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The Bundelkhand craton in central India consists mainly of abundant high-K granitoids formed at the Archaean-Proterozoic
boundary and several enclosed rafts of TTGs (tonalite-trondhjemite-granodiorites) up to 3.5 Ga. Therefore, the Bundelkhand
craton is a key locality for studies on Archaean crustal growth and the emergence of multisource granitoid batholiths that
stabilised a supercontinent at 2.5Ga. Based on their geochemical characteristics, the high-K granitoids are divided into low
silica-high Mg (sanukitoids and hybrids) and high silica-low Mg (anatectic) groups. We aim to provide new insights into the
role of juvenile versus crustal sources in the evolution of the TTG, sanukitoid, hybrid, and anatectic granitoids of the
Bundelkhand craton by comparing their key geochemical signatures with new Nd isotope evidence on crustal contributions
and residence times. The ages and geochemical signatures as well as eNd(#) values and Nd model ages of TTGs point towards
partial melting of a juvenile or short-lived mafic crust at different depths. Paleoarchaecan TTGs show short crustal residence
times and contributions from the newly formed crust, whereas Neoarchaecan TTGs have long crustal residence times and
contributions from the Paleoarchaean crust. This may reflect the transition from melting in a primitive oceanic plateau
(3.4-3.2 Ga) in plume settings, resulting in a Paleoarchaean protocontinent, to 2.7 Ga subduction and island arc accretion along
the protocontinent. The 2.5 Ga high-K granitoids formed at convergent subduction settings by partial melting of the mantle
wedge and preexisting crust. Sanukitoids and hybrid granitoids originated in the mantle, the latter showing stronger crustal
contributions, whereas abundant anatectic granitoids were products of pure crustal melting. Our Nd data and geochemical
signatures support a change from early mafic sources to strong crust-mantle interactions towards the A-P boundary, probably
reflecting the onset of supercontinent cycles.

1. Introduction

The Earth’s continents started to form four billion years ago
in the Archaean Eon, and they grew larger through time.
Over a very long time, ancient continents have joined,
broken apart, and drifted around the globe multiple times
into new configurations because of plate tectonics [1-3].

To understand the formation of the oldest continents, we
need to study their fragments and correlate their chemical
compositions and ages, which have been a great challenge
and topic of debate for decades.

We know that, in the early Archaean, the main crust for-
mation process was the episodic melting of basaltic crust
that led to the formation of TTGs (tonalite-trondhjemite-
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granodiorites) and building of the first continents [4]. The
conditions under which the first continental crust formed
were different from those presently operative. The mantle
was hotter with smaller basaltic plates and faster convection
rates [5]. Different conditions resulted in distinct geochemis-
try and isotope signatures of Archaean granitoids [6-11].
The geochemical composition of granitoids depends on
various factors, including the physical and chemical condi-
tions of the source, amount of residual minerals, varying
anatectic conditions, stages of magmatic differentiation,
and tectonic setting. Therefore, their compositional varia-
tion provides crucial information on the plate tectonic
processes and crustal evolutionary history of the Early
Earth [7, 10, 12-15]. The isotope systematics and geochemi-
cal signatures of granitoids provide insights into the age and
nature of their source and role in crustal evolution.

Today, there is a general agreement that partial melting
of hydrated basalts during the Archaean has produced the
early felsic crust consisting mainly of silicic and sodic TTGs.
However, the tectonic setting of TTGs is still controversial,
and the views range from stagnant lid tectonics and plume
tectonics involving mantle upwelling to arc tectonics related
to subduction [16-20]. Some researchers favour partial melt-
ing of subducting oceanic slab and believe that the formation
of Archaean protooceanic crust (hydrous metabasalt) and
subsequent deep burial via subduction (a process similar to
modern plate tectonics) can explain the generation of TTG
melts at relatively great depths [17, 18, 21, 22]. Other
researchers believe that TTGs could form in overthickened
mafic crust [23] in island arc settings [24-26] or plume-
related basalt plateaux [27-30]. Studies also suggest that
the vertical growth of Archaean oceanic plateaux above
mantle plumes can allow hydrothermal alteration of basalts
required for TTG formation [31-34]. Recent studies suggest
that TTGs can also be generated by fractional crystallization
or by fractionation of melts derived from the enriched litho-
spheric mantle [35-37].

During the Meso- to Neoarchaean (3.0-2.5Ga), the
episodic melting in basaltic sources leading to the formation
of TTGs declined, and a new type of multisource high-K
calc-alkaline granitoids emerged as a consequence of
changes in the Earth’s geodynamics [14, 19]. These high-K
granitoids are the second-most voluminous component of
the Archaean crust after the TTGs. They are multisourced,
ranging from the mantle or mixed mantle and crustal
sources to pure crustal sources. They are formed by increas-
ing crust-mantle interactions due to the onset of modern-
type plate tectonics [8-10, 12, 38, 39]. Joshi et al. [9] divided
high-K granitoids into two main groups, the Low Silica,
High Mg (LSHM) group and the High Silica, Low Mg group
(HSLM). The former includes mantle-derived sanukitoid
granitoids and related hybrid granitoids formed by increased
mantle-crust interactions, and the latter anatectic granitoids
formed by pure crustal melting.

Geochemical signatures and geochronology of TTGs and
high-K granitoids divide the Archaean crustal evolution into
four main stages: (1) In the Eoarchaean, TTGs formed by
episodic melting within the thin or thickened basaltic crust.
2) In the Paleoarchaean, TTG magmatism continued along
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with the formation of diorites and anatectic high-K granites,
which caused the thickening of the crust. (3) In the
Mesoarchaean, TTG formation continued and the first gran-
itoids with mantle contributions, known as sanukitoids,
appeared at around 3.0 Ga. (4) Neoarchaean was the time
of granitoid diversification when TTG formation decreased
and high-K magmatism increased indicating a significant
geodynamic change that culminated in the Archaean-
Proterozoic boundary [12]. In the Indian Shield, five cratons
are the results of Paleoarchaean to Neoarchaean crustal
growth (Figure 1). In this study, we focus on the Bundel-
khand craton between the Aravalli and Bastar cratons in
central India. This craton is a key research target because it
includes Paleo- to Neoarchaean fragments of TTG crust
embedded in abundant high-K granitoids formed at the
Archaean-Proterozoic boundary. Therefore, the craton gives
important knowledge on the evolution of the Paleoarchaean
crust and the stabilisation of a supercontinent.

