE of 6.1%
(4% at 100 cd/m2) and a maximum brightness of 2000 cd/m2.
The electroluminescence is narrow with a fwhm of ≈50 nm
and a peak at 623 nm, giving rise to a deep-red emission with
CIE coordinates of (0.65, 0.35). DFT calculations, transient
photoluminescence, and transient electroluminescence were
conducted to gain insights into its photophysical processes,
including exciton generation and recombination.

■ RESULTS AND DISCUSSION

Synthesis. The synthesis of the solution processable Pt(II)
complex 8 was accomplished by using a linear synthetic
approach as outlined in Scheme 1. First, a solubilizing n-hexyl
group was attached to nitrophenol via a Williamson ether
synthesis to give 9 in a good yield (87%). Subsequently, the
nitro functional group was reduced to the respective amine 10
in an excellent yield of 97% under Pt/C-catalyzed hydro-
genation conditions, although we found that the reduction of 9
could also be accomplished with other metals such as Pd and
Fe in good yields (80−83%).42 To produce the tetradentate
ligand precursor 11, we made use of an economical copper-
catalyzed Ullmann coupling reaction with an excess of 1-
bromo-3-iodobenzene.43 The synthesis was followed by a
double borylation of 11 with 2-isopropoxy-4,4,5,5-tetramethyl-
1,3,2-dioxaborolane and then a double-palladium-catalyzed
Suzuki cross-coupling with 2-bromopyridine. This gave ligand
13 in a 39% yield over the two steps (diborylations and di-
Suzuki cross-couplings). Finally, the target Pt(II) complex 8
was successfully produced by a one-pot process in an excellent
overall yield of 90%. First, our cyclometalation of PtCl2 with 13
was conducted in dilute benzonitrile (≈0.02 M) to avoid the
undesired formation of oligomers or polymers.30 This indeed
generated the desired Pt(II) complex 8 in a trace amount; see
Figure S3c in the Supporting Information for the crude 1H
NMR spectrum, dominated by a yellow Pt(IV) complex
analogous to 8, except for the addition of two axial chlorido
ligands (see the mass spectrum in Figure S4, crystallography in
Figure S5, and 1H NMR spectra in Figure S3c). While the real
mechanism in forming the trans-octahedral Pt(IV) complex
remains unclear, oxidation of the metal likely results from the
low ionization potential of 8 (see the Thermal and Electro-
chemical Properties section) in the presence of the electron-
deficient benzonitrile solvent. In fact, similar oxidation of
Pt(II) to Pt(IV) complexes has only been investigated through
either thermal or photochemical processes44 with dihalogens
(I2 and Br2),

45 alkyl halides,46 iodobenzene dichloride,47−50 or
peroxides51 to predominantly give octahedral Pt(IV) species
with the two chlorido ligands cis to each other. Direct one-pot
formation of Pt(IV) complexes from cyclometallic ligands with
Pt(II) precursors is, however, more scarce and has only been
shown recently, where Bruce et al.52 and Su et al.53 reported
respective cis- and trans-octahedral Pt(IV) complexes, using a
similar Pt(II) precursor, K2PtCl4. This might have explained
the low to moderate yields in most attempts to isolate the
square-planar Pt(II) complexes.30−32,34,37,54−58 Remarkably,
we found that the trans-octahedral Pt(IV) complex could be
readily converted into its square-planar Pt(II) complex 8 in an
excellent yield of 90% by treating the crude reaction mixture
that contained the Pt(IV) and Pt(II) complexes with a base
such as potassium tert-butoxide (t-BuOK) in tetrahydrofuran
(THF) at reflux (Figure S3a,b). Interestingly, a similar base-
promoted reduction of Pt(IV) complexes, bearing with trans
dichlorido coligands, into Pt(II) derivatives was found in non-
cyclometallic Pt(IV) complexes.59 Finally, it is worth noting
that to isolate 8, we used a triethylamine deactivated silica
column chromatography as 8 was found prone to degradation
on nontreated silica (and also in chloroform) due to the
electron richness of the bridging amine, making the complex
prone to protonation.

