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Shergol Ophiolitic Slice along the Indus Suture Zone (ISZ),
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AB STRACT

The Shergol ophiolitic slice is a dismembered ophiolite consisting predominantly of serpentinized peridotites along
the Indus Suture Zone, Ladakh Himalaya, India. On the basis of modal mineralogy, Shergol serpentinized peridotites
can be identified as spinel-bearing harzburgites. The characteristic U-shaped rare earth element (REE) patterns and
whole-rock heavy-REE concentrations correspond to those of abyssal mantle rocks from mid-ocean ridges. Evaluation
of Cr-spinel mineral chemistry reveals that they represent the residues left after low-to-moderate degrees of partial
melting (!15%) in the spinel stability field in a mid-oceanic ridge tectonic environment. The whole-rock geochem-
istry suggests that the studied rocks represent a mantle residue left after removal of basaltic melts in the context of an
ancient Jurassic-Cretaceous Neo-Tethys oceanic mantle section.

Online enhancements: appendix.
Introduction

Ophiolites are the fragments of upper mantle and
oceanic crust (i.e., oceanic lithosphere) representing
ancient ocean basins (Cann 1970; Dewey and Bird
1971; Coleman 1977; Nicolas 1989) incorporated
into continentalmargins during continent-continent
and arc-continent collisions (Dilek and Flower 2003).
They are generally found along collisional-type su-
ture zones (e.g., Alpine, Himalayan, Appalachian) and
accretionary-type orogenic belts (e.g., North Amer-
ican Cordilleran) that mark major boundaries be-
tween amalgamated plates or accreted terranes. The
importance of on-land study of ophiolites is immense,
as they represent the only suitable source of direct
information about the character and composition of
the old oceanic lithosphere that will help in under-
standing the modern oceanic lithosphere.
The ultramafic rocks and other diagnostic litho-

logical types with well-preserved oceanic features
that characterize most of the world’s known op-
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hiolite sequences occur in the Ladakh Himalaya
along the Indus Suture Zone (ISZ; Gansser 1980;
Srikantia and Razdan 1980; Sharma 1989; Sinha and
Mishra 1992; Mahéo et al. 2004, 2006). This im-
portant tectonic setting and its ophiolitic character
add to the geological significance of these rocks.
In this article, we present the first whole-rock

major- and trace-element compositions, including
rare earth element (REE) data, of serpentinized pe-
ridotites from the Shergol ophiolitic slice, repre-
senting one of the ophiolites of the LadakhHimalaya
along the ISZ. The study also aims at discussing the
petrogenesis and tectonic setting of these serpen-
tinized peridotites.

Geological Setting

The Ladakh Himalaya (fig. 1a) occupies the central
position in the Himalaya; it is separated from the
Kohistan area to the west by the Nanga-Parbat
massif and is cut off from the Lhasa block to the east
by the Karakoram strike-slip fault (Gansser 1980;
Srikantia and Razdan 1980; Raz and Honegger 1989).
1–513] q 2
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In the Ladakh Himalaya, the ISZ preserves the ves-
tiges of the Mesozoic Neo-Tethyan Ocean (Gans-
ser 1964, 1980; Petterson andWindley 1985; Sharma
1989; Treloar and Rex 1990; DiPietro and Lawrence
1991; Robertson andCollins 2002; Rolland et al. 2002),
which closed via subduction during Early Cretaceous
time (Pudsey 1986; Mahéo et al. 2004), followed by
obductionof theNeo-Tethyanophiolites inKohistan-
Ladakh terranes during Late Cretaceous time (Brook-
field and Reynolds 1981; Searle et. al. 1999; Corfield
Figure 1. a, Geological map of the Ladakh Himalaya (after Mahéo et al. 2004), showing the location of the study area.
b, Geological map of the Sapi-Shergol ophiolitic slice along the Indus Suture Zone, Ladakh Himalaya, showing
sampling locations (modified after Honegger et al. 1989). A color version of this figure is available online.
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and Searle 2000) and ultimately the collision of two
continental plates (Indian and Asian Plates) during
Middle Eocene time (Petterson and Windley 1985;
Searle et al. 1987; Beck et al. 1996; Rowley 1996).
The rocks along the ISZ are mostly deformed as a
result of the Tertiary India-Asia collision (Gansser
1964, 1980; Sharma 1989; Treloar and Rex 1990;
DiPietro and Lawrence 1991; Robertson and Collins
2002); its associated process of subduction was re-
sponsible for the blueschist- and eclogitic-grade meta-
morphism of rocks (de Sigoyer et al. 1997, 2000;
Guillot et al. 2000) constituting the suture-associated
mélanges and their emplacement into their present
positions (Brookfield and Reynolds 1981; Honegger
et al. 1982; Sinha and Mishra 1992; Mahéo et al.
2006). These ophiolitic slices along the ISZ from
northwest to southeast are the dismembered ophio-
litic slices of Dras and Shergol (Honegger et al.
1982; Radhakrishna et al. 1987; Sinha and Mishra
1994), the Spontang ophiolite complex (Reuber 1986;
Corfield et al. 2001), and the Nidar ophiolitic se-
quence (de Sigoyer et al. 1997; Mahéo et al. 2004;
Ahmad et al. 1996, 2008), which are arranged im-
bricately in an east-west direction and in a tectonic
division belonging to the Mesozoic-age Tethyan ophi-
olitic belt (Moores et al. 2000).
Our geochemical study is on the dismembered