Recent studies have proposed a petrogenetic explanation
of these diverse granitoid types based on whole-rock major
and trace element geochemical and mineral chemistry
[9, 40-42]. However, very few studies [43, 44] have focused
on isotopic systematics to explain the plausible sources of
the various granitoid varieties emplaced in the craton, and
even fewer have compared the geochemical signatures with
isotope results. In this contribution, we provide insights into
the petrogenesis of the different types of the Bundelkhand
granitoids by comparing new whole-rock Nd isotope results
with compiled geochemical signatures and U-Pb ages. The
aim is to correlate the geochemical fingerprints with the Nd
isotope signatures to enlighten their source and tectonic set-
ting. The Sm-Nd method has its limitations since the model
ages are dependent on the suitability of the mantle model
and the analytical uncertainties are relatively large. However,
the eNd(#) values and Nd-depleted mantle model ages have
been successfully used in determining crustal formation
ages, representing the approximate time when crustal
blocks were first created by mantle-derived magmatism.

This study is aimed at providing significant information
for defining the (1) Paleoarchaean and Neoarchaean evolu-
tion of the TTG crust, (2) stabilisation of the continental
crust at the end of the Neoarchaean, and (3) the age, sources,
and crustal contribution in the type formations of the
Archaean-Proterozoic boundary. The last outcome can
significantly contribute to the aims of the International
Commission on Stratigraphy (ICS) in its efforts to define
the border of the Archaean and Proterozoic Eons.

2. Regional Geology and Geochronology

There are five major Archaean cratons in two distinct crustal
blocks in the Indian Shield (Figure 1), the Northern and
Southern Blocks separated by the Central Indian Tectonic
Zone (CITZ). The former consists of the Bundelkhand and
Aravalli cratons, while the latter consists of the Dharwar,
Singhbhum, and Bastar cratons. Figure 1 shows a general-
ized geological map of the Bundelkhand craton with an inset
showing the different cratons of the Indian Shield. The semi-
circular body of the Bundelkhand craton is bounded by the
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FIGURE 1: Generalized geological map of the Bundelkhand craton after [9, 45, 51]. The inset shows an outline map of India showing the

different cratons of the Indian Shield, modified after [47, 100].

Paleoproterozoic (2.0-1.8 Ga), Gwalior (Northwest), Sonrai
(South) and Bijawar (Southeast) basins which are overlain
by the Mesoproterozoic Vindhyan Supergroup that occurs
on three sides of the craton. The northern side of the Bun-
delkhand craton is covered by Indo-Gangetic alluvial plains
[45-47].

The dominant lithology in the Bundelkhand craton
(Figure 1) consists of Neoarchaean potassic granites, which
are intruded into Paleo-Mesoarchaean TTG gneisses and
supracrustal units. The E-W-trending Bundelkhand tectonic
zone (Figure 1) divides the craton into three segments,
viz., (i) the central Bundelkhand granite-greenstone ter-
rane, (ii) the southern Bundelkhand granite-greenstone
terrane, and (iii) the north Bundelkhand granitoid terrane
[48-51]. The central Bundelkhand granite-greenstone ter-
rane extends from Mahoba to Babina and consists of TTGs,
volcano-sedimentary sequences, and high-K granitoids
(including sanukitoids) [9, 40, 43, 44, 52-59]. The southern
Bundelkhand granite-greenstone terrane consists of quartz-
ite, BIF, chlorite schist, and marble and extends from
Rungaon to Girar [48, 51, 60-62]. Mafic dyke swarms and

giant quartz veins traverse the above lithologies and repre-
sent the last magma-related hydrothermal activity in the
Bundelkhand craton [52, 63-66].

Table 1 presents compiled geochronological data from
the Bundelkhand craton [9, 43, 44, 48, 52, 54-58, 67-70].
The oldest rocks in the Bundelkhand craton are Paleo- to
Neoarchaean TTGs showing distinct formation episodes at
ca. 3.56 Ga, 3.44 Ga, 3.3Ga, 3.2Ga, and 2.71-2.68 Ga. Singh
and Slabunov [48] and Slabunov and Singh [62] dated felsic
volcanics from Babina and Mauranipur at 2.54, 2.56, and
2.81 Ga, respectively, while the mafic-ultramafic rocks from
Babina have yielded a Sm-Nd isochron age of 3.4 Ga [50].
The TTGs occur as east-west-trending rafts within abundant
high-K granitoids, the dominant rock type of the craton
emplaced at the 2.5 Ga Archaean-Proterozoic boundary.

3. Bundelkhand Granitoids

3.1. Geochemical Signatures and Classification. The granit-
oids of the Bundelkhand craton show typical geochemical
characteristics of TTGs, sanukitoids, and anatectic
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FIGURE 2: A classification scheme for the Bundelkhand TTGs and high-K granitoids ([9]).

granitoids. Full geochemical datasets, ages, and explanations
for the Bundelkhand granitoid samples that are analysed
for Nd in this study are available in the works of Joshi
et al. [9, 40]. In this paper, we address the possible source
characteristics of the Bundelkhand granitoids in terms of
the geochemical signatures or fingerprints suggested for
Archaean granitoids based on data compiled from several
cratons [12].

(1) Mantle signature (low SiO, contents and high con-
tents of mantle-compatible elements Mg, Cr, and
Ni) can be observed in mantle-derived granitoids

(2) Basaltic crust signature (high Na, high SiO, contents,
and low contents of mantle-compatible elements) in
granitoids derived from basaltic precursors

(3) Enriched mantle signature (high Mg-K-Ba-Sr-P and
LREE), inherited from Archaean mantle overprinted
by crust-mantle interactions, is typical for sanukitoid
granitoids. This signature cannot be a consequence
of fractional crystallization, because it is independent
of the SiO, content and can be also found in mafic
rocks, such as lamprophyres, which are often associ-
ated with sanukitoids

(4) Garnet fingerprint (low Y and HREE, high Gd/Er)
derived from garnet-bearing sources, where garnet
is retained in the residue (e.g., deep lower crust).

