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Human gastrointestinal tract contains a large variety of microbes, in particular bacteria. Studies in recent
years have strongly suggested a role for these microbes, collectively referred to as gut microbiota, in the
maintenance of homeostasis during health. In addition, alterations in gut microbiota have been reported in
several diseases, including those related to the gastrointestinal tract and several systemic conditions, and
are believed to play a pathogenetic role in at least some of these. Given the close association between the
human gut and liver, the association with gut microbiota appears to be particularly strong for a wide variety
of liver diseases. This piece, aimed primarily at physicians, reviews in brief the methods used to study gut
microbiota, with particular emphasis on those that use sequences of bacterial 16S rRNA gene or its
components. ( J CLIN EXP HEPATOL 2019;9:62–73)
he term ‘humanmicrobiota’ refers to the complete present in a person’s gut. Also, before one proceeds
Tset of microbes that live in and on the human
body.1 It appears to play a major role in health and

disease, either directly through the expression ofmicrobial
genes that provide the human host some metabolic capa-
bilities which its own genome lacks, or indirectly through
interaction with human physiology, particularly with the
immune system. The main locations on the human body
where the microbiota exists are the gastrointestinal tract,
female genital tract, oral cavity and the respiratory tract.
Of these, the gastrointestinal tract is the site that is the
richest in microbial organisms.

Several methods have been used to study gut micro-
biota, and these have undergone a major change over
time (Table 1). This article describes the various methods
used to study microbiota, and the advantages and lim-
itations of each. The gut microbiota include several
different groups of organisms, including bacteria,
viruses, fungi, archaea, etc. However, of these, bacteria
have been the most extensively studied, and much less is
known about the viruses (virome), fungi (fungome) and
other prokaryotes (e.g. archea) present in the gastroin-
testinal tract. This article therefore focuses on the study
of gut bacteria, and henceforth the term gut microbiota
has been used interchangeably with the set of bacteria
t microbiota, metagenome, 16S rRNA, next generation
16S rRNA data analysis, microbial diversity
April 2018; Accepted: 27 April 2018; Available online: 4 May

rrespondence: Rakesh Aggarwal, Department of Gastroenter-
y Gandhi Postgraduate Institute of Medical Sciences, Luck-
, India.
wal.ra@gmail.com
: BDI: Beta Diversity Index; OTUs: Operational Taxonomic
Polymerase Chain Reaction
rg/10.1016/j.jceh.2018.04.016

linical and Experimental Hepatology | January/February 2019
further, it may be useful to understand a few terms that
are used in relation to the study of microbiota (e.g.
microbiome, metagenome, etc.), which represent con-
cepts quite similar to, but not identical with, the term
‘microbiota’ (see Box).
CULTURE-BASED METHODS

The initial studies used traditional bacterial culture tech-
niques, followed by phenotyping of the cultured bacteria
using morphological and biochemical characteristics.
However, a large proportion of bacteria in the gut are
obligate anaerobes, which often do not survive the pro-
cedures used for obtaining specimens from the gastroin-
testinal tract, or for transport to the laboratory and
storage. Furthermore, various organisms present in the
human gut differ in their propensity to grow in culture.
Thus, the results of relative abundance of various bacteria
in the gut lumen deduced using culture-based techniques
are heavily biased in favour of aerobic organisms that grow
easily in in vitro culture, while missing the anaerobic
bacteria. Also, these techniques markedly underestimate
the diversity of bacteria in the intestinal luminal contents,
and hence their usefulness in studying changes in the
profile of gut microbiota is limited. Hence, these techni-
ques never gained sufficient traction for the study of
profile of gut microbiota, and their use was limited to
the study of individual culturable bacterial groups (e.g. a
particular genus) in particular clinical situations.

To overcome these limitations of culture techniques,
and with the development in the late 20th century of
techniques for the study of bacterial genomic material,
several molecular approaches were developed in which
different bacterial species were identified based on the
sequences of their 16S ribosomal RNA (16S rRNA) genes.
| Vol. 9 | No. 1 | 62–73 ã 2018
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Table 1 Techniques Used for Study of Microbiota in the Gut
as well as Other Body Sites.