Shergol ophiolitic slice, sandwiched between the
Nindam Formation, a forearc volcanosedimentary
formation of Late Cretaceous to Early Eocene age
associated with the Dras arc (Clift et al. 2000), and
the Lamayuru Formation, Indian continental slope
deposits of Triassic to Cretaceous age (Fuchs 1982;
Robertson 2000) on the north and south, respec-
tively, along the south-dipping back thrusts (Frank
et al. 1977; Honegger et al. 1989; Sinha and Mishra
1992;Mahéo et al. 2006). This ophiolitic slice is best
exposed at Shergol village, 30 km south of the Kargil
district, Ladakh Himalaya. The Shergol ophiolitic
slice predominantly consists of ultramafic rocks that
aremostly serpentinized and occur as long slivers (up
to 3 km in length and 200–300 m thick) as well as
small blocks (Honegger et al. 1989; Sinha andMishra
1992, 1994; Robertson 2000). Besides peridotites, the
ophiolitic rocks near Shergol village include blue-
schists, pockets of gabbros, and basalts (Honegger
et al. 1982; Sinha andMishra 1992; Robertson 2000;
Mahéo et al. 2006). Despite the presence of all the
petrological units of an ophiolite (except for a well-
developed sheeted dike complex), these mafic and
ultramafic rocks in an accretionary prism at Shergol
village are considered to represent a dismembered
ophiolite, as regular sequential lithostratigraphy is
absent (Shah and Sharma 1977; Srikantia and Razdan
1985; Robertson 2000).
Sampling and Analytical Techniques

For this study, 22 samples of serpentinized perido-
tite were collected along the trend of the Shergol
ophiolitic slice from Shergol village through Tingdo
village to Fokhar village (fig. 1b). At Shergol village,
the ophiolitic slice is confined to an east-west-
directed linear belt sandwiched between the La-
mayuru Formation on the south and the Nindam
Formation on the north, along south-dipping back
thrusts (fig. 2a). The dominant lithological unit en-
countered is serpentinized peridotite (harzburgite
composition) that mainly occurs as blocks of vary-
ing sizes imbricated with a serpentine and turbidite
matrix (fig. 2b). At Tingdo village (to the west of the
Shergol), mafic lenses are intercalated with sheared
serpentinized peridotite (fig. 2c, 2d). These serpen-
tinized peridotites are black to dark green in color,
with prominent crystals of shining bronze- or honey-
colored platy pseudomorphs of pyroxene (5–8 mm in
diameter) known as bastites. After detailed petro-
graphic study, 12 sampleswere selected formajor- and
trace-element analyses.
Major-element concentrations were determined

with a Philips MagiX PRO (model PW 2440)
wavelength-dispersive X-rayfluorescence (XRF) spec-
trometer coupled with an automatic sample changer
(model PW 2540) and provided with suitable soft-
ware, SUPERQ3.0 (Philips, Eindhoven,Netherlands).
The analytical procedure for major-element determi-
nation is essentially the same as that described by
Krishna et al. (2007). For all major elements, the pre-
cision (relative standard deviation [RSD]) iswell below
5% for all samples. Trace elements, including REEs
and high-field-strength elements, were determined
after digestion of samples with HF-HNO3 (7∶3, acid
mixture) in Savillex screw-top vessels. Solutions
were analyzed by high-resolution inductively cou-
pled mass spectrometer (ICP-MS; Nu Instruments
Attom, Wrexham, United Kingdom) in jump-wiggle
mode at amoderate resolution of 300,which permits
all the analytes of interest to be measured accu-
rately. The analytical procedurewas the same as that
followed by Satyanarayanan et al. (2014). The analyt-
ical results demonstrate a high degree of machine ac-
curacy and precision better than an RSD of 3% for the
majority of trace elements. Major- and trace-element
data of Shergol serpentinized peridotites (SSPs) are
given in tables A1 and A2, respectively (tables A1–A3
available online).
Electron microprobe analyses of the least-altered