Structural Properties. X-ray crystallography was pursued
to verify the chemical structure of 8, where the single crystals
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were grown from liquid−liquid diffusion of light petroleum
and dichloromethane. The X-ray crystal structure (Figure 2a)

showed a slightly distorted square-planar geometry with a
distortion angle (θ) of 13.8° (Figure 2b), which can be
attributed to steric repulsion of the two pyridyl hydrogens (α
to the nitrogen) on the two adjacent ligands. Interestingly, the
distortion still occurred despite the Pt−N bond lengths (2.11
Å) being slightly longer than the Pt−C bond lengths (1.96 Å),
meaning that the pyridyl rings are further apart from one
another than the phenyl rings. The shortest Pt···Pt distance in
the packing was found to be 7.32 Å in a dimer unit (8···8)-a
(Figure 2c), where the monomers are arranged in a distorted
π-stacking manner. The C···C distance observed in (8···8)-a
was 3.25 Å, indicating π−π interactions between the pyridyl
and phenyl moieties while the CH···N distance was 2.85 Å,
indicating CH−π interaction between the two pyridyl moieties.
Another dimer unit (8···8)-b (Figure 2d) showed strong alkyl
interactions arising from interdigitation of the hexyloxy tails of
one monomer with another, where the CH···Pt interaction
distances of 3.16 Å and other CH−π interactions protect the
Pt center from direct Pt···Pt interactions. The crystal is also
rich with CH−π interactions due to the nearly perpendicular
orientation of one monomer to another, providing an edge-to-
face herringbone packing motif (Figure S6). The interdigita-
tion of the hexyloxy tails in 8 prevents strong Pt···Pt
interaction, limiting the possibility of MMLCT.38−40

Thermal and Electrochemical Properties. Thermal
properties of Pt(II) complex 8 were studied by using
thermogravimetric analysis (TGA) and differential scanning
calorimetry (DSC). 8 was found to exhibit high thermal
stability with 5% weight loss at about 370 °C (Figure S7). No
detectable glass transition temperature was found for 8 in DSC
with a measured range of −50 to 250 °C (Figure S8).
Electrochemical properties of 8 were probed by using cyclic

voltammetry (CV). While redox processes of square-planar
Pt(II) complexes are often reported to be irreversible due to
vulnerability of solvent attack on the redox species,60 we
observed chemically reversible redox waves in dichloro-
methane (DCM) and tetrahydrofuran (THF) for oxidation
and reduction, respectively. Half-wave potentials of oxidation

and reduction were observed at −2.40 and 0.11 V, respectively,
versus the ferrocenium/ferrocene couple (Figure 3). While the

oxidation process can be assigned as the metal oxidation [i.e.,
Pt(II) → Pt(IV)], the reduction can be attributed to ligand
reduction with a high proportion of contributions due to the
electron-deficient nature of the ligand pyridine ring.61 Given
the reversible redox waves, the energy levels of highest
occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) of 8 can be estimated to be −4.9
and −2.4 eV, respectively, using ferrocene with a work function
of −4.8 eV from the vacuum level.42

Photophysical Properties. Steady-state photophysical
properties of 8 were studied in solution and solid state as
shown in Figure 4. The solution absorption and photo-

luminescence (PL) spectra of 8 were conducted in DCM and
toluene, respectively, while the solid state spectra were
obtained from spin-coated neat and blend films [10 wt % in
TAPC:TCTA = 1:3, in which TAPC is 1,1-bis[(di-4-
tolylamino)phenyl]cyclohexane and TCTA is 4,4′,4″-tris(N-
carbazolyl)triphenylamine], prepared from DCM solutions (15
mg/mL).
The solution absorption spectrum of 8 can be divided into

two main regions: a relatively intense high-energy region with

Figure 2. X-ray crystal structure of 8. (a) Top view. (b) Side view. (c)
A dimer unit (8···8)-a in a distorted π-stacking arrangement. (d) A
dimer unit (8···8)-b, showing alkyl chain interaction with the metal
center. All distances in Å.