Thus, the presence or absence of this fingerprint
reflects the depth of melting

(5) Continental crust signature (high SiO, and K,O con-
tents, mantle and enriched mantle signatures absent)
in continental crust-derived granitoids

The geochemical classification scheme of Joshi et al. [9]
in Figure 2 divides the Bundelkhand granitoids into two
main groups: high-Na TTGs (~3.5-2.6 Ga) and high-K gran-
itoids (~2.5Ga). The TTG group carries the basaltic crust
signature and consists of low-HREE and high-HREE end
members (garnet fingerprint present or absent, respectively).
The key geochemical signatures of the low-HREE group are
LILE enrichment and depletion in HFSE, Y, and Yb, whereas
the high-HREE group shows elevated HFSEs and enrich-
ment in LREE. The silica and magnesium contents of the
high-K granitoids further divide them into LSHM (Low
Silica, High Mg) and HSLM groups. The LSHM group
shows enriched mantle signatures and mafic magmatic
enclaves. The strength of the mantle signature may vary
from high in sanukitoid granitoids to lower in hybrid
(“Closepet-type”) granitoids formed by stronger crust-
mantle interactions. The HSLM group consists of anatectic
granitoids with a continental crust signature. Specific geo-
chemical characteristics divide this group into low-HREE
monzogranites from deep HREE-depleted crust, monzogra-
nites (biotite granites) from the middle crust, and A-type gran-
ites with strong negative Eu anomalies from the upper crust.
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3.2. Sample Descriptions. The detailed field descriptions,
major and trace element geochemistry, and U-Pb zircon
geochronology of TTGs and high-K granitoids analysed for
Nd isotope compositions in this study can be found in the
work by Joshi et al. [9, 40]. A summary of the sample loca-
tions and descriptions of the studied granitoid varieties is
given in Table 2 while field and petrographic images are
shown in Figures 3 and 4. The TTGs are exposed as E-W-
trending slivers in Mahoba, Mauranipur, and Babina. They
are deformed coarse-grained heterogeneous bodies, typically
exhibiting alternating layers of leucocratic and melanocratic
bands (Figure 3(a)) and are occasionally homogeneous
(Figure 3(b)). The TTGs are inequigranular and consist of
coarse-grained plagioclase (45vol%), quartz (22vol%), K-
feldspar (18 vol%), biotite (10 vol%), and amphibole (5vol%)
(Figures 4(a) and 4(b)) with minor amounts (1vol%) of tita-
nite, epidote, apatite, and zircon.

The high-K group consists of grey or pink, fine- to
coarse-grained, and occasionally porphyritic granitoids
(Figures 3(c)-3(f)). Sometimes, the high-K granitoids are
slightly deformed and show an alignment of mafic minerals.
In the LSHM varieties, the K-feldspar dominate over plagio-
clase. Mineral abundances depict a higher quartz content
(27vol%) as compared to TTGs, plagioclase (35vol%), K-
teldspar (15vol%), and the presence of amphibole (15vol%)
and biotite (7vol%) as major minerals (Figures 4(c)-4(f)).
The common accessory minerals (1vol%) in LSHM varieties
include zircon, titanite, epidote, and apatite. The HSLM varie-
ties have a very similar mineral composition [K-feldspar
(35vol%), quartz (40 vol%), plagioclase (22 vol%), and biotite
(2vol%)] with accessory phases like amphibole, titanite, epidote,
apatite, and zircon (1vol%), but they have low to negligible
amphibole content and, occasionally, fine-grained groundmass
with phenocrysts of quartz and feldspar (Figure 4(f)).

4. Analytical Techniques

Approximately 200mg of whole-rock powder was first
decomposed in a mixture of HF-HNO,-HCI in microwave
digestion. The solution was further transferred in Savillex®
vials and digested repeatedly with HF-HNO,;-HCl at
~100°C to bring the powder to complete solution. The acid
digestion step was repeated as needed to ensure the complete
digestion of the sample. Post digestion, the solution was
dried and divided into two aliquots by weight. A known
amount of "*’Sm and '*°Nd spikes by isotope dilution was
added to the first aliquot, and Sm and Nd concentrations
were measured by QICP-MS (Thermo Xseries-2) at the
Physical Research Laboratory (PRL), Ahmedabad, India.
The second aliquot was used to separate Nd by cation
exchange columns, following standard ion-exchange proce-
dures [71], "**Nd/***Nd ratios were measured on a Finnigan
Neptune MC-ICP-MS at PRL, and the analyses were carried
out in static multicollection mode. Mass fractionation cor-
rections were made by normalising "**Nd/'**Nd ratios to
6Nd/"**Nd = 0.7219. The JMC for the Nd (***Nd/***Nd)
isotope standard was measured during analyses which
yielded values of 0.710343 +0.000002 (1o, n=7; o = stan-
dard deviation) and 0.511714 + 0.000004 (10, n = 15). Total
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procedural blanks for Nd were several orders of magnitude
lower than typical total Nd loads analysed, and hence, no
corrections for blanks were made.

The single-stage Nd model age (T ), also known as
“crustal extraction/formation age” or “crustal residence
age,” is the time elapsed since the Nd in the rock separated
from the mantle. In the case of single-stage Nd model ages,
it is assumed that crustal processes like metamorphism and
intracrustal melting have not changed the Sm/Nd ratios.
Archaean granitoids might have suffered multiple melting
episodes of magma mixing, melting, fractional crystalliza-
tion, and alteration. Therefore, to correct for changes in
Sm/Nd ratios produced by crustal processes, two-stage
depleted mantle Nd model ages (Tpy,) were calculated
using the present-day depleted mantle '**Nd/'**Nd and
"7Sm/"**Nd values of 0.51315 and 0.2136 and decay con-
stant value of 6.54 x 10712271, and the rock formation ages
[72] suggested that the two-stage model ages give more con-
sistent ages. The depleted mantle (DM) has been calculated
using the linear depletion model, which assumes linear
depletion from eéNd =0 at ~4.56 Ga to +10 today. The iso-
tope compositions of samples from Bundelkhand granitoids
are presented in Table 2.

5. Results

The Sm-Nd results on 44 whole-rock samples of TTGs and
high-K granitoids are shown in Table 3. We calculated
eNd(t) values based on U-Pb zircon data from Joshi et al.
[9] and unpublished ages, on the same sample or samples
within the same geochemical group. Fifteen samples of
Paleoarchaean TTGs (3.4-3.3 Ga) show positive eNd (3345
or 3335) values from 0.54 to 1.96 and the Nd two-stage
depleted mantle (Tp);,) model ages from 3592 to 3397 Ma.
Neoarchaean TTGs, on the other hand, show mostly nega-
tive eNd (2713) values ranging from 0.36 to -2.61 and Nd
(Tppp) model ages of 3314-2965Ma. The 2.57-2.53Ga
high-K LSHM granitoid group (15 samples of sanukitoids
and hybrids) shows eNd(t) values from -3.60 to 3.13
(Table 3). Their Nd (Tpy;,) model ages vary within a
relatively smaller range from 3144 to 2619 Ma. The 2.59-
2.54 Ga high-K HSLM varieties (18 samples) show eNd(¢)
values ranging between -0.30 and -5.89 and Nd (Tpyp)
model ages ranging from 3190 to 2820 Ma.