peridotite samples were performed at the Banaras
Hindu University, Varanasi, India, with a CAMECA
SXFive Electron Microprobe. Accelerating voltage
and probe current were 15 kV and 20 nA, respec-
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tively.Well-calibrated naturalmaterialswere used as
standards, and replicate analyses of individual points
show analytical error of !2%. The total Fe was de-
termined as FeO and estimated Fe21 and Fe31 con-
tents, according to the charge-balance equation of
Droop (1987). The mineral chemistry of Cr-spinel is
presented in table A3.
Results

Petrography. The ultramafic rocks of the Shergol
ophiolitic slice at Shergol, Tingdo, and Fokhar vil-
lages are invariably serpentinized to varying de-
grees. Petrographically, these rocks are character-
ized by pseudomorphic textures, includingmesh and
hourglass textures after olivine, bastites after ortho-
pyroxene and clinopyroxene, and vein textures of ser-
pentines, besides the presence of accessory amounts
of fine-grained magnetite and partly altered charac-
teristic red-brown spinel (fig. 3a, 3b). Such a miner-
alogical composition suggests that, before serpen-
tinization, these rocks belonged to a protolith of harz-
burgite composition.The relict olivine pseudomorphs
are anhedral to subhedral grains, measuring from 0.2
to 0.5mmindiameter, and exhibit hourglass or radial
extinction. Orthopyroxene is usually pale brownish
and subhedral in shape and commonly occurs as large
porphyroclasts of centimeter size. Many orthopyrox-
ene porphyroclasts show undulose extinction, kink
banding with minor clinopyroxene exsolution lamel-
lae, chlorite alteration mainly along cleavage planes,
and lobate grain boundaries. Spinel grains usually
occur as fresh, small, and relatively abundant grains
that have characteristic brown to reddish-browncolor.
These primary spinel grains range from 0.2 to 1 mm
in size and are ubiquitously oxidized along grain
boundaries, resulting in the development of iron oxide
rims, while the red-brown core is preserved (fig. 3c,
3d).

Whole-Rock Geochemistry. Thewhole-rockmajor-
and trace-element concentrations of the SSPs are
given in tables A1 and A2, respectively. The loss on
Figure 2. Field photographs of serpentinized peridotites from Shergol ophiolite, Ladakh Himalaya. a, Field relation of
ophiolitic slice at Shergol village. b, Serpentinized peridotite blocks in serpentine matrix. c, Outcrop of sheared
serpentinized peridotite at Tingdo village. d, Mafic lens intercalated with foliated serpentinized peridotite. A color
version of this figure is available online.
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ignition (LOI) values range from 6.69 to 14.93 wt%,
consistent with the degree of serpentinization (i.e.,
highly serpentinized samples are characterized by
high LOI values, as compared to less serpentinized
ones). However, there is not much obvious differ-
ence in whole-rock major-element chemistry. The
major-element data were recalculated on an anhy-
drous basis to 100 wt% in order to compensate for
variable serpentinization of these peridotites. This
normalizing process (recalculating on an anhydrous
basis) provides a much better comparison between
peridotites having varying amounts of serpentin-
ization (Coleman and Keith 1971; Niu 2004). The
degree of serpentinization in peridotites is com-
monly evaluated by use of LOI values (Deer et al.
1992; Karipi et al. 2006). Generally, highly ser-
pentinized peridotites have high LOI values, as ob-
served in SSPs. The most common major elements
susceptible to alteration during serpentinization
are Mg, Ca, and Si. The negative correlation of Mg
and Si with LOI (fig. 4) and the lack of correlation of
Ca, Fe, Ti, andMnwith LOI indicate removal ofMg
and Si while the latter elements remain stable in
SSPs. The REEs in SSPs show no trend with LOI,
indicating that REEs were mostly immobile during
alteration.
Among the least mobile elements, Al2O3 was