Figure 3. Cyclic voltammograms of Pt(II) complex 8: quoted against
the ferrocenium/ferrocene couple; oxidation: in 1 mM dichloro-
methane and reduction: 1 mM tetrahydrofuran; electrolyte = 0.1 M
tetra-n-butylammonium perchlorate; working electrode = glassy
carbon; reference electrode = Ag/AgCl; counter electrode =
platinum; scan rate = 100 mV/s.

Figure 4. UV−vis absorption and photoluminescence (PL) spectra of
8 in solution (dotted line), blend (dashed line), and neat films (solid
line). Solution absorption is in DCM and PL in toluene, while the
neat and blend films (10 wt % in TAPC:TCTA = 1:3 by weight) were
prepared from fleshly distilled DCM solutions and spin-coated at
room temperature. Excitation wavelength = 350 nm. Compared
solution absorption and PL spectra of 8 in DCM and toluene can be
found in Figure S9.
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peaks at 335 and 399 nm with molar extinction coefficient, ε,
≈8800−6600 dm3/(mol cm), and a low-intensity, low-energy
region (≈410−560 nm with ε ≈1500−950 dm3/(mol cm));
see the Experimental Section in the Supporting Information for
details. Frontier molecular orbital analysis and TD-DFT data at
the B3LYP-D2/SMD/Gen1//B3LYP-D2/Gen1 level of theory
were used to characterize these transitions (with solvent =
DCM). First, the weak, longer wavelength absorption at ≈540
nm can be assigned as the HOMO-to-LUMO transition
(Figure 5). While the LUMO is mainly ligand based, a

significant contribution of the metal d-orbital in the HOMO
indicates metal-to-ligand charge transfer (MLCT) character in
the transition together with ligand center (LC) transitions. The
absorption shoulder at ≈430 nm corresponds to the HOMO
to LUMO+1 transition (i.e., 439 nm; see Figures S10 and
S12a), involving MLCT and LC characters, while the more
intense high-energy absorption bands are essentially a result of
MLCT transitions (e.g., HOMO−3 to LUMO for peak at 367
nm in Figures S11 and S12a).
To understand the excited-state dynamics, we further

probed these by nanosecond transient absorption spectroscopy
by laser flash photolysis in an argon as well as oxygen saturated
toluene solution, using a 355 nm nanosecond laser (9 ns) as
the excitation source. The transient absorption spectra of 8
(Figure S13a) exhibited absorption maxima at ≈500 nm, with
a shoulder at ≈585 nm. The negative change in absorbance or
bleach, at approximately 348, 387, and 412 nm, is attributed to
the ground-state absorption of 8, while the negative signal at
≈622 nm is due to the PL of 8. With an increase in spectral
time, an overall decrease of absorbance was observed. The
transient absorption spectra of 8 in both argon and oxygen
atmospheres at 0.24 μs after the laser irradiation are also
compared. In the presence of oxygen, the transient signal was
completely quenched, suggesting that the transitions (≈410−
550 nm) have significant triplet characteristics (Figure S13a).
Transient absorption and emission spectra and steady-state
absorption and emission spectra of 8 are shown in Figure S13b
for comparison.
Moving from solution to neat film, all the absorption bands

of 8 are red-shifted (Figure 4). This can be attributed to
stronger intermolecular interactions of the complex in the solid
state, which is also supported by the TD-DFT calculation
results on the dimer units, extracted from the crystal data
(Figure S12).
8 exhibited a deep-red color in a degassed toluene solution

with a peak and a shoulder at 627 and ≈675 nm, respectively.
The estimated phosphorescence peak was 674 nm based on
the T1 state geometry (Figure S15), which is in line with the
experimental results (the calculated emission peak was 588 nm