The eNd(t) values and zircon ages for the TTG, LSHM,
and HSLM granitoids of this study together with compiled
data from Bundelkhand, Dharwar, and Aravalli cratons are
shown in Figure 5. The positive eNd(t) values indicate deri-
vation from a juvenile source or a short-lived mafic crust,
while the negative eNd(f) values point towards crustal
inputs. A large gap between the model and crystallization
ages point to large crustal residence times and a dominant
role of the older continental crust.

6. Discussion

The granitoids of the Bundelkhand craton show a wide
range in composition and ages from Paleoarchaean high-
Na TTGs to abundant high-K granites emplaced at the
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FIGURE 3: (a) Migmatised TTGs exposed near Babina; (b) relatively homogeneous TTGs exposed near Mauranipur; (¢, d) LSHM granitoids
exposed near Orchha and Karera; (e) HSLM anatectic pink granite exposed near Khajuraho; (f) HSLM porphyritic granites exposed near

Talbehat.

Archaean-Proterozoic boundary. The multicationic classi-
fication diagram [73], AlL,O,/(FeO+MgO), 3 * CaO, 5 =
(K,0/Na,0), and 2 % A/CNK; Na,O/K,O ratio; and 2 *
(FeO, + MgO) wt% = (Sr + Ba) wt%(=FMSB) diagrams [10]
for the Bundelkhand granitoids are shown in Figure 6. The
TTGs plot in the tonalite and granodiorite fields, whereas
the LSHM sanukitoids and hybrids mainly occupy the grano-
diorite, quartz monzonite, and granite fields (Figure 6(a)).
The anatectic HSLM group falls in the quartz monzonite
and granite fields (Figure 6(a)). Figure 6(b) shows that the
major-element composition of LSHM sanukitoids and
hybrid granitoids does not point to an origin through the
melting of a single crustal lithology. Several studies have pro-
posed a mixed origin, viz., mixing between sanukitoid and
TTGs, contamination of juvenile magma with preexisting
crust, and mixing of TTG magma with enriched mantle, for
such granitoids [9, 74-76]. On plotting the studied granitoids
on the Na,O/K,0-FMSB-A/CNK plot (Figure 6(c)), it is

noted that the studied granitoids fall well within TTG, sanu-
kitoid, hybrid granitoid and biotite, and two mica granites
from the Dharwar craton.

The change from sodic TTGs to potassic granodiorites
and granites is considered to be a consequence of increasing
crustal contributions. In addition to the composition of the
granitoids, certain geochemical fingerprints, differences in
U-Pb zircon formation ages and Nd model ages, eNd(t)
values, and occurrence of inherited zircons are regarded as
measures of crustal contamination. In this discussion, we
compare the main geochemical signatures of the Bundel-
khand granitoids with Nd results (Appendix 1) of this and
other relevant studies from the Dharwar and Aravalli cra-
tons [43, 44, 77-84]. To study the sources of granitoids,
the selected elements [SiO,, Na,O, K,0, MgO, P,O., Ba
+Sr, and (Gd/Er)] are plotted against U-Pb zircon ages
(Figures 7 and 8) and eNd(t) values (Figures 9 and 10).
The SiO, and MgO contents reflect the mantle vs. crust
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FIGURE 4: Photomicrographs of TTGs (a, b), LSHM (c, d), and HSLM (e, f) granitoids from the Bundelkhand craton.

contributions, Na,O indicates the role of a basaltic source,
K,O may indicate crustal contamination or origin from an
enriched mantle, and P,0 and Ba+Sr are regarded as indi-
cators of contributions from an enriched mantle.

6.1. Geochemical vs. Neodymium Isotope Signatures

6.1.1. Tonalite-Trondhjemite-Granodiorites (TTGs). The
Bundelkhand TTGs carry the specific “basaltic crust signa-
ture” typical for Archaean TTGs: high Na and SiO, contents
and low contents of mantle compatible elements. The num-
ber of samples is not adequate for far-reaching interpreta-
tions but allows us some conclusions on the TTGs of the
Bundelkhand craton. The element vs. U-Pb zircon age plots
(Figure 7) indicate that the Paleoarchaean TTGs (3.3-3.2 Ga)
show a wider range in their SiO, and MgO contents than the
Neoarchaean TTGs (2.7Ga). Table 4 shows that the
Paleoarchaean TTGs have shorter time gaps (~41-220 Ma)
between the U-Pb formation ages and Nd model ages than
the Neoarchaean TTGs (~354-601 Ma). For the Paleoarch-
aean TTGs, the element vs. eNd(#) plot (Figure 9) shows a

narrow range of slightly positive eNd(¢) values between
1.96 and -0.53, but there is no correlation between the
SiO, or MgO contents and eNd(t) values. Conversely,
Neoarchaean TTGs show mainly negative and more variable
eNd(t) values (between -2.61 and 0.36). The increasing SiO,
and slightly falling MgO trends with decreasing eNd(t)
values (Figure 9) point towards derivation from a mafic crust
contaminated by preexisting crust.

Figure 7(g) shows that Paleoarchaean TTGs have vari-
able HREE characteristics, as measured by the (Gd/Er)y
ratio, whereas the Neoarchaean samples show high HREE
characteristics. The reason for the variation in the HREE
contents of TTGs is not sustained yet, but melting at differ-
ent depths can account for the variation [28, 85, 86]. In the
Bundelkhand craton, the high-HREE TTGs occur as meta-
texite enclaves in diatexitic low-HREE TTGs. This may indi-
cate migration of melts from deep garnet-bearing sources
into garnet-free amphibolite facies as suggested for TTGs
of Arctic Fennoscandia [28]. Short time gaps between for-
mation and model ages, narrow range of slightly positive
eNd(t) values, and wide variation of SiO, and MgO
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TaBLE 3: Isotopic data for TTGs and high-K granitoids from the Bundelkhand craton.

Name Age (Ma) Sm  Nd  "Sm/'*Nd 'Nd/"'Nd Nd/"Nd (i) eNd(t) Tpy, (Ma) Tpy, (Ma)  Sm/Nd
TTGs

BETTG 107* 3335 1437 73.72 0.1183 0.511008 0.508400 1.96 3156 3397 -0.40
BETTG 1 3435 263 1539 0.1037 0.510605 0.508249 1.57 3284 3500 047
BETTG 5 3335 299 14.87 0.1218 0.511062 0.508376 1.48 3187 3440 -0.38
BETTG 9 3335 7.06 3573 0.1198 0.511017 0.508374 1.44 3193 3440 -0.39
BETTG 3 3335 511 26.60 0.1166 0.510922 0.508351 0.99 3230 3472 -0.41
BETTG 11* 3435 464  23.92 0.1178 0.510872 0.508197 0.54 3340 3592 -0.40
BLHTTG 2 2713 334 2032 0.0996 0.510919 0.509135 0.36 2783 2965 -0.49
BLHTTG 1* 2713 365 1973 0.1124 0.511099 0.509088 -0.57 2858 3067 -0.43
BLHTTG 4 2713 501  27.32 0.1113 0.511022 0.509030 -1.71 2936 3147 -0.43
BLHTTG 3 2713 271 1558 0.1057 0.510916 0.509023 -1.84 2934 3134 -0.46
BLHTTG 7 2713 370 17.53 0.1282 0.511278 0.508984 -2.61 3053 3314 -0.35
LSHM