used as an index of depletion in order to constrain
the behavior of some elements (Snow and Dick
1995). Major elements such as SiO2, TiO2, Na2O,
and Fe2O3 covary with Al2O3, while MgO shows a
negative correlation and CaO displays no relation
with Al2O3 (fig. 5). Themoremobile elements, such
as large-ion lithophile elements, are unrelated to
the depletion index and show similar scatter in
SSPs. Thus, the least sensitive or immobile ele-
Figure 3. Photomicrographs of the Shergol serpentinized peridotites. a, Mesh texture of the peridotite after ser-
pentinization of the ultramafic rock. b, Hourglass texture of serpentine pseudomorphs after olivine with character-
istic unequal sectors. c, Bastite pseudomorphs after orthopyroxene (Opx) and corroded and oxidized spinel grains. d,
Characteristic oxidized spinel grains with lobate boundary and fine-grained magnetite dust along grain boundaries
produced after serpentinization of olivine. A color version of this figure is available online.



506 I . M . B H A T E T A L .
ments were used for geochemical discussion and
characterization.

The whole-rock major-element data, when plot-
ted in ACM (Al2O3-CaO-MgO) and AFM ((Na2O 1
K2O)-FeO-MgO) ternary diagrams, show that the
SSPs correspond tometamorphic peridotites (fig. 6),
which, according to Coleman (1977), represent the
basal parts of ophiolite sequences,which are depleted
or residual mantle rocks. The SSPs are enriched in
transition metals such as Ni (1763–2945 ppm), Cr
(2997–4727 ppm), Co (94–151 ppm), and Cu (20–
91 ppm), reflecting their mantle origin. In a trace-
element-versus-Al2O3 variation diagram (fig. 7), all
the data plot within the field of mantle peridotites
(abyssal and ophiolitic) of Bodinier and Godard
(2003). Trace elements such as Ni (fig. 7a) and Cr
(fig. 7b) show enrichment with respect to the prim-
itive mantle (PM), as these elements are compatible
in mantle minerals (particularly olivine and spinel).
Well-definedZr-versus-Al2O3 (fig. 7c) and Yb-versus-
Al2O3 (fig. 7d) covariation trends are consistent with
tectonically emplaced abyssal peridotites (Bodinier
and Godard 2003).
Chondrite-normalized REE patterns of SSPs (fig. 8)
are nearly parallel and exhibit convex-downward pat-
terns with a prominent negative Europium anomaly.
These rocks are enriched in light REEs relative to
middle REEs (MREEs; LaN/SmN p 3.11–3.87) and
depleted in MREEs relative to heavy REEs (HREEs;
SmN/YbN p 0.21–0.35). This negative Eu anomaly is
a result of a primary partitioning event occurring
during partial melting, because any impregnation
with a hydrothermal fluid would lead to a positive
Eu anomaly.

The multielement PM-normalized patterns of
SSPs are shown in figure 9. The concentrations of
lithophile trace elements in SSPs coincide with
those in abyssal peridotites of ocean ridges (Niu
2004), as compared to forearc peridotites (Ishii et al.
1992; Parkinson and Pearce 1998). Cs, Rb, Ba, U, Pb,
and Sr display prominent positive spikes, whereas
Ta, Zr, Hf, and Eu are depleted relative to Th, as
observed in oceanic abyssal peridotites (Niu 2004;
Paulick et al. 2006). Also, the depleted REE pat-
terns relative to PM in SSPs are not uncommon
and have been observed in orogenic peridotites (Bo-
Figure 5. Binary plots of major elements versus Al2O3 as depletion index for Shergol serpentinized peridotites.
Figure 4. Binary plots of loss on ignition (LOI) versus MgO (left) and SiO2 (right), both showing negative correlation
with LOI values.
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dinier et al. 1990), abyssal peridotites (Niu 2004), and
ophiolitic peridotites (Sharma and Wasserburg 1996;
Gruau et al. 1998). In ophiolites, the depleted REE
patterns are restricted to refractory mantle perido-
tites (i.e., dunites and harzburgites: Prinzhofer and
Allègre 1985; Sharma and Wasserburg 1996) and
have been observed in Tethyan ophiolitic perido-
tites such as those at Othris, Greece (Menzies 1976;
Barth et al. 2008); Yarlung Zangbo, Tibet (Dupuis
et al. 2005); Trinity, California (Gruau et al. 1998);
Samail, Oman (Pallister and Knight 1981; Godard
et al. 2000); and Troodos, Cyprus (Kay and Senechal
1976; Taylor and Nesbitt 1988) with their petroge-
netic interpretation of being mantle-melting resi-
dues.