based on the TD-DFT geometry of the S1 state of 8, Figure
S14). The compared energy diagram for different states of 8 by
using TD-DFT at the B3LYP-D2/SMD/Gen1//B3LYP-D2/
Gen1 level is shown in Figure S16. The solution PLQYs and
lifetimes for 8 were measured in both DCM and toluene
(Figure S17). The PLQYs were determined against a quinine
sulfate reference62 with an excitation wavelength of 350 nm.
Lifetimes were probed by time-correlated single photon
counting (TCSPC). In toluene, the solution PLQY and
lifetime were 50 ± 3% and 5.8 μs, respectively, while in DCM
the values were 34 ± 2% and 5.5 μs, respectively. The
microseconds lifetimes indicate the origin of the emission is
phosphorescence. In both solvents, the PLQYs of 8 are high
for a deep-red phosphorescent Pt(II) complex.
The high solution PLQYs of 8 can be attributed to the

rigidity of the complex, restricting rotation of the ligands, in
conjunction with the solubilizing surface groups providing the
single exponential for the emission lifetime in solution (Figure
S17). This also leads to a narrow PL with a fwhm of ≈70 nm
(Figure 4) and low knr.

23,26 Moving from solution to solid
state, 8 only showed a low neat-film PLQY of 5 ± 2%.
Together with broadened neat-film PL spectrum (fwhm ≈ 105
nm, Figure 4), this suggests strong intermolecular interactions
of the material, likely resulting from its planar structure. The
severe reduction on neat-film PLQY attained in the solid-state
spin-coated films indicates ACQ with minimal MMCLT.
Nevertheless, the PLQY of the blended films (10 wt % in
TAPC:TCTA = 1:3 by weight) increased to 55 ± 4%, in a
good agreement with that of dialkylated analogues in Bebq2
(58%, TLEC-025).33 We also found a biexponential process
for the emission lifetime of the blend films (Figure S17 and
Table 1) with much shorter lifetime than that in solution. The

presence of the short-lived component can be attributed to
emitting aggregates such as dimers in the blend films even at
low doping concentrations (10 wt %).

DFT Calculations of Dimers. To get further insights into
the photophysical properties of the emissive dimers in the
blend films, DFT calculations were performed, including
making use of their crystal packing. The dimer units (8···8)-
a and (8···8)-b extracted from crystal data were optimized, and
monomers with an antiparallel orientation were also
considered, creating a third stacked dimer (8···8)-c.
The B3LYP-D2/Gen1 level optimized monomer geometry

of 8 showed excellent agreement with the crystal structures of
monomers (Figure S18). Compared to the Pt···Pt distance of
7.32 Å in the crystal structure, the optimized geometry of (8···
8)-a showed a closer staking of monomers with a Pt···Pt
distance of only 3.72 Å (Figure 6a). The dipoles of the
monomers showed an ≈120° orientation compared to ≈90° in
their crystal structure. Additionally, the optimized geometry of
(8···8)-b nearly reproduces the interdigitating influence of the

Figure 5. The π-type HOMO of 8 (left), showing significant
contribution of metal dxz and the π*-like LUMO (right). The
absorption observed at 530 nm in the solution phase experiment
(calculated value is 528 nm in DCM, Figure S12a) is due to the
HOMO-to-LUMO transition, which accounts for charge transfer from
Pt(II) metal and ligand phenyl portion as well as bridge nitrogen to
the ligand (both phenyl and pyridyl portions) predominantly.

