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Abstract: Prediction of essential proteins of a pathogenic organism is the key for the potential drug target identification, 

because inhibition of these would be fatal for the pathogen. Identification of these proteins requires the use of complex 

experimental techniques which are quite expensive and time consuming. We implemented Support Vector Machine algo-

rithm to develop a classifier model for in silico prediction of prokaryotic essential proteins based on the physico-chemical 

properties of the amino acid sequences. This classifier was designed based on a set of 10 physico-chemical descriptor vec-

tors (DVs) and 4 hybrid DVs calculated from amino acid sequences using PROFEAT and PseAAC servers. The classifier 

was trained using data sets consisting of 500 known essential and 500 non-essential proteins (n=1,000) and evaluated us-

ing an external validation set consisting of 3,462 essential proteins and 5,538 non-essential proteins (n=9,000). The per-

formances of individual DV sets were evaluated. DV set 13, which is the combination of composition, transition and dis-

tribution descriptor set and hybrid autocorrelation descriptor set, provided accuracy of 91.2% in 10-fold cross-validation 

of the training set and an accuracy of 89.7% in external validation set and of 91.8% and 88.1% using a different yeast pro-

tein dataset. Our result indicates that this classification model can be used for identification of novel prokaryotic essential 

proteins. 
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1. INTRODUCTION 

 Knowledge of complete genome sequences and proteome 
composition of several pathogenic organisms has made it 
possible to determine potential drug targets in these organ-
isms using computer-aided tools. These tools are based on 
the assumption that the proteins used as drug targets must be 
essential for the survival of the pathogen, but not of the hu-
man host [1-3]. Interference with these essential proteins, 
which are metabolically active and thus crucial for the suste-
nance of cellular function, may be expected to be fatal for 
the pathogenic microorganism.  

 Identification and characterization of microbial essential 
proteins by traditional means requires the use of complex 
techniques, such as high-throughput gene disruption systems, 
anti-sense RNA technology, genome-wide mutagenesis, 
global transposon mutagenesis, systematic single-gene 
knockout experiments, etc. [4]; each of these approaches is 
however quite expensive and time consuming. Sequence-
similarity-based in silico tools can also be used to identify 
highly conserved genes or proteins which are essential for 
survival, growth and replication of pathogenic organisms. 
However, this approach has some limitations, including (i)  
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the use of arbitrary cut-off scores to differentiate between 
putative essential and non-essential proteins, (ii) failure to 
recognize that some proteins may be essential under some 
specific growth conditions but not others [2, 3], and (iii) in-
ability to reliably distinguish between related and unrelated 
proteins at low pairwise sequence identity, e.g. below 25% 
[5, 6]. 

 Recent progress in machine learning techniques has led 
to the development of tools that provide a better classifica-
tion of objects based on their features. One such tool is Sup-
port Vector Machine (SVM) [7]. It is a supervised machine 
learning technique which has been extensively applied for 
solving classification problems in several biological and 
biomedical fields. Because of their robust predictive and 
highly accurate classification ability, SVM classification 
algorithms are considered to be superior to other supervised 
learning methods [8], and well suited for inductive inference, 
i.e. prediction based on prior observations. The SVM algo-
rithms have thus been applied to a wide range of prediction 
problems, such as identification of drug targets [9-14], 
analysis of microarray gene expression data [15], prediction 
of sub-cellular localization of proteins [16-19], assignment 
of proteins to functional families [20-22], assessment of pro-
pensity of a protein to crystallize [23-25], prediction of pro-
tein solubility [26] likelihood of protein-protein interactions 
[27, 28], identification of nucleosome [29], classification and 
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analysis of regulatory pathways [30], and prediction of pro-
tein domains [31].  

 Since essential proteins can be expected to share certain 
features distinct from those of non-essential proteins, it 
should theoretically be possible to develop an SVM algo-
rithm to predict whether a protein belongs to one of these 
two categories. This approach can significantly reduce the 
time required for identification and characterization of mi-
crobial essential proteins. In the current study, we therefore 
implemented SVM to develop a classification model for in 
silico prediction of ‘prokaryotic essential proteins’ in newly-
sequenced microbial proteomes, based solely on the avail-
able aminoacid sequence information, and tested the validity 
of this approach. 

2. MATERIALS AND METHODS 

2.1. Construction of Datasets 

2.1.1. Construction of a Positive Dataset  

 Aminoacid sequences of all the prokaryotic essential pro-
teins included in the database of essential genes (n=7,643; 
version 6.8, accessed on November 4, 2011) [4] were down-
loaded. Sequences with length less than 50 aminoacid resi-
dues (n=216) were excluded. The remaining 7,427 protein 
sequences were processed using the CD-HIT program [32] to 
remove redundant proteins with amino acid sequence iden-
tity exceeding 40%. The remaining 3,962 non-redundant 
protein sequences formed our essential protein (gold-
standard positive) dataset.  

2.1.2. Construction of Negative Dataset  

 Since no dataset of experimentally-confirmed non-essen-
tial (gold-standard negative) proteins is available, we con-
structed one using an in silico approach. Positive protein 
sequences in the previous step were subjected to BLASTP 
against the Pfam v24 database [33] using the software JFea-
ture [34] at expectation (E-value) cut-off of 10

-8
, gap penalty 

of 11, gap extension penalty of 1and amino acid identity of 
less than 30%. This procedure of negative dataset prepara-
tion is implemented in references [20, 21, 35]. The program 
JFeature was instructed to randomly select 6,038 protein 
sequences from among the proteins fulfilling the above crite-
ria. The amino acid sequences of these proteins were used as 
a negative dataset. The number of items in the negative 
dataset was so chosen that the total number of items in the 
two datasets was exactly 10,000. A flow diagram for con-
struction of positive and negative datasets is shown in (Fig. 
1). 