Mineral Chemistry. The chromian spinel-bearing
peridotites from different tectonic environments have
distinctive Cr# values, and so can be used to deter-
Figure 6. ACM (Al2O3-CaO-MgO) and AFM ((Na2O 1 K2O)-FeO-MgO) plots of Shergol serpentinized peridotites.
Fields of mafic cumulates, ultramafic cumulates, and metamorphic peridotites are after Coleman (1977). A color
version of this figure is available online.
Figure 7. Trace-element oxide covariation with Al2O3 (anhydrous wt%) in Shergol serpentinized peridotites. The
fields are of orogenic, ophiolitic, and abyssal mantle peridotites (after Bodinier and Godard 2003). Primitive-mantle
(PM) values are from McDonough and Sun (1995).
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mine the degrees of partial melting experienced by
the host rock (Dick and Bullen 1984;Arai 1994; Zhou
et al. 1996; Hellebrand et al. 2002; Aswad et al. 2011).
The Cr-spinels with high Cr# (Cr31/(Cr31 1 Al31) 1
0.7) are crystallized from highly magnesian magmas
(boninitic type) at the higher partial-melting degrees
(115%) occasionally found in suprasubduction zone
environments, whereas lower-Cr# (high-Al) Cr-spinels
are precipitated from tholeiitic melts at lower degrees
of partial melting (!15%) in mid-ocean ridge environ-
ments (Dick and Bullen 1984; Arai 1994; Zhou et al.
1996).
The chemistry of Cr-spinel in SSPs is character-
ized by lowCr2O3 (28.86–32.59wt%) and highAl2O3

(33.76–37.71 wt%). These Cr-spinels have narrow
ranges of FeO (from 11.93 to 14.54 wt%) and MgO
(from 13.78 to 15.85 wt%; table A3). In these
peridotites, theCr# andAl# (Al31/(Cr311Al311 Fe31))
range from 0.34 to 0.39 and from 0.58 to 0.64, re-
spectively, and are comparable to those observed in
Cr-spinel of abyssal peridotites (Dick andBullen 1984;
Arai 1992). The TiO2 contents (0.02–0.28) of Cr-spinel
are also comparable to those of the mid-oceanic ridge
tholeiites. The lower Fe# (Fe31/(Cr31 1 Al31 1 Fe31)),
Figure 8. Chondrite-normalized rare earth element patterns of Shergol serpentinized peridotites. Normalizing values
are from Sun and McDonough (1989).
Figure 9. Primitive mantle (PM)–normalized multielement patterns in Shergol serpentinized peridotites (whole-rock
analyses). Fields of abyssal peridotites (gray) and forearc peridotites (dashed line area) are from Niu (2004) and
Parkinson et al. (1992), respectively. The PM-normalizing values are from Sun and McDonough (1989). A color
version of this figure is available online.
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ranging from 0.37 to 0.69, and the lower ratio of Fe21/
Fe31, ranging from 2.13 to 4.53 in the Cr-spinel, sug-
gest that they formed at lower fO2.
Discussion

Origin of the SSPs. The depletion of bulk-rock
major and trace elements, relative to PMvalues, and
the convex-downward chondrite-normalized REE
patterns of SSPs indicate that their melting-residual
nature resulted from extraction of basaltic melts.
The higher average value of Al2O3 (2.26 anhydrous
wt%) in the studied samples, relative to that of
normal ophiolitic harzburgites and dunites, reflects
the moderately refractory nature, similar to abyssal
peridotites of mid-ocean ridge setting (Coleman
1971; Niu 1997, 2004; Niu and Hékinian 1997; Niu
et al. 1997). In order to constrain the nature of the
protolith for SSPs, we focused on the HREEs, which
are insensitive to or little disturbed by postmelting
processes (Kogiso et al. 1997; Canil 2004; Niu 2004;
Iyer et al. 2008; Deschamps et al. 2010). Our results
suggest that SSPs have REE contents (particularly
highly immobile HREE contents) that are similar to
those of serpentinized peridotites from mid-ocean
ridges (abyssal peridotites) and at least one order
of magnitude higher than those found in forearc-
depleted peridotites from subduction zones (fig. 9).
This protolith signature of the studied rocks is also
evident from the Al2O3-versus-Yb variation diagram
(fig. 7d), which reflects that the original geodynamic
setting of the SSPs is similar to that of mid-ocean
ridge abyssal peridotites.