BCTG 129* 2554 359 19.96 0.1091 0.510980 0.509142 -3.60 2937 3144 -0.45
BCTG 101 2554 590 3746 0.0955 0.510906 0.509297 -0.54 2707 2878 -0.51
BCTG 27 2539 519  37.64 0.0837 0.510906 0.509504 3.13 2475 2619 -0.57
BCTG 14 2539 466 32.10 0.0882 0.510906 0.509429 1.66 2559 2712 -0.55
BCTG 26 2539 492 3529 0.0846 0.510906 0.509489 2.84 2492 2638 -0.57
BSTM 1 2539 538 3634 0.0898 0.510670 0.509167 -3.49 2861 3032 -0.54
BSTM 3 2539 840 5331 0.0956 0.510781 0.509180 -3.24 2861 3040 -0.51
BSTM 104* 2539 560 3818 0.0890 0.510675 0.509185 -3.12 2838 3007 -0.55
BE 39 2539 852  62.05 0.0833 0.510636 0.509242 -2.02 2764 2921 -0.58
BE 40 2539 1254  83.09 0.0916 0.510750 0.509216 -2.53 2809 2979 -0.53
BSTG 108" 2578 6.77  40.93 0.1003 0.510878 0.509172 -2.38 2850 3036 -0.49
BSTG 119 2563 440  25.07 0.1066 0.510953 0.509151 -3.18 2908 3108 -0.46
BSTG 120* 2559 392 2457 0.0967 0.510882 0.509250 -1.33 2762 2938 -0.51
BSTG 131* 2559 345 2441 0.0858 0.510721 0.509274 -0.87 2719 2878 -0.56
BSTG 9 2563 399 2228 0.1086 0.511056 0.509220 -1.82 2820 3019 -0.45
HSLM

BLHM 118* 2562 210  19.80 0.0644 0.510372 0.509285 -0.59 2686 2820 -0.67
BLHM 127* 2552 345 3377 0.0619 0.510219 0.509176 -2.97 2791 2927 -0.69
BLHM 27 2565 555 3913 0.0860 0.510559 0.509104 -4.05 2906 3074 -0.56
BLHM 21 2555 246 1526 0.0978 0.510894 0.509247 -1.51 2772 2950 -0.50
BLHM 28 2562 637 4872 0.0794 0.510590 0.509249 -1.29 2737 2889 -0.60
BLHM 20 2562 232 1576 0.0893 0.510709 0.509201 224 2806 2973 -0.55
BLHM 126 2552 497  41.98 0.0719 0.510417 0.509207 -2.37 2776 2921 -0.63
BLEM 102 2589 6.12 3847 0.0965 0.510843 0.509195 -1.65 2806 2983 -0.51
BLEM109* 2544 1147 7571 0.0919 0.510806 0.509265 -1.44 2749 2917 -0.53
BLEM 124* 2546 9.85 68.54 0.0872 0.510758 0.509294 -0.82 2707 2867 -0.56
BLEM 30 2546 11.81 79.23 0.0904 0.510554 0.509035 -5.89 3010 3190 -0.54
BLEM 11 2565 9.59  59.56 0.0977 0.510864 0.509211 -1.95 2807 2987 -0.50
BMG 105* 2565 319 2038 0.0951 0.510902 0.509294 -0.33 2703 2873 -0.52
BMG 113 2565 416  24.86 0.1016 0.510937 0.509218 -1.81 2806 2992 -0.48
BMG 130* 2555 401 28.16 0.0864 0.510656 0.509200 243 2806 2969 -0.56
BMG 41 2555 428  29.67 0.0876 0.510666 0.509191 -2.61 2819 2984 -0.55
BMG 14 2565 244 1555 0.0952 0.510906 0.509295 -0.30 2701 2871 -0.52
BMG 9 2565 8.06 4250 0.1150 0.511121 0.509176 -2.65 2898 3115 -0.42

*U-Pb ages from Joshi et al. [9] and unpublished data.
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lacking correlation with eNd(t) values suggest that the
Paleoarchaean TTGs formed from juvenile of short-lived
mafic crust with contributions from newly formed felsic
crust wherein distinct isotope compositions had not devel-
oped yet. In the Neoarchaean TTGs, long gaps between
formation and model ages as well as SiO, and MgO corre-
lating with negative eNd(t) values indicate interactions of
juvenile sources with older sources. The presence of inher-
ited zircons in ~2.70Ga TTGs [43] further supports our
conclusion.

Based on the above, we conclude that the geochemical
and Nd isotope signatures of Archaean Bundelkhand TTGs

point towards partial melting of juvenile or short-lived mafic
crust at different depths with variable contributions from
newly formed felsic crust in the Paleoarchaean and older fel-
sic crust in the Neoarchaean. This may reflect the transition
from melting in Paleoarchaean oceanic plateau in plume set-
tings to shallow melting in Neoarchaean subduction-related
island arcs.

6.1.2. High-K LSHM Sanukitoids and Hybrids. The LSHM
granitoids, especially sanukitoids, carry a specific “enriched
mantle signature” (high Mg-K-Ba-Sr-P and LREE) that is
inherited from Archaean mantle overprinted by crust-
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FIGURE 7: Selected elements vs. U-Pb zircon formation age for TTGs of the Bundelkhand craton.

mantle interactions. This signature cannot be a consequence
of fractional crystallization, because it is independent of the
SiO, content and occurs in mafic rocks, such as lampro-
phyres, which are often associated with sanukitoids.

The element vs. U-Pb zircon age plots (Figure 8) indicate
that the 2.5Ga LSHM granitoids have a wider range of
element contents than the HSLM group of granitoids. The
LSHM granitoids show variable time gaps (~99-590 Ma)
between the U-Pb formation age and Nd model age
(Table 4). The eNd(¢) values for the LSHM group consisting
of sanukitoid and hybrid granitoids range from -3.64 to 3.13
(Table 4). Sanukitoids show a narrow range of eNd(t) values
and wide variation in Na,O, K,0, MgO, P,O., (Gd/Er)y,
and high Ba+Sr contents but a minor variation in the SiO,
content (Figure 10). Some of the hybrid granitoids show
higher eNd(t) values than sanukitoids. Those with positive
eNd(t) values show mainly higher SiO, content and lower
MgO content, which supports crustal assimilation. Other
signatures are similar to those of sanukitoids.