Table 1. Photophysical Properties of 8 in Solution, Spin-
Coated Neat Film, and 10 wt % Blend Film in TAPC/TCTA
(1:3 by Weight) (from DCM Solution)

PLQY
(%) lifetime, τ (μs)

kr
(× 105 s−1)

knr
(× 105 s−1)

DCM 34 ± 2 5.5 0.58 1.14
toluene 50 ± 3 5.8 0.85 0.87
10 wt % TAPC/
TCTA

55 ± 4 0.3 (9%), 3.8
(91%)

neat film 5 ± 2
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hexyloxy tails of one monomer with another (Figure 6b). The
third calculated dimer structure (8···8)-c (which was not
observed in crystal structure data) demonstrated a perfect
antiparallel stacked orientation between monomers (Figure 6c)
with a Pt···Pt distance of 3.46 Å. The calculated interaction
energies (Eint) for the dimer units (8···8)-a, (8···8)-b, and (8···
8)-c were 44.9, 35.6, and 47.1 kcal/mol, respectively. Solvation
effect reduces the Eint values by 8−10 kcal/mol. In the dimer
configuration, monomer dipoles show an antiparallel arrange-
ment with a Pt···Pt distance in the range of 3.46−3.72 Å. This
type of association leads to strong orbital interaction between
metal centers (Figure S19). In the case of the crystal structure
of 8, a short Pt···Pt distance was not observed, which can be
attributed to the formation of (8···8)-b, as the interdigitating
influence of the hexyloxy chains prevents the close association
of the coordinating aromatic units. The dimer (8···8)-b has
exhibited the highest dipole moment (μ) 4.61 D while the
stacked orientations (8···8)-a and (8···8)-c showed μ values of
2.29 and 2.31 D, respectively, which are very close to the

monomer dipole of 2.28 D. The higher transition dipole
moment of dimer (8···8)-b could be the main reason for the
biexponential excited-state lifetimes and superior PLQY in a
blended film. This is because that transition dipole moment is
directly related to oscillator strength. The magnitude of the
oscillator strength for an electronic transition is directly
proportional to the square of the transition dipole moment
produced by the action of electromagnetic radiation on an
electric dipole. The oscillator strength qualitatively relates to
the strength of the absorption and emission.

OLED Device Properties. With the high blend film
PLQYs, OLEDs employing 8 were fabricated with device
structure shown in Figure 7a, where the relative energy levels
of the materials used can be also found. We used two hole
transporting hosts, TAPC and TCTA, to take the advantage of
high-lying HOMO of TAPC as well as the high hole mobility
of TCTA for reduced turn-on voltage.63 Such blends also
offered excellent film forming quality, as can be seen by the
absence of any significant structural features in the atomic
force microscopy image (Figure S20).
As shown in Figure 7b, the maximum EQE of the OLEDs

was recorded to be 6.1% at ≈1 cd/m2 and reached 4% at 100
cd/m2. Figure 7c shows the electroluminescence (EL) at 100
cd/m2 with a sharp peak at 623 nm and fwhm of ≈55 nm,
corresponding to 1931 CIE coordinates of (0.65, 0.35) as
saturated red color. The current density−voltage−luminance
(J−V−L) characteristics of the OLEDs are shown in Figure 7d,
where a low light turn-on voltage (at 1 cd/m2) of 3.3 V was
achieved. The maximum brightness of the red OLEDs was
2000 cd/m2.

EQE Roll-Off Mechanism. At high current density, EQE
roll-off poses a significant issue in phosphorescent OLEDs due
to triplet−triplet annihilation, triplet-polaron quenching, and
electric field dependent exciton dissociation.64−67 To gain
insights into these phenomena, small-area OLEDs (0.5 mm2)

Figure 6. Optimized dimer configurations of 8 by using B3LYP-D2/
Gen1 method and the respective dipole moment (μ): (a) stacked
dimer, (b) interdigitated dimer, and (c) antiparallelly stacked dimer.