2.1.3. Construction of Training and Testing Datasets 

 From the above datasets of essential (positive) and non-
essential (negative) protein sequences, smaller separate train-
ing and testing sets were generated using the following pro-
cedures. 

2.1.3.1. Generation of Training Sets 

 Machine learning techniques are the most efficient when 
the training dataset contains an equal number of positive and 
negative feature vectors (items)[36]. Hence, we used a train-
ing dataset containing feature vectors of equal number of 
essential and non-essential proteins. For our initial experi-
ments, we randomly selected 500 sequences each from the 
3,962 positive and 6,038 negative protein sequences. For 
sensitivity analysis, alternative training sets ware constructed 
by repeating the process of random selection of 500 positive 
and 500 negative vectors three times. We thus generated four 
separate training sets, each containing 500 positive and 500 
negative descriptor vectors (DVs).  

2.1.3.2. Generation of Test Sets 

 Test sets are used as datasets for external validation, i.e. 
to measure the true predictive ability of the classifier models. 
In nature, the number of non-essential proteins far exceeds 
that of essential proteins. To simulate this situation, we cre-
ated external validation datasets comprising of a larger num-

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Diagram representing positive and negative dataset construction. 
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ber of non-essential proteins than of essential proteins. In all, 
four such test datasets of 9,000 proteins each were generated, 
by excluding the proteins selected for each of the four train-
ing sets from the overall pool of 10,000 positive and negative 
proteins. Each test dataset thus contained 3,462 essential and 
5,538 non-essential proteins. 

2.1.3.3. External Validation Using Yeast Proteins 

 To further validate our approach, we downloaded the 
total proteome of a yeast, Saccharomyces cerevisiae strain 
S288c (n=6,627) from UniProt and obtained the yeast essen-
tial protein dataset from DEG (n=1,110). The complete pro-
teome of Saccharomyces cerevisiae was subjected to BlastP 
against yeast essential protein database and S. cerevisiae 
protein sequences having no significant similarity with es-
sential proteins were parsed from the BlastP output and con-
sidered as non-essential protein sequences (n=688). 

 Training Dataset (balanced dataset). We randomly se-
lected 250 each of the 1,110 essential proteins and 688 non-
essential S. cerevisiae proteins and constructed a balanced 
training dataset. This procedure was repeated four times to 
generate four balanced training datasets.  

 External validation set. We randomly selected 200 essen-
tial proteins and 500 non-essential proteins and constructed 
an external validation set (n=700). This procedure was re-
peated four times to generate four external validation sets.  

2.1.3.4. Dataset for Comparison of Prediction Performance  

We downloaded the raw yeast dataset (Saccharomyces cere-
visiae) used by Gustafson et.al [37] which contains informa-
tion on 61DVs of 966 yeast essential proteins and 3762 non-
essential proteins. Of these DVs, we selected the top 42 DVs 
that were identified by these authors using conditional mu-
tual information maximization criteria [37].  

 Training datasets (balanced dataset). We randomly se-
lected 250 each of the 966 essential proteins and 3762 non-
essential S. cerevisiae proteins, and constructed a balanced 
training dataset. This procedure was repeated four times to 
generate four balanced training datasets.  

 External validation sets. From among the proteins not 
included in the training set, we randomly selected 200 essen-
tial proteins and 500 non-essential proteins to obtain an ex-
ternal validation set (n=700); there were four external valida-
tion sets, one corresponding to each training set.  

2.2. Extraction of Features from Protein Sequences 

 For both training and prediction steps, SVM techniques 
require each data instance (item) to be represented as a set of 
vectors of real numbers, with each vector representing one 
feature. Our hypothesis was that the SVM classifiers for pre-
diction of essential proteins can be based on features that can 
be extracted from amino acid sequences. For the current 
study, we extracted 10 sets of widely used protein feature 
descriptor vectors from the amino acid sequences of proteins, 
using PROFEAT (Protein Feature) [38] and PseAAC 
(pseudo amino acid composition) [39] web servers.  

 PROFEAT has been used frequently for several predic-
tion and classification tasks, including prediction of protein 
structural and functional classes[40], identification of N-

glycosylation sites [41], classification of lung cancers [42], 
prediction of drug-target interaction networks [43], and pre-
diction of ligands for orphan targets [44]. The concept of 
PseAAC (pseudo aminoacid composition) was proposed by 
Chou[45]. This method avoids the loss of important en-
crypted information that is hidden in protein primary struc-
ture. PseAAC has been used in prediction of several protein 
attributes, such as outer membrane proteins [46], metallopro-
teinase family [47], protein folding rates [48], protein-protein 
interactions [49], subcellular localization of virus proteins 
[50], protein solubility [51], and allergenic proteins [52]. 
PseAAC has also been used in identification of DNA-
binding proteins [53], G-protein coupled receptors and their 
types [54, 55], risk type of human papillomaviruses [56], 
protein quaternary structural attributes [57], bacterial virulent 
proteins [58], etc. Due to wide implementation of PseAAC, a 
standalone tool called PseAAC-Builder has been imple-
mented [59], which allows for calculation of various Chou's 
pseudo-amino acid composition vectors, in addition to the 
web-server PseAAC [39]. 

 We used PROFEAT and PseAAC servers to obtain the 
following DVs:  

2.2.1. Descriptor Vectors Based on Physico-chemical Prop-

erties 

 DV1: Amino acid composition (AAC). This descriptor 
specifies the fraction of each amino acid type in the amino 
acid sequence [60]. Thus, this descriptor vector, generated 
for each protein using the PROFEAT server, consisted of a 
total of 20 descriptor values, one for each amino acid. 