Parental Melt Generation. In order to understand
the primary mantle melting processes in SSPs, we
focused on the elements least remobilized by fluids.
The HREEs (particularly Yb) are mildly incompati-
ble in mantle mineralogy and are insensitive to
postmelting processes and hydrothermal alterations
(Bodinier et al. 1990; You et al. 1996; Bedini and
Bodinier 1999; Canil 2004; Deschamps et al. 2010).
The SSPs exhibit a mildly fertile mantle signature,
which is evident from their high whole-rock Al2O3

(1.88 !Al2O3 anhydrous wt%! 2.63) andHREE (0.9!
YbN ! 2.2) concentrations. As observed from petro-
graphic study, there is no primary and/or metamor-
phic plagioclase or garnet present in the SSPs. How-
ever, spinel is present as an aluminous phase, which
indicates the equilibrium of SSPs in the spinel sta-
bility field. The degrees of partial melting of mantle
peridotites can be evaluated by using the melting-
model equation F p 10# ln(Cr)1 24 proposed by
Hellebrand et al. (2001), where F is melting degrees
(in percent). The calculatedmelting-degree values of
SSPs range from 13% to 14% (table A3), indicating
that the SSPs experienced !15% partial melting in
the spinel stability field.

Tectonic Setting of the SSPs. The primary core
compositions of Cr-spinels of SSPs are plotted in
various discrimination diagrams (fig. 10) in order to
examine their primary igneous characteristics and
to determine their tectonic setting. In the Al2O3-
versus-TiO2 plot (fig. 10a) and the Al2O3-versus-
Fe21/Fe31 plot (fig. 10b), the SSPs, in comparison to
modern-day tectonic settings, are clustered in the
mid-ocean ridge peridotite field. In the Mg#-versus-
Cr# diagram (fig. 10c), the SSPs plot in the lower
end of abyssal peridotite field, indicative of their
depleted nature (Arai 1994), and reflect !15% par-
tial melting based on the formulation of Hirose
and Kawamoto (1995). The SSP spinel compositions
are consistent with worldwide abyssal peridotite
spinels and suggest that their parent peridotites un-
derwent relatively low fractions of melt extraction
(!15% melting), based on the correlation between
Cr# and the degree of melting from the modeled
equation of Hellebrand et al. (2001; table A3). The
enrichment of large-ion lithophile elements (Rb, Ba,
Cs, Th, U, and Pb) in SSPs can be attributed to con-
tinental sources, while they were incorporated into
crustal regions during emplacement along the ISZ
as a result of the Cenozoic collision of the Indian
and Asian continental margins. Similar enrich-
ments were observed in the Nehbandan ophiolitic
peridotites of eastern Iran (Delavari et al. 2009),
abyssal peridotites of the Manipur Ophiolite Com-
plex (Ningthoujam et al. 2012; Singh 2013), the
Massif du Sud ophiolite in New Caledonia (Mar-
chesi et al. 2009), and the Cerro del Almirez ultra-
mafic massif of southern Spain (Marchesi et al.
2013). Together, these data indicate that the SSPs
were formed in a mid-oceanic ridge tectonic set-
ting, instead of a suprasubduction zone setting (Kam-
enetsky et al. 2001).
Conclusion

Shergol serpentinized peridotites can be grouped as
accretionary-type ophiolites, since they occur in a
subduction-accretionary complex along the ISZ in
the northwestern Himalaya. Results suggest that
these rocks originated as melting residues remain-
ing after low-to-moderate degrees of partial melt-
ing (!15%) of moderately fertile lherzolite in the
spinel stability field in amid-oceanic ridge tectonic
setting. The presence of solid-state deformation tex-
tures, refractory chemistry, and whole-rock de-
pleted REE abundances with characteristic convex-
downward normalized REE patterns gives credence
to this conclusion. It is thus proposed that the SSPs
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represent a portion of ancient Neo-Tethyan oce-
anic lithospheric mantle that originally developed
in a mid-ocean ridge tectonic setting and was sub-
sequently trapped in the accretionary complex of
the Ladakh magmatic arc but was not significantly
modified by subduction processes before emplace-
ment at its present position.
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