The enriched mantle geochemical signature (high Mg-K-
Ba-Sr-P) is typical for sanukitoid granitoids. The plots in
Figure 10 show that these elements do not correlate with
SiO, content or eNd(t) values; therefore, we agree that the
signature comes from an enriched mantle. Our results sup-
port the previous ideas on the enrichment of the mantle by
partial melting in a mantle wedge [87-89] metasomatized
by slab-derived melts or fluids from a subducting oceanic
slab [87, 90, 91]. Two-stage enrichment, firstly by subduc-
tion and secondly by low-degree melting and metasomatism
in the mantle would best explain the lack of correlation
between Nd isotope and geochemical signatures [85]. Some
researchers [92-94] have suggested that sanukitoids were
formed by interactions between mantle and TTG melts.
However, the discrepancy between ages as well as geochem-
ical and Nd isotope signatures contradicts this suggestion in
the Bundelkhand craton. According to Halla [95], radiogenic
Pb isotope signatures that developed in the old preexisting
crust may erode and enter the mantle, overprint the mantle
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composition, and return to the crust by juvenile magmatism.
Such crustal isotope signatures in mantle-derived rocks form
proof of crustal recycling and subduction processes. This
implies that crustal signatures may be observed in geochem-
istry but not in the isotope systematics (in the case of young
crust) and vice versa (in the case where crustal isotope signa-
tures are inherited from the mantle).

6.1.3. High-K HSLM Anatectic Group. The HSLM anatectic
granitoids show a “continental crust signature” (high SiO,
and K,O contents, mantle and enriched mantle signatures
absent) pointing to pure crustal origin. The element vs.
U-Pb zircon age plots in Figure 8 show less variation in
the element contents than the LSHM group. The time
gap between formation and model age varies between

258 and 644 Ma. The eNd(t) values for the HSLM group
are all negative and range from -0.30 to -5.89 (Table 4).
These values are consistent with the derivation from
reworking of a heterogeneous crustal source, pointing to
the involvement of older heterogeneous crust. The HSLM
group shows a relatively narrow range of eNd(t) values
and minor variation in the element contents without cor-
relation with eNd(¢) (Figure 10), which supports a pure
crustal source without a mantle contribution. The absence
of inherited zircon grains in HSLM varieties led Singh
et al. [44]) to conclude that these anatectic granitoids were
formed in conditions that inhibit zircon survival; however,
Joshi et al. [9] reported 207pp2%pp xenocrystic zircon ages
of 3568 Ma and 2787Ma from HSLM granitoids. The
involvement of the crustal component in the generation
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of LSHM as well as HSLM granitoids is further supported
by the occurrence of xenocrystic zircons within both the
granitoid groups (LSHM and HSLM), which further sug-
gests that crustal reworking was at its peak during the
Neoarchaean.

7. Archaean Crustal Evolution

The location of the Indian cratons on a world map modified
after Bleeker [96] and the geochronology of TTGs, sanuki-
toids, and anatectic granitoids in the Bundelkhand, Aravalli,
Singhbhum, Bastar, and Dharwar cratons in India are shown
in Figure 11. The North China craton is included in the fig-
ure because it shows pulses of 2.5Ga LSHM and HSLM
magmatism comparable to the Bundelkhand craton. Next,
we describe how the results from the Bundelkhand craton
relate to Archaean crustal evolution in general.

7.1. Eoarchaean 4000-3600 Ma. In the Eoarchaean, TTGs
with high SiO,, high Na, MgO, and variable HREE formed
by episodic melting within the thin or thickened basaltic
crust. Eoarchaean ages have not been reported in the Bun-
delkhand craton, but the oldest documented U-Pb ages of
3.55Ga for zircons and 3.59Ga for zircon xenocrysts
together with the oldest model ages of 3592 Ma suggest that
the crust formation in the craton started close to the
Eoarchaean-Paleoarchaean boundary [54, 58]. Eoarchaean
TTGs are found, for example, in the Slave Province, West
Greenland, and North China craton.

7.2. Paleoarchaean 3600-3200 Ma. In the Paleoarchaean,
TTG magmatism continued along with the formation of dio-
rites and anatectic high-K granites. The Singhbhum and
West Dharwar cratons show abundant TTG formation in
the Paleoarchaean, and the Bundelkhand craton includes
abundant rafts of Paleoarchaean TTGs. The geochemical

Downloaded from http://pubs.geoscienceworld.org/gsallithosphere/article-pdf/doi/10.2113/2022/6956845/5606427/6956845.pdf

bv auest



Lithosphere 19
.2 6 = 8
[ J ® = oo
704 ® .o" *°1 % e
o o PNo° S 6 L LY
o8 * | e o
o L 4 [ ] @ °o®
&6 X L4 e o..‘ P
° | % oo o
60 - ; 5 ] . - D ° L 4
% L 4 L4 24 %
§N 1 * ON L 2 4 <
% o0 ° % : ° '
50 T T T 0 T T T T T 0 T T T T
X3 o0 3500 4 <
2800 g
4 3 44 £ o =
° e % ¢
o * % o * 2100 4 &
> o > o 0o
5 ] , 1400 - °,°,
2 o °° RS Oo. :" %
S @l ¢ * M0le  OfF
.%D %. @, < P ([
oL = TS *lole o *| I °
-6 -4 -2 0 2 4 -6 -4 -2 0
, o0 eNd (t) eNd (t)
4 @
4 4 @ A4 e
°
23
I ¥ 4
°
2 ® o0
e %o
23
° %
0 T T T T T

-6 -4 -2 0 2 4
eNd (t)

@® LHREE monzogranites

@® BLEM monzogranites

® BMG monzogranites

@ Closepet type granodiorites
€ Sanukitoids
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and Nd isotope signatures of 3.4-3.2 Ga Bundelkhand TTGs
point towards partial melting of juvenile or short-lived mafic
crust at different depths (reflected by variable (Gd/Er)y
ratios) with some crustal contributions. Paleoarchaean
TTG crust shows slightly positive eNd(¢) values that do
not correlate with crustal geochemical signatures. The time
gaps between crystallization and model ages are short. These
indicate contributions from a newly formed crust that has
not yet developed a distinct isotope composition. Figure 11
shows that in India, especially the Bundelkhand, Singhb-
hum, and Western Dharwar cratons were active during the
Paleoarchaean. Figure 5 shows that the eNd(¢) values from
the Bundelkhand craton are comparable to those from the
Dharwar craton.