 DV2: Pseudo amino acid composition (also called paral-
lel-correlation type). This descriptor vector was generated 
using PseAAC web server. The pseudo aminoacid composi-
tion of a protein sequence can be defined by the equation:  

P = [p1 p2 p3………. P20 p20+1……… p20+ ]
T

                                  (1) 

 The first 20 elements are frequencies of the 20 native 
amino acids in protein P, and additional  factors are used to 
incorporate some sequence-order information. According to 
[61], PseAAC for a protein P can be generally formulated as 

P = [ 1 2 3………. u……. …… ]
T

                                 (2) 

Where  is an integer, the value of  and the components 

1, 2, 3 depend on how to extract the desired information 
from the aminoacid sequence P. Equation 2 can represent 
various different modes of PseAAC when the elements are 
given by 

 

 

(3) 

 

 

 This method generates (20+ ) dimensional vectors for 
each protein sequence [62, 63]. We specified  as 20. Six 
attributes were taken into consideration i.e. hydrophobicity, 
hydrophilicity, mass, pK1 (alpha-COOH), pK2 (NH3) and pI 
(at 25°C), and a total of 40 descriptor values were computed 
for each protein. 
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 DV3: Amphiphilic pseudo amino acid composition 
(APAAC); (also called as series-correlation type). This de-
scriptor vector was generated using PseAAC web server. 
This method generates (20+ i* ) dimensional vector, where i 
is the number of attributes selected [39], and  is a constant. 
As for DV2, the value of  was set to 20 and the same 6 at-
tributes were used. Thus, a total of 140 descriptor values 
were computed for each protein. 

 DV4: Di-peptide composition (DPC). This descriptor 
vector provides information about the fraction of amino ac-
ids as well as their local order. A total of 400 descriptor val-
ues, one for each possible dipeptide for 20 amino acids, were 
computed for each protein. 

 DV5: Normalized Moreau–Broto autocorrelation. Given 
an AA-index set [64], the normalized Moreau-Broto auto-
correlation coefficient for protein sequence is defined by the 
equation 

 

         (4) 

 

where N is the length of the amino acid sequence, d is the lag 
of autocorrelation i.e distance in the number of residues 
separated in the protein sequence, and P(i), P(i+d) are the 
amino acid property at position i and i + d, respectively. The 
value of d must be less than the number of amino acid resi-
dues in the shortest protein chain in the dataset. The value of 
d was set to 30 in this study. Amino acid properties used 
were eight types of amino acid indices [65, 66] i.e. hydro-
phobicity scale, average flexibility index, polarizability pa-
rameter, free energy of amino acid solution in water, residue 
accessible surface area, amino acid residue volume, steric 
parameters and relative mutability. This descriptor, com-
puted using PROFEAT, thus consisted of a total of 30 8 = 
240 descriptor values. 

 DV6: Moran autocorrelation descriptors. These are de-
fined by the equation 

 

(5) 

 

Where N, d, P i and P i + d have the same meanings as de-
fined for Normalized Moreau-Broto autocorrelation. It also 
consists of 240 descriptor values. 

 DV7: Geary autocorrelation descriptors can be defined as  

 

                                                             (6) 

 

Where N, d, P i and P i + dare similar to those above. It also 
used the same 8 properties and consists of a total of 240 de-
scriptor values. 

 DV8: Composition (C), Transition (T) and Distribution 
(D). These three descriptors are used to describe the global 
composition of a particular amino acid property in a protein, 
the percent frequencies with which the attribute changes its 
index along the entire length of the protein and the distribu-
tion pattern of the attribute along the sequence, respectively 
[67]. Thus, 21 attributes (3 for C, 3 for T and 15 for D) for 

each of these three attributes were generated using PRO-
FEAT, leading to a vector with 147 descriptor values (21 for 
composition, 21 for transition, and 105 for distribution). 

 DV9: Quasi Sequence Order Descriptors. These descrip-
tor vectors are derived from the Schneider-Wrede physico-
chemical distance matrix and Grantham chemical distance 
matrix between the 20 amino acids [68]. A total of 160 de-
scriptor values were computed using PROFEAT, for each 
protein sequence. 

DV10: Total amino acid property (TAAP) descriptor for a 
property i is defined as  

                                    (7)  

 

Where Pj
i 

is the property i of amino acid Rj and N is the 
length of the sequence. The Amino Acid Index Database 
[64] is a database that provides 544 properties associated 
with each of the 20 aminoacids. Out of the 544 indices, 13 
have incomplete data. Therefore, among all 531 features in 
AA index database, only 216 features relevant to the study of 
protein sequence, structure and function [69] taken into con-
sideration for the design of prediction model. A total of 216 
descriptor values were computed for each protein sequences 
using PROFEAT. 

2.2.2. Hybrid Feature Descriptor Vectors 

 To assess whether combination of the above descriptor 
vectors can provide better prediction than individual descrip-
tor vectors, we also constructed our hybrid feature descriptor 
vector sets as follows: 

 DV11: This descriptor vector combined three descriptors 
related to amino acid composition of proteins, namely amino 
acid composition (DV1), pseudo amino acid composition 
(DV2) and amphiphilic pseudo amino acid composition 
(DV3). This vector contained a total of 200 descriptor values 
(20 for DV1, 40 for DV2 and 140 for DV3) for each protein. 

 DV12: This descriptor vector combined the three autocor-
relation descriptors, namely Normalized Moreau–Broto 
autocorrelation (DV5), Moran autocorrelation (DV6) and 
Geary autocorrelation (DV7), and contained a total of 720 
descriptor values for each protein. 

 DV13: This descriptor vector combined composition, 
transition and distribution descriptors (DV8) and autocorre-
lation descriptors (DV12). It covered 45 attributes (21 for 
DV8 and 24 for DV12) with a total of 867 descriptor values 
for each protein. 

 DV14: This descriptor vector combined all the ten indi-
vidual descriptor vectors (DV1 to DV10), and included a 
total of 279 attributes and 1843 descriptor values for each 
protein. 