A. Culture-based methods

B. Molecular-based (nucleic-acid based) methods

a. Non-sequencing methods

i. Fluorescence in situ hybridization flow cytometry

ii. Pulsed field gel electrophoresis

iii. Denaturing gradient gel electrophoresis

iv. Temperature gradient gel electrophoresis

v. Single-strand conformation polymorphism

b. Sequence-based methods

i. Sequencing of 16S rRNA genes or their hypervariable
regions (targeted gene sequencing)

ii. Whole bacterial genome DNA (metagenome) sequencing

iii. Whole bacterial mRNA (meta-transcriptome) sequencing

C. Methods based on detection and quantification of small
metabolites

i. Gas chromatography mass spectrometry

ii. Capillary electrophoresis coupled to mass spectrometry

iii. Fourier-transform infrared spectroscopy

iv. Nuclear and proton magnetic resonance spectroscopy

Box 1 Definitions

Microbiota
The assemblage of microorganisms present in a defined
environment.
Metagenome
The collection of genomes and genes from the members
of a microbiota. This collection is obtained through
shotgun sequencing of nucleic acid extracted from a
specimen (metagenomics) followed by assembly or map-
ping to a reference database and annotation.
Microbiome
This term refers to the entire habitat, including the
microorganisms (bacteria, archaea, lower and higher eur-
karyotes, and viruses), their genomes (i.e., genes), and the
surrounding environmental conditions. However, the
term is often also used for what is described as ‘meta-
genome’.
Metatranscriptomics
Analysis of the suite of expressed RNAs (meta-RNAs) by
high-throughput sequencing of the corresponding meta-
cDNAs. This approach provides information on the reg-
ulation and expression profiles of complex microbiomes.
The resulting census of all expressed RNAs present in a
specimen is called ‘metatranscriptome’.
Metaproteomics
Characterization of the entire protein complement of
environmental or clinical samples at a given point in
time. The resulting census of all proteins present in
any given specimen or tissue is called ‘proteome’.
Metabolomics
Determination of metabolite profile(s) in any given speci-
men or tissue. The resulting census of all metabolites
present in any given specimen or tissue is called
‘metabolome’.
These definitions are adapted from Marchesi et al.1
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BACTERIAL 16S RIBOSOMAL RNA

Each living cell contains ribosomes, which are composed
of two subunits, one large and one small. The small
ribosomal subunit contains an RNA molecule which is
16S in size in case of prokaryotic cells (including bacteria)
and 18S in case of eukaryotic cells. These small RNA
molecules are encoded by the bacterial genome.

The bacterial 16S rRNA is around 1500 nucleotide
long,2 with some variation across species. Several stretches
of this gene are highly conserved across all bacterial
groups. These conserved or constant sequences are inter-
spersed with regions that show marked variation (the
‘hypervariable regions’); nine such regions have been rec-
ognized and are referred to as V1 to V9 (Figure 1). The
variations in nucleotide sequences in these hypervariable
regions reflect evolutionary divergence of bacteria, and
hence, these sequences provide a reliable method for
identification and phylogenetic classification of bacterial
species. Methods for bacterial identification based on
nucleotide sequences in these regions have the advantage
that these do not need prior bacterial culture, and hence
can detect bacteria that are culturable as well as those that
do not growwell. Further, when thesemethods are applied
to bacterial mixtures, their results provide a relatively
unbiased assessment of the relative abundance of various
bacterial groups, irrespective of their capability to grow
and growth rate in culture.

The molecular techniques that were initially developed
could exploit only differences in the length (e.g. those
identified by gel electrophoresis) and major variations
Journal of Clinical and Experimental Hepatology | January/February 2019
in the nucleotide sequences (e.g. using restriction frag-
ment length polymorphism) of these hypervariable
regions across various bacterial species. However, in the
last 10–15 years, rapid development in nucleic acid
sequencing technology has led to high-throughput
multi-parallel sequencing becoming widely available and
at a reasonable price; this has made these techniques
virtually the current gold standard for the study of gut
microbiota.
NON-SEQUENCING BASED MOLECULAR
METHODS FOR STUDY OF MICROBIOTA

In these techniques, bacterial nucleic acid is extracted
from the specimen to be analyzed, followed by amplifica-
tion either of the entire length of the 16S rRNA gene or a
segment of this gene that includes one or more selected
hypervariable regions. This can be done using Polymerase
Chain Reaction (PCR) with universal primers correspond-
ing to conserved regions in the bacterial genome flanking
the entire 16S rRNA gene or its selected hypervariable
| Vol. 9 | No. 1 | 62–73 63



Figure 1 A representation of 16S ribosomal RNA gene showing the nine hypervariable regions (in brown colour) and constant regions (in blue).
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region(s). The resultant amplified mixture of 16S rRNA
genes or of its hypervariable fragments from all the bacte-
ria contained in the specimen can then be resolved using
one of several techniques. These techniques have included
electrophoresis-based separation based on fragment
length [e.g. denaturing gradient gel electrophoresis or
on a temperature-gradient gel electrophoresis], or those
based on the presence of specific nucleotide sequences [e.g.
Fluorescence In Situ Hybridization flow cytometry (FISH-
flow)3 and bacterial DNA microarrays].