7.3. Mesoarchaean 3200-2800 Ma. In the Mesoarchaean, the
TTG formation continued, but the Bundelkhand craton was
quieter until the Neoarchaean. The first LSHM sanukitoid
granitoids appeared at 3.0 Ga in the Carajas Province, Brazil
[92, 93] and the Pilbara craton, Australia [97]; however, no
such granitoids have been reported from the Bundelkhand
craton.

7.4. Neoarchaean 2800-2500 Ma. In the early Neoarchaean,
2.7 Ga TTG crust shows negative eNd(¢) values that correlate
with crustal geochemical signatures. The long gaps between
the crystallization and model ages indicate significant contri-
butions from the older crust. These discoveries may reflect
the transition from the Paleoarchaean primitive oceanic
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20 Lithosphere
TaBLE 4: Representative geochemical data for Bundelkhand granitoids.
Sample no. Latitude/longitude Sio, MgO Ba+Sr  eNd(t) Age (Ma) TDM (Ma)
TTGs
BLHTTG 4*/BTTG 123 N 25°11'20.8" E7828'33.7" 6640 091 337 -0.57 2713 3067
BLHTTG 2 N 25°12'01.1" E 7830'57.8" 6597  1.07 393 0.36 2713 2965
BLHTTG 3 N 25°12'01.1" E 78°30'57.8" 6795  1.10 344 -1.84 2713 3134
BLHTTG 1 N 2511'20.8" E 78°28'3.7" 69.59  0.63 357 -1.71 2713 3147
BLHTTG 7 N 25°13'20.7" E7828'041" 6968  0.53 1738 -2.61 2713 3314
BETTG 1 N 25°11'05.5" E 79°6'24.4" 7347 074 501 1.57 3435 3500
BETTG 107* N 25°19'49.3" E79°49'040" 7391 117 372 1.96 3335 3397
BETTG 11*/BETTG 133 N 25°13'7.28"  E 79°05'56.55" _ _ 474 0.54 3435 3592
BETTG 3 N 25°19'49" E 79°49'4.2" 7201 141 418 0.99 3335 3472
BETTG 5 N 25°19'49" E 79°49'4.2" 68.71  1.01 468 1.48 3335 3440
BETTG 9 N 25°19'49" E 79°49'4.2" 65.00  1.83 388 1.44 3335 3440
BC.16 N 25°12'44" E 79°10'10" 7373 044 672 0.63 3410 3451
BC.45 N 2512'12" E 79°07'31" 68.82 144 488 -0.53 3364 3556
BC.60 N 25°19'48" E 79°49'03" 72.82 051 659 433 3280 3060
BC.61 N25°19'48.9" E79°49'047" 6484 243 275 0.38 3446 3420
BC.27 N 25°12'23" E 78727'42" 6648 127 337 4.54 2681 2480
Low silica high magnesium
granitoids/sanukitoids
BCTG 129* N 2525'05.5" E 78739'05.8" 6390 155 1129 -3.60 2554 3144
BCTG 101 N 25°23'23.3" E7838'342" 6596 3.1 1067 -0.54 2554 2878
BCTG 27 N 25°01'10.5" E7953'383" 7078 028 1032 3.13 2539 2619
BCTG 14 N 25°02'49.2" E 79°51'52" 6791  0.92 1502 1.66 2539 2712
BCTG 26 N 25°01'10.5" E79°53'383" 7186 046 1151 2.84 2539 2638
BSTM 1 N 24°52'36.6" E 79°56'7.3" 65.00  3.00 1220 -3.49 2539 3032
BSTM 3 N 24°52'36.6" E 79°56'7.3" 64.03  3.50 1689 -3.24 2539 3040
BSTM 104* N 24°52'33.1" E 80°03'059" 6709  4.08 1444 312 2539 3007
BE 39 N 24°52'33.1" E 80°03'059" 5224 526 2450 -2.02 2539 2921
BE 40 N 24°52'33.1" E 80°03'059" 5219 528 3488 -2.53 2539 2979
BSTG 108* N 25°19'49.3" E79°49'040" 6541  1.70 1282 -2.38 2578 3036
BSTG 119* N 2527'46.4" E7815'27.6" 6276 282 1005 -3.18 2563 3108
BSTG 120* N 2527'3.2" E7829'27.7" 6874 155 683 -1.33 2559 2938
BSTG 131* N 2527'33.68”  E 78°08'40.89” 6870  0.59 1222 -0.87 2559 2878
BSTG 9 N 2524'232"  E7829'41.02" 6403 275 1097 -1.82 2563 3019
BC.35 N 25°28'07" E 78°39'35" 7257 3.00 1144 -1.70 2568 2911
BC16-18 N 25°21'33" E 78°51'05" 6589  1.16 698 -2.67 2578* _
BC16-01 N 25°26'52" E 78°36'02" 68.15  1.86 1018 -3.64 2560 _
BC16-03 N 25°26'29" E 78°38'29" 6446 244 1082 -1.66 2560 _
High silica low magnesium
granitoids/anatectic granites
BLHM 118* N 25°26'37.5" E7826'259" 7091 094 923 -0.59 2562 2820

bDownloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2022/6956845/5606427/6956845.pdf
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TaBLE 4: Continued.
Sample no. Latitude/longitude Sio, MgO Ba+Sr  eNd(t) Age (Ma) TDM (Ma)
BLHM 127* N 25°30'34" E7839'168" 7320 046 657 -2.97 2552 2927
BLHM 27 N 25°56'22.9" E 79735'50.5" 6847 123 1624 -4.05 2565 3074
BLHM 21 N 25°02'49.2" E 79°51'52" 7050  0.84 1071 -1.51 2555 2950
BLHM 28 N 25°01'13.2" E79739'208" 7136 058 759 -1.29 2562 2889
BLHM 20 N 25714'15.7" E79°11'109" 7113 081 569 224 2562 2973
BLHM 126 N 25°31'14.7" E7831'345" 7476  0.40 682 -2.37 2552 2921
BLEM 102 N 25°21'05.4" E7851'365" 7101 082 527 -1.65 2589 2983
BLEM109* N 25°01'30.06"  E7825'132" 7208 029 789 -1.44 2544 2917
BLEM 124* N 25°12'01.1" E 78°30'57.8" 7008  0.56 848 -0.82 2546 2867
BLEM 30 N 25°24'49" E79744'172" 7123 066 619 -5.89 2546 3190
BLEM 11 N 25°12'33.8" E79°07'172" 7008 028 76 -1.95 2565 2987
BMG 105* N 25°10'03.3" E79°52'385" 7248 058 353 -0.33 2565 2873
BMG 113 N 25°31'14.7" E7831'345" 6825 124 763 -1.81 2565 2992
BMG 130* N 2521'54.3" E7832'495" 7339 026 555 -2.43 2555 2969
BMG 41 N 25°23'30.7" E7959'37.7" 6723 093 736 -2.61 2555 2984
BMG 14 N 25°21'52.9" E7832'488" 6953  0.64 975 -0.30 2565 2871
BMG 9 N 25°01'10.5" E 79753'383"  68.00  0.83 888 -2.65 2565 3115
BC.33 N 25°09'33" E 78°28'12" 7538  0.30 268 -3.44 2557 2975