2.3. Support Vector Machine 

 The SVM algorithm optimally classifies objects located 
in a n-dimensional space into two classes by introducing a 
‘n-1’ dimensional separating hyperplane which maximizes 
the separation between the two data clusters. To achieve a 
robust discriminative power, the algorithm uses special non-
linear functions called as kernels tricks to transform the input 
space into a multidimensional vector space. This is done by 
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(i) allowing some data points to fall on the wrong side of the 
hyperplane by introducing a user-specified parameter ‘C’ 
called regularization parameter that specifies the trade-off 
between good classification and large margin; (ii) using dif-
ferent kernel types i.e. linear, polynomial, sigmoid, and ra-
dial basis functions (RBF); and (iii) using a kernel width 
parameter , that fine tunes the discrimination between two 
classes in a multi-dimensional space. 

 Previous experimental results [70, 71] have shown that 
the RBF kernel performs better than the polynomial and lin-
ear kernels. We therefore used SVM with RBF function and 
the WEKA machine learning package [72] to identify classi-
fiers that could distinguish prokaryotic essential proteins 
from non-essential proteins based on feature vectors calcu-
lated from protein sequences. 

2.4. Model Generation 

 For the generation of an optimal SVM model, two key 
parameters for the RBF kernel referred to above, namely the 
regularization parameter ‘C’ and the kernel width parameter 
‘ ’, need to be pre-selected. Optimization of both these pa-
rameters for each training dataset was done by using the grid 
search utility programme included in LIBSVM 3.1 package 
[37]. The grid search was performed using 5-fold cross-
validation of each training dataset to optimize C and . The 
training datasets were trained by applying LIBSVM classi-
fier implemented in WEKA machine learning tool with op-
timized C and  determined by the 5-fold cross-validation 
step. The LIBSVM classifier employed with optimized C 
and  on the external validation data set to assess the predic-
tion potential of the models. 

2.5. Model Evaluations 

2.5.1. 10-fold Cross Validation of Training Set 

 In machine learning, cross-validation is frequently used 
for evaluating and comparing the performances of different 
predictive modeling algorithms. Three cross-validation 
methods are available, viz, independent or external valida-
tion test, subsampling or k-fold cross validation test and 
Jackknife test [73]. Of these, though Jackknife test is the 
most widely used since it considered as the most unbiased 
and rigorous method for assessing the performance of a clas-
sifier [29, 34, 54-56, 74-79], however, this technique is com-
putationally intensive, and we therefore used the external 
validation dataset and the 10-fold cross-validation techniques 
to assess the effectiveness of SVM as the prediction engine 
[80]. 

 For 10-fold cross-validation, each training dataset of 
1,000 feature vectors was partitioned automatically and ran-
domly into 10 equal-sized subsets of 100 each. Nine of these 
subsets were combined and used as training set and the re-
maining one subset was used for testing; this cross-validation 
process was repeated 10 times, with each subset serving once 
as the test dataset. This cross validation was done using 
LIBSVM classifier of WEKA machine learning tool. The 
prediction rate of the SVM classifiers was evaluated using 
four measures, namely, sensitivity, specificity, overall accu-
racy and Mathew’s correlation coefficient. 

2.5.2. Evaluation of External Validation Sets 

 The test datasets were not used to influence the model 
buildup process. Instead these were used as external valida-
tion sets to assess the true predictive potential of the classi-
fier models developed using the test sets. The first column of 
the test set indicated the class status and labeled with +1 (for 
essential protein) or -1 (for non-essential protein). Labels in 
the test file were used only for comparison with predicted 
category for identification of accuracy. 

2.5.3. Evaluation of Prediction Performance 

 The above validation processes generated data on num-
bers of true positive (TP), false positive (FP), true negative 
(TN) and false negative (FN) objects; these parameters were 
used to calculate sensitivity, specificity, overall prediction 
accuracy, F-measure and Matthew’s correlation coefficient 
to assess the overall prediction performance of each SVM 
model. 

2.5.3.1. Sensitivity 

 Sensitivity measures the proportion of actual positives 
which are correctly identified. 

 Sensitivity (Q ) = TP/(TP + FN)                       (8) 

2.5.3.2. Specificity  

 Specificity measures the proportion of actual negatives 
which are correctly identified. 

Specificity (Qn) = TN / (TN + FP)                       (9) 

2.5.3.3. Accuracy 

 Accuracy is the proportion of objects correctly identified, 
and includes either true positives or true negatives, divided 
by the total number of objects. 

Accuracy (Qa) = (TP + TN)/(TP + TN + FP + FN)      (10) 

2.5.3.4. F-measure 

 F-measure is a measure of accuracy for binary classifica-
tion function. It is the harmonic mean of precision (p) and 
recall (r).  

 Precision determines the fraction of results that actually 
turns out to be positive in the group the classifier has de-
clared as a positive class.  

Precision (p) = (TP)/(TP + FP)                                   (11) 

Recall (r) measures the fraction of positive examples cor-
rectly predicted by the classifier. 

Recall (r) = (TP)/(TP + FN)                                   (12) 

F-measure = 2  (Precision  Recall) / (Precision + Recall)
                                                                                      (13) 

Putting the value of precision and recall in equation 10 

F-measure = (2  TP)/(2  TP + FP + FN)       (14) 

2.5.3.5. Matthew’s Correlation Coefficient (MCC) 

 MCC is considered as a balanced measure of quality of 
binary classification models built using unbalanced datasets. 
It takes a value between 1 and +1, with+1 representing a 
perfect prediction, 0 an average random prediction and 1 an 
inverse prediction.  
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MCC = (TP TN-FP FN)/ ((TP+FN) (TP+FP) (TN+FP)  
(TN+FN))                                                               (15) 

2.5.3.6. Root Means Squared Error (RMSE) 

 RMSE is calculated as the square root of the sum of 
squared errors in modeling or prediction divided by their 
corresponding total number. 