Figure 7. Device performance of deep-red OLEDs. (a) Energy diagrams of materials employed in the devices. (b) External quantum−power
efficiency versus luminance plot. (c) EL spectrum at 100 cd/cm2 of the diode; inset: CIE coordinates of the deep-red OLED. (d) Current density−
luminance versus voltage plots. ITO = indium tin oxide; PEDOT:PSS = poly(3,4-ethylenedioxythiophene)polystyrenesulfonate; TPBi = 1,3,5-
tris(N-phenylbenzimidazol-2-yl)benzene.
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were fabricated with the same device structure as those
reported in the Experimental Section, and transient EL was
measured. Voltage pulses varying between 6 and 12 V were
applied to a 0.5 mm2 area device at a repetition frequency of
100 Hz to investigate the EL response of the Pt(II)-based
OLED. Figure S21 depicts a sample EL response to applied
voltage pulse at steady and turn-off states. The 1.5 μs pulses
were applied via an AVTECH pulse generator AVX1011-B1-B
with a rise and fall time of 2 ns. The EL response was recorded
by using a Hamamatsu photomultiplier tube (PMT) (H10721-
20) with a response time of 0.57 ns, connected to a Teledyne
LeCroy digital oscilloscope (2 GHz) for collecting the optical
data.
At higher current density, the EL decay becomes much

faster. The faster decay at higher current density is due to the
triplet−triplet annihilation process. The annihilation rate
constant, γ, can be calculated from the decay of EL intensity
(Figure 8a) via the following equation:68,69

γ∂
∂

= − −
t

N t kN t N t( ) ( ) ( )2
(1)

where N(t) is the total exciton population and k the exciton
decay rate constant. The solution of the equation can be
obtained with eq 2:

=
−

+ [ − − ]γN t
N kt

kt
( )

(0) exp( )
1 1 exp( )

k (2)

where N(0) is the initial exciton density. From the fitting of
exciton decay plots, we can calculate the annihilation rate
constant γ (Figure S22). The averaged value of γ was
determined to be ≈(1.4 ± 0.5) × 10−12 cm3/s. The value is
comparable to those obtained for the Ir(III) dendrimer69 and
Ir(III) complexes in the TCTA host70 by using PL decay at
various exciton densities.
The transient annihilation model can be utilized to predict

the limiting current density as

γτ
=J

qd4
0 2 (3)

where J0 is the onset current density when the EQE drops half
of its maximum value, d represents exciton recombination zone
thickness, τ is exciton lifetime (phosphorescent lifetime), and q
represents the charge of a carrier. Assuming d = 10 nm and γ =
(1.4 ± 0.5) × 10−12 cm3/s, we estimated J0 = 14.1 ± 5 mA/
cm2, which is comparable with experimental value of current
density when the EQE drops half of its maximum value.
Beyond J0, the triplet excitons are heavily quenched by

annihilation processes, resulting in a rapid efficiency roll-off in
OLED devices.

■ CONCLUSIONS
In summary, we successfully developed a high-yielding
synthetic route to a solution processable highly luminescent
Pt(II) complex with a rigid tetradentate structure. The
formation of an octahedral Pt(IV) side product is likely
responsible for the general poor yields of Pt(II) cyclo-
metalations. By employing a base promoted reduction,
we effectively converted the major octahedral Pt(IV) side
product into the desired square-planar Pt(II) complex with
deep-red emission. The introduction of a hexyloxy solubilizing
group enables solution processability of the Pt(II) complex 8,
and high solution and blend film PLQYs (50 ± 3% and 55 ±
4%, respectively), despite a small distortion of the square-
planar structure. X-ray crystal structures show that while the
interdigitation of the hexyloxyphenyl tails attached prevents
strong Pt···Pt interaction and minimizes the MMLCT, the
perpendicular orientation of molecular dipoles enhances the
luminescent properties of Pt(II) complex 8. OLEDs based on
the solution processable 8 exhibited a low turn-on voltage of
3.3 V (at 1 cd/m2) with a maximum EQE of 6.1% (4% at 100
cd/m2) and maximum brightness of 2000 cd/m2. Narrow
electroluminescence with a peak at 623 nm and a fwhm of ≈50
nm was demonstrated, leading to deep-red emission with 1931
CIE coordinates of (0.65, 0.35).
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