Sources: this study and Joshi et al. [9], Joshi and Slabunov [53], and Singh et al. ([44], [43]). * The U-Pb zircon ages of these samples can be found in Joshi et al. [9].

plateau setting to island arc accretion along an older proto-
continent, possibly related to the formation of the supercon-
tinent Kenorland. During the beginning of the Neoarchaean,
the TTG formation decreased and high-K magmatism
increased indicating a geodynamic change, probably
approaching modern-style plate tectonics with the mantle
wedge above subduction zones. The Bundelkhand craton
was quiet until the Archaean-Proterozoic boundary when
the formation of extensive multisource batholiths involving
both mantle- and crust-derived materials (LSHM and HSLM
granitoids) started. The most important representatives of
this event are found in the Bundelkhand and North China
cratons [9, 43, 44, 98, 99].

The geochemical and isotope signatures of the 2.5Ga
LSHM granitoid group correspond to major juvenile inputs
(high content of mantle compatible elements with or with-
out older crustal components, as reflected by the eNd(¢)
values varying from negative to positive). Sanukitoid granit-
oids inherited their special signature (high K-Mg-P-Ba-Sr)
from the metasomatically enriched mantle, whereas direct
crustal contributions have modified the hybrid granitoids.
The enriched mantle signatures in the LSHM granitoids
have been related to the onset of modern-style plate tectonic
processes [12], as recycling of crustal material into the man-
tle can enrich the subcontinental lithospheric mantle wedge
with incompatible elements and crustal isotope signatures,
which is generally attributed to subduction. The LSHM
sanukitoid and hybrid granitoids formed from crust-
enriched mantle reservoirs with or without mixing with ana-

tectic melts. This scenario points to convergent collisional
settings. Figure 11 shows that sanukitoid and hybrid granit-
oids were formed also in the Dharwar and, especially, in the
North China craton (for references, see the figure caption).
The formation of abundant multisource granitoid batholiths
worldwide marks the stabilisation of the supercontinent
Kenorland at the Archaean-Proterozoic boundary.

8. Comparison with Hf and Nd Modal Ages for
the Bundelkhand Craton

The Bundelkhand craton is a key locality for studies on the
abundant multisource granitoid batholiths that stabilised
the supercontinent Kenorland by 2.5 Ga. The Nd isotope of
this study supports and provides further constraints for the
previous observations based on the geochemistry of the cra-
ton and supports results from the previous Hf isotope stud-
ies [9, 43, 54, 55]. Figure 12(a) shows the geochronology (U-
Pb zircon ages as well as Nd and Hf model ages) of the
Archaean TTG enclaves across the Bundelkhand craton
from west to east in their key localities in Babina, Maurani-
pur, and Mahoba. The youngest Neoarchaean and oldest
Paleoarchaean TTGs are found in the Babina area; however,
most of the TTGs are Paleoarchaean (3.6-3.2 Ga). Figure 12(b)
shows a similar diagram for sanukitoid and hybrid types of
high-K granitoids as well as anatectic granitoids. The figure
shows that abundant granitoids formed within a short time
span and stabilised the Bundelkhand craton at the end of the
Neoarchaean. The range in Hf model ages indicates an

Downloaded from http://pubs.geoscienceworld.org/gsallithosphere/article-pdf/doi/10.2113/2022/6956845/5606427/6956845.pdf

bv auest



22 Lithosphere

2400 -

2600 -

2700 -

 w T
2500 -w ,” " ?#,
T e
?

2800 - ‘ ,
o

? 9 ?
3100 ,
e & 9
o %
wle 22 % 9
A S S A
3400 - , ,,
| & o

Singhbhum ‘ -‘ “‘ “

< o = g =} == 5 g j=R= < o
£8 F & S s Es g =g
£E EE g 25 g g &=
S m < < O
O <U |©) O < O < O _=U
3 [a) =) =
=} : 3 o
=1 =
2 E z

, TTGs

, Sanukitoids/Hybrid granites

, Anatectic granites
(b)

F1GURE 11: (a) World map showing the distribution of exposed Archaean cratonic blocks, modified after Bleeker [96]. (b) Age distribution of
various granitic events in the Dharwar, Bundelkhand, and North China craton (modified and updated from [10, 55]). Additional data
sources: Bundelkhand craton [9, 43, 44, 52, 54-58], South India (Dharwar craton and Coorg Block) [80, 81, 104, 106-110], and North
China craton [98, 99, 111, 112].
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FiGure 12: Distribution of U-Pb zircon ages and Nd model ages and the range of Hf model ages of the (a) TTGs and (b) high-K (sanukitoids

and hybrid) granitoids across the Bundelkhand craton.

inheritance from older sources. For example, the Hf model age
range for an anatectic granitoid from Mauranipur is as old as
that of the oldest Mauranipur TTGs. This indicates that the
high Hf model ages in the high-K granitoids were inherited
from the Paleoarchaean TTGs, the sources of the anatectic
granitoids. Some Paleoarchaecan TTGs may have even inher-
ited Eoarchaean Hf signatures. Overall, the Nd model ages fol-
low the trend of the Hf model ages.

9. Conclusions

Combined geochronology, geochemical signatures, and Nd
isotope compositions allow us to draw the following conclu-
sions on the evolution of Archaean granitoids of the Bundel-
khand craton:

(1) The geochemical and Nd isotope signatures of
Archaean Bundelkhand TTGs point towards partial
melting of juvenile or short-lived mafic crust at
different depths with contributions from newly
formed felsic crust in the Paleoarchaean and older
felsic crust in the Neoarchaean. This may reflect
the transition from melting in Paleoarchaean oceanic
plateaux (3.4-3.2Ga) in plume settings to shallow
melting in Neoarchaean island arcs (2.7 Ga) in sub-
duction settings

(2) The 2.5Ga high-K granitoids formed at convergent
subduction settings by partial melting of the mantle

wedge and preexisting crust. Sanukitoids and hybrid
granitoids originated in the mantle, the latter show-
ing stronger crustal contributions, whereas abundant
anatectic granitoids were the results of the melting of
the continental crust
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