RMSE = ((p1- a1)
2
+ ......+ (pn -an)

 2
))/n)       (16)  

where p1, p2...pn are the predicted value of test instances and 
a1, a2...an are the actual values. 

2.5.3.7. Area under ROC Curve 

 Receiver-operating characteristics (ROC) curves assess 
the relationship between sensitivity and specificity in a two-
dimensional plane. Area under an ROC curve (AUC) [81] is 
a sensitive measure of classifier performance. The values of 
AUC range between 0 and 1, with 1 indicating a perfect clas-
sification and 0.5 representing random guessing. AUC values 
between 0.8 and 0.9 are often considered as good, and those 
between 0.9 and 1.0 as excellent.  

2.5.3.8. Kappa Statistic 

 Kappa statistic [56] is used to measure the agreement 
between predicted values with the values which may be ex-
pected by chance. Its values tend to zero when there is no 

agreement beyond chance and approaches 1.0 for very strong 
statistical relation between the predicted and true category 
labels 

 A good generalizable prediction model should have high 
values for kappa statistic and AUC, and a small value for 
RMSE. 

3. RESULTS  

3.1. Results of 10-fold Cross Validation of Training Sets 

 Each combination of training set and descriptor vectors 
had widely different optimum values of C and . These are 
shown in Supplementary Table 1.  

 The number of true positive, true negative, false positive, 
and false negative sequences predicted during the 10-fold 
cross-validation of each training set are shown in Supple-
mentary Table 2. The number of essential protein sequences 
predicted correctly (true positives) was the highest using 
hybrid autocorrelation vector (DV8), whereas the number of 
non-essential protein sequences predicted correctly (true 
negatives) was the highest using combined hybrid autocorre-
lation vector and composition, transition, distribution vector 
(DV13) (Supplementary Table 2). Thus, DV8 had an average 
sensitivity of 94.4% and DV13 had an average specificity of 

Table 1. Performance Characteristics of Prediction Using Sensitivity (Qp), Specificity (Qn), Accuracy (Qa), Kappa Statistic (K), 

Root Mean Square Error (RMSE), Area Under Receiver Operating Characteristic Curve (AUC), F-measure (F), Mat-

thew’s Correlation Coefficient (MCC) of 10-fold Cross Validation 

Descriptor 

vector 
Qp Qn Qa K RMSE AUC F MCC 

DV1 76.6±4.1 72.0±3.5 74.3±2.9 0.49±0.06 0.51±0.03 0.82±0.04 0.75±0.03 0.49±0.06 

DV2 79.3±5.1 77.9±6.7 78.6±5.8 0.57±0.12 0.46±0.06 0.86±0.05 0.79±0.06 0.57±0.12 

DV3 81.5±6.9 76.1±2.3 78.8±4.6 0.58±0.09 0.46±0.05 0.86±0.05 0.79±0.05 0.58±0.09 

DV4 74.0±2.6 74.5±3.9 74.2±1.1 0.48±0.02 0.51±0.01 0.82±0.02 0.74±0.01 0.49±0.02 

DV5 63.1±4.4 63.8±2.6 63.4±1.7 0.27±0.03 0.60±0.01 0.69±0.03 0.63±0.03 0.27±0.03 

DV6 58.2±2.8 54.6±3.5 56.4±3.1 0.13±0.06 0.66±0.02 0.58±0.04 0.57±0.03 0.13±0.06 

DV7 59.8±3.2 57.5±4.0 58.6±3.0 0.17±0.06 0.64±0.02 0.60±0.06 0.59±0.03 0.17±0.06 

DV8 94.4±1.2 81.0±2.5 87.7±1.5 0.75±0.03 0.35±0.02 0.93±0.01 0.88±0.01 0.76±0.03 

DV9 77.0±7.2 68.7±3.8 72.8±3.5 0.46±0.07 0.52±0.03 0.80±0.04 0.74±0.04 0.46±0.07 

DV10 79.6±3.7 70.6±2.2 75.1±2.8 0.50±0.06 0.50±0.03 0.83±0.03 0.76±0.03 0.50±0.06 

DV11 79.4±5.7 81.7±3.8 80.5±4.7 0.61±0.09 0.44±0.05 0.88±0.05 0.80±0.05 0.61±0.09 

DV12 87.2±2.2 86.3±2.1 86.7±1.0 0.73±0.02 0.36±0.01 0.93±0.01 0.87±0.01 0.73±0.02 

DV13 92.9±1.6 89.5±1.9 91.2±1.2 0.82±0.02 0.30±0.02 0.97±0.01 0.91±0.01 0.82±0.02 

DV14 84.6±2.5 80.8±0.7 82.7±1.5 0.65±0.03 0.42±0.02 0.90±0.01 0.83±0.02 0.65±0.03 

Data are shown as average observed value ± standard deviation. 
DV1: Amino acid composition; DV2: Pseudo amino acid composition;  
DV3: Amphiphilic pseudo amino acid composition; DV4: Dipeptide composition;  

DV5: Normalized Moreau–Broto autocorrelation; DV6: Moran autocorrelation;  
DV7: Geray autocorrelation; DV8: Composition, transition and distribution;  

DV9: Quasi sequence order; DV10: Total amino acid properties;  

DV11: Combination of DV1, DV2 and DV3; DV12: Combination of DV5, DV6 and DV7;  
DV13: Combination of DV8 and DV12; DV14: Combination of DV1 to DV10 
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89.5% (Table 1). Table 1 shows the mean (± standard devia-
tion) of performance characteristics of the prediction 
achieved using each of the 14 descriptor vectors with the 
four training sets. Prediction ability of each of the four train-
ing sets in terms of 10-fold cross validation accuracy, kappa 
statistic, RMSE, AUC, F-measure, MCC are shown in Figure 
2. Data on prediction accuracy of individual training sets are 
shown in Supplementary Table 3.  

3.2. Evaluation of External Validation Sets 

 External validation datasets were employed to further 
evaluate the performance of classification models. Data on 
the number of true positive, true negative, false positive, and 
false negative sequences predicted during evaluation of test 
datasets are shown in Supplementary Table 4. Data for pre-
diction accuracy using each individual test dataset are shown 
in Supplementary Table 5. The average prediction accuracy 
in terms of kappa statistic, RMSE, sensitivity, specificity, 
accuracy and F-measure (Fig. 3) obtained from the evalua-
tion of test sets (Table 2) was quite similar to the results of 
10-fold cross validation; this consistency of predictive ability 
indicates the validity of our SVM classification models. 

3.3. Ranking of Descriptor Sets Based on Different Model 
Evaluation Parameters 

 Predictive potential of classifier models generated using 
different protein descriptor vector sets were ranked based on 
different model evaluation parameters. Of the 10 individual 
descriptor vector sets (DV1 to DV10), the composition, tran-
sition and distribution descriptor set (DV8) showed the best 

classification accuracy in the 10-fold cross-validation of 
training datasets (87.7±1.6%; Table 1) as well as for predic-
tion using the external validation datasets (84.1±0.5%; Table 
2). DV11, which is a composite descriptor vector set based 
on amino acid composition (DV1), pseudo amino acid com-
position (DV2) and amphiphilic pseudo amino acid composi-
tion (DV3), provided better classification accuracy than that 
of its three components taken individually. The three auto-
correlation descriptor sets (DV5-DV7), make use of the same 
eight physico-chemical properties but differ in the underly-
ing correlation algorithm. Combination of these three auto-
correlation descriptor sets (DV12) provided a better classifi-
cation accuracy (86.9±1.2%) than that of individual autocor-
relation descriptor sets. The best classification accuracy 
(91.2±1.2)% was achieved using DV13, i.e. a combination of 
composition, transition and distribution descriptor vector set 
(DV8) and hybrid autocorrelation descriptor set (DV12). 

3.4. Result of External Validation Using Yeast Proteins 

 To assess the generalizability of the predictive model 
identified using prokaryotic proteins, we tested the most ef-
fective model i.e. the model based on DV13, on an entirely 
different dataset, i.e. yeast proteins. 

 Performance characteristics including sensitivity (Qp), 
specificity (Qn), accuracy (Qa), kappa statistic (K), root mean 
square error (RMSE), area under ROC, F-measure (F), Mat-
thew’s correlation coefficient (MCC) of DV13 for essential 
vs. non-essential proteins using the yeast protein training 
dataset in 10-fold cross-validation experiments are shown in 
(Fig. 4a). Similar data for a test dataset of yeast protein are 
shown in (Fig. 4b). Table 4 shows the comparison of results 

Table 2. Performance Characteristics of Prediction Using Sensitivity (Qp), Specificity (Qn), Accuracy (Qa), Kappa Statistic (K), 

Root Mean Square Error (RMSE), Area Under Receiver Operating Characteristic Curve (AUC), F-measure (F), Mat-

thew’s Correlation Coefficient (MCC) of External Validation Sets  

Descriptor vector Qp Qn Qa K RMSE AUC F MCC 

DV1 52.5±5.9 71.4±3.6 64.1±1.6 0.24±0.04 0.60±0.01 0.62±0.02 0.53±0.04 0.24±0.04 

DV2 52.8±6.5 75.3±7.1 66.8±3.1 0.29±0.05 0.58±0.03 0.64±0.02 0.55±0.03 0.29±0.05 

DV3 59.3±6.7 73.6±4.8 68.1±1.7 0.33±0.04 0.56±0.02 0.66±0.02 0.59±0.03 0.33±0.04 

DV4 51.6±15 75.7±5.5 66.4±2.6 0.28±0.09 0.58±0.02 0.64±0.05 0.53±0.10 0.28±0.08 

DV5 54.4±2.6 63.7±2.6 60.1±1.6 0.18±0.03 0.63±0.01 0.59±0.02 0.51±0.02 0.18±0.03 

DV6 54.4±1.5 54.4±1.7 54.4±0.6 0.08±0.01 0.68±0.00 0.54±0.00 0.48±0.01 0.09±0.01 

DV7 58.7±2.7 56.8±2.8 57.5±0.7 0.15±0.00 0.65±0.01 0.58±0.00 0.51±0.01 0.15±0.00 

DV8 88.8±2.9 81.1±2.3 84.1±0.5 0.68±0.01 0.40±0.01 0.85±0.01 0.81±0.01 0.68±0.01 

DV9 56.3±8.7 68.1±5.6 63.6±1.9 0.24±0.05 0.60±0.02 0.62±0.03 0.54±0.05 0.24±0.05 

DV10 56.6±7.8 69.5±5.0 64.5±0.6 0.26±0.02 0.60±0.01 0.63±0.02 0.55±0.04 0.26±0.02 

DV11 56.2±6.6 78.8±5.8 70.1±1.8 0.36±0.03 0.55±0.02 0.67±0.02 0.59±0.03 0.36±0.03 

DV12 82.3±1.8 87.6±2.6 85.6±1.2 0.70±0.02 0.38±0.02 0.85±0.01 0.81±0.01 0.70±0.02 

DV13 89.1±1.2 90.0±1.1 89.6±0.5 0.78±0.01 0.32±0.01 0.90±0.00 0.87±0.01 0.78±0.01 

DV14 68.1±6.4 80.9±3.3 76.0±1.4 0.49±0.04 0.49±0.01 0.75±0.02 0.68±0.03 0.49±0.03 

Data are shown as average observed value ± standard deviation, DV1 to DV14 are as described in footnote to Table 1 
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Figure 2. Prediction performance of various SVM models on training dataset evaluated using 10-fold cross-validation. The upward arrows 

indicate that higher values are more desirable and downward arrow indicates that lower values are more desirable. SET1- SET4 represents 

four different training sets. 

 

a. Sensitivity b. Specificity

  
c. Accuracy d. Kappa statistic

 
 
e. Root mean square error f. Area under ROC curve

  
g. F-measure h. Matthew’s correlation coefficient 
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Table 3. Ranking of descriptor sets based on different model evaluation parameters 

Average predictive potential of descriptor sets ranked by descending order Evaluation parame-

ter 
Training Set  Test Set 

Sensitivity DV8, DV13, DV12, DV14  DV13, DV8, DV12, DV14 

Specificity DV13, DV12, DV11, DV8  DV13, DV12, DV8, DV14 

Accuracy DV13, DV8, DV12, DV14  DV13, DV12, DV8, DV14 

Kappa statistic DV13, DV8, DV12, DV14  DV13, DV12, DV8, DV14 

RMSE DV13, DV8, DV12, DV14  DV13, DV12, DV8, DV14 

AUC DV13, DV8, DV12, DV14  DV13, DV8, DV12, DV14 

F-measure DV13, DV8, DV12, DV14  DV13, DV8, DV12, DV14 

MCC DV13, DV8, DV12, DV14  DV13, DV12, DV8, DV14 

RMSE, AUC, MCC, DV1 to DV14 are as described in heading of Table 1. 

 

Table 4. Prediction Performance Comparison 

Evaluation Parameter Hwang et al. Acencio et al. Yang et al. Gustafson et al. Our Model 

10-fold cross-validation AUC 0.78 0.72 0.85 0.78±0.05 0.91±0.2 

 Precision 0.77 0.70 0.77 0.72±0.03 0.87±0.03 

 Recall 0.70 0.71 0.77 0.78±0.04 0.96±0.01 

 F-measure 0.74 0.70 0.77 0.75±0.00 0.91±0.2 

 MCC 0.50 0.40 0.55 0.48±0.02 0.82±0.04 

       

External validation AUC 0.79 0.72 0.85 0.82±0.03 0.91±0.01 

 Precision 0.74 0.66 0.79 0.90±0.01 0.72±0.02 

 Recall 0.33 0.17 0.76 0.74±0.05 0.95±0.03 

 F-measure 0.45 0.27 0.77 0.81±0.02 0.82±0.02 

 MCC 0.42 0.28 0.55 0.50±0.02 0.75±0.03 

       

AUC, MCC are as described in heading of Table 1 

 

of 10-fold cross-validation for yeast training dataset (bal-
anced dataset) and prediction performance of external valida-
tion set (imbalanced dataset), with those reported in previous 
studies [82] 

3.5. Prediction of Yeast Proteins  

 The performance characteristics of SVM for predicting 
essential versus non-essential yeast proteins [sensitivity (Qp), 
specificity (Qn), accuracy (Qa), kappa statistic (K), root mean 
square error (RMSE), area under ROC, F-measure (F), Mat-
thew’s correlation coefficient (MCC)] in 10-fold cross-
validation experiment are shown in (Fig. 5a). Similar data 
for test dataset are shown in (Fig. 5b). 

 

 

DISCUSSION 

 Machine learning algorithms have proved to be useful for 
prediction of essential vs non-essential nature of a protein 
[82-84]. Most of the previous attempts at prediction of essen-
tial genes or proteins were done using the essential protein 
dataset of yeast, i.e. an eukaryote [82-84]. The yeast essential 
proteins dataset (n=1,110) is relatively smaller as compared 
to the prokaryotic essential protein dataset (n=7,643), which 
contains information on essential proteins for 20 bacterial 
species. Thus the prediction of essential vs. non-essential 
proteins in prokaryotes may be expected to be a more chal-
lenging task than that for yeasts. In this study, we developed 
an SVM model for the prediction of ‘prokaryotic essential  
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Figure 3. Prediction performance of various SVM models on test dataset evaluated using external validation set. The upward arrow indicates 

that higher values are more desirable and downward arrow indicates that lower values are more desirable.SET1-SET4 represents four differ-

ent external validation sets. 
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c. Accuracy d. Kappa statistic

 
  
e. Root mean square error f. Area under ROC Curve

 
g. F-measure h. Matthew’s correlation coefficient 
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Figure 4. Performance characteristics of prediction using sensitivity (Qp), specificity (Qn), accuracy (Qa), kappa statistic (K), root mean 

square error (RMSE), area under receiver operating characteristic curve (AUC), F-measure (F), Matthew’s correlation coefficient (MCC) of 

Yeast training dataset (4a) and Yeast test dataset (4b). SET1–SET4 (4a) represents four different Yeast training dataset each containing 250 

positive and 250 negative vectors and SET1-SET4 (4b) represents four different Yeast test dataset each containing 200 positive and 500 nega-

tive vectors. 

 

 
 

Figure 5. Performance characteristics of prediction using sensitivity (Qp), specificity (Qn), accuracy (Qa), kappa statistic (K), root mean 

square error (RMSE), area under receiver operating characteristic curve (AUC), F-measure (F), Matthew’s correlation coefficient (MCC) of 

Yeast training dataset (Gustafson et al.) (5a) and Yeast test dataset (Gustafson et al.)(5b). SET1–SET4 (5a) represents four different Yeast 

training dataset each containing 250 positive and 250 negative vectors and SET1-SET4 (5b) represents four different Yeast test dataset each 

containing 200 positive and 500 negative vectors. 

5a 

 
5b 

 
The upward arrow indicates that higher values are more desirable and downward arrow 
indicates that lower values are more desirable. 
 

4a 

 
 
4b 

The upward arrow indicates that higher values are more desirable and downward arrow 
indicates that lower values are more desirable.
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proteins’ based solely on the available amino acid sequence 
information, and tested the predictive ability of this approach 
using a large number of prokaryotic proteins that are known 
to be essential and those that may be expected to be non-
essential. The SVM algorithm was found to have a high de-
gree of accuracy in predicting essential versus non-essential 
nature of proteins in both internal cross-validation and exter-
nal validation using the prokaryotic dataset. More impor-
tantly we found that the descriptor vector that performed the 
best for prediction of essential vs. non-essential prokaryotic 
proteins, also performed very well for similar prediction 
among yeast proteins, lending further credibility to our ap-
proach.  

 Several computer-based approaches have been used for 
identification of essential proteins. Thus, Acencio and 
Lemke [84] used a J48 algorithm, which integrated data on 
network topological feature, cellular localization and bio-
logical process of each protein and used these for prediction 
of essential nature of genes. They found that on integrated 
classifier, that contained data on 12 topological features, 5 
cellular localization and 6 biological processes was able to 
predict essential vs. non-essential nature of the gene product 
with an AUC of 0.808. Also the integrated classifier per-
formed significantly better than individual predictor. In an-
other study, Hwang, Lin, Chang, Mori, Juan and Huang [83] 
used an SVM algorithm for essential gene identification in 
yeast based on network and sequence analysis. They used 14 
different attributes to construct SVM classification models to 
predict gene essentiality. They found the integrated classifier 
comprising network information with sequence data boosted 
the performance of the prediction model. Yang, Yangy, 
Tseng and Ma [82] used SVM to predict essential proteins in 
a protein-protein network. These workers used a classifier 
with 45 attributes that included 90 descriptor values and 
compared its performance with the method used by Acencio 
and Lemke [84], and Hwang, et al. [83]. However, predic-
tion of gene essentiality based on network topology is re-
stricted to organisms whose integrated molecular network 
has already been constructed [85]. Such data, which need 
collection of extensive experiments, are not available for 
several organisms, in particular those that have been recently 
sequenced.  

 Gustafson et al. [37], in contrast, used naïve Bayes clas-
sifiers for essential gene identification in yeast and E. coli 
based on integrated genomic and protein features, without 
using the data about protein-protein interaction. This ap-
proach has the advantage that it can be used even for organ-
isms for which either no or limited protein-protein interac-
tion data are available. Because our study is directed at pre-
diction of protein essentiality in less-studied organisms, we 
focused on the use of aminoacid physico-chemical property 
based DVs that can be easily generated without prior exten-
sive laboratory data. Of course, addition of network topology 
information, when this becomes available, to the DVs that 
we used would surely result in better performance. 

 Our data show that a vector set based on combination of 
composition, transition, distribution (CTD) and hybrid auto-
correlation (DV13) comprising of 45 attributes, including 
867 descriptor values had the best predictive ability. For in-
stance, we found the AUC, precision, recall, F-measure and 

MCC using DV13 of 0.91±0.02, 0.87±0.03, 0.96±0.01, 
0.91±0.02 and 0.82±0.04, respectively, for internal 10-fold 
cross-validation. Even for external validation dataset, these 
parameters were estimated to be very good, i.e. 0.91±0.01, 
0.72±0.02, 0.95±0.03, 0.82±0.02 and 0.75±0.03, respec-
tively. These values are better than those achieved by classi-
fier used in previous studies. These performance measures of 
our model in the training dataset and external validation sets 
are better than those reported. This suggests that our model 
may provide a better prediction of essential proteins than the 
methods available previously. It would be useful to test our 
model using essential protein databases for other organisms, 
as these become available. This should help determine the 
robustness of our model.  

 For any predictive model, the performance is best when it 
is used for the data from which it is derived. This phenome-
non is termed over-fitting. Thus, a stiffer test for the per-
formance of a predictor system is the assessment of its per-
formance using an external dataset. The ability of the vector 
set that we found useful for prokaryotes to provide good pre-
diction even for an unrelated yeast protein dataset provides 
an important external validation of our approach and con-
firms its robustness. 

 In our study, the use of hybrid feature descriptor sets 
tended to provide a better accuracy in classification of pro-
teins into essential and non-essential than that achieved with 
the use of individual feature descriptor sets. However, at 
times, use of a combination of features did not provide better 
results than those obtained with its subsets; for instance, use 
of DV14, which is the combination of DV1 to DV10, yielded 
an overall accuracy of only 82.7±1.5%, which is lower than 
that of DV8, one of its component, alone or of DV12 (com-
posed of DV5, DV6 and DV7). This indicates that there is no 
clear relationship between the number of vectors used and 
the predictive ability. Thus, the better performance observed 
in our study with DV13 was not merely related to the larger 
number of vectors included in this descriptor vector, but is 
likely related to the inherent better predictive ability of its 
components. 

4. CONCLUSION 

 In the present study, a method to predict prokaryotic es-
sential proteins based on SVM has been developed. This 
method employed a set of 10 physico-chemical descriptor 
vectors and 4 hybrid descriptor vectors calculated from 
amino acid sequences using PROFEAT and PseAAC serv-
ers. A hybrid descriptor set, DV13, provided the best classi-
fication accuracy among the 14 such descriptor sets tried. 
The DV13 descriptor vector, which is a combination of 
composition, transition and distribution descriptor set and 
hybrid autocorrelation descriptor set, provided an accuracy 
(91.2 1.2)% in 10-fold internal cross-validation and of 
(89.7±0.5)% in external validation using the prokaryotic pro-
tein datasets, and of (91.8±2)% and (88.1±1.1)% using a 
different yeast protein dataset. We believe that this predic-
tion approach can be used for identification of novel essen-
tial proteins in prokaryotes. Since such essential proteins 
provide opportunities to disrupt the prokaryotic cell function, 
the SVM approach may provide a useful method for rapid 
screening of whole proteomes of various pathogens for po-
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tential drug targets in future. Going by the current trend to-
wards construction of open source web servers [86], we pro-
pose to design a web server for the method presented in this 
paper for use in future by other workers involved in develop-
ing more promising prediction systems. 
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