The main drawback of these methods is a limited
resolution of bacterial groups. This results from the fact
that differences in length as well as sequences of 16S rRNA
gene from closely-related bacterial groups (e.g. species,
genera, and often larger phylogroups, such as families
and orders) are relatively small, precluding their separa-
tion. Further, the bacterial groups present in low abun-
dance are missed. Hence, these methods have over time
been replaced by newer-generation sequencing techniques.
16S RRNA GENE SEQUENCING METHODS

The traditional Sanger technique for nucleic acid sequenc-
ing needs relatively pure DNA as the startingmaterial, and
provides only one sequence per experiment. Thus, it was
not possible to sequence a specimen containing a mixture
of related nucleic acids using this technique, except by
cloning each of these nucleic acid molecules into separate
vectors and sequencing each clone, a very tedious and
costly undertaking. Since microbiota contains a mixture
of bacteria with somewhat diverse genomic material, these
could not be sequenced using this technique.

Several newer sequencing technologies, developed over
the last 15 years, have permitted massively-parallel
sequencing, i.e. simultaneous sequencing of eachmolecule
contained in a DNA mixture, such as that isolated from a
microbiota specimen. These techniques however pose two
major challenges. First, these generate a large amount of
data, with the number of sequences from each specimen
often reaching several million, posing a nightmare for
analysis. Second, these technologies generally provide
much shorter read-lengths than were possible from Sanger
sequencing. Several computational software tools and a
high computational power that have since become avail-
able allow matching of a large number of nucleotide
sequences to a large database, as also identification and
64
merger of various overlapping and contiguous short
sequence reads into longer reads (the so called contigs).
These tools have however helped overcome these limita-
tions, and permitted the widespread use of such
sequencing.

Several different technologies were developed and com-
mercialized for multi-parallel sequencing. However, most
of these have fallen by the wayside, andmost of the current
studies onmicrobiota use one of the two equipments from
one manufacturer (Illumina), namely: MiSeq (250 or 300-
base length reads, lower output) and Illumina HiSeq (150-
base length, higher output). In view of their limited read-
lengths, these techniques allow sequencing of only one or
two adjacent hypervariable regions of the 16S rRNA gene.
This information permits one to determine the types of
bacteria present as also their relative frequencies (abun-
dance) in a mixed specimen. This sequence length, though
practically reasonable for most work, may not effectively
classify all bacterial species. A newer alternative, which
allows for sequencing of the full-length bacterial 16S
rRNA gene, is offered by the more-recently developed
Single Molecule, Real-Time (SMRT) circular consensus
sequencing equipment from Pacific Biosciences.4 How-
ever, given the high cost of this technology, it has not
yet become popular for the study of microbiota.

The study of gut microbiota using the newer-genera-
tion multi-parallel sequencing techniques involves several
sequential steps, which are described in brief below.
Specimen Collection, Preparation and
Sequencing
Choice and Collection of Specimens
The accuracy of gut microbiota analysis depends on
appropriate selection, collection and pre-processing of
specimens. Specimens used for analysis of human gut
microbiota have included stool, intestinal tissue biopsy
and intestinal mucosal lavage material – the latter two
being collected during endoscopic examination.5 Each of
these specimens has certain advantages and
disadvantages.

If the aim is to assess the interaction of a certain
segment of the host gut with microbiota, tissue biopsy
may be themost preferable, permitting assessment of both
the host tissue characteristics and the microbiota. How-
ever, several parts of the gastrointestinal tract are not
ã 2018
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easily amenable to tissue biopsy (e.g. small intestine).
Biopsies from other parts of the gut may need specific
preparation (e.g. lavage for colonic biopsies), which may
itself alter the microbiota. Lavage material too suffers the
same limitation.

By contrast, fecal specimens draw from several seg-
ments along the length of the gastrointestinal tract,
though primarily the distal gut. Thus, these provide a
good surrogate for bacteria in the colon, the site where
gastrointestinal bacteria are anyway themost numerous in
density.5

Irrespective of the choice of specimen type, all the
specimens used in a particular study (whether from one
group of subjects at one or multiple time points, or
multiple groups that are to be compared with each other,
e.g. patients and controls) should be collected, stored and
processed in an identical manner. Ideally, all specimens
from one study should also be processed simultaneously,
and in the same laboratory by the same personnel, to
minimize any batch effect.6

DNA Extraction
In the next step, the specimen is subjected to DNA extrac-
tion. Several different protocols have been developed for
this step. Thesemethods vary by the type of specimen used
for analysis.7–9 Also, the results obtainedmay vary with the
method used. Hence, International Human Microbiome
Standards (IHMS) Consortium has provided standard
operating procedures to standardize specimen collection
and DNA extraction methods for such studies (http://
www.microbiome-standards.org), so that data obtained
can be compared across studies.

Selection of HVR, Amplification of DNA and
Generation of DNA Libraries
Of the nine hypervariable regions in 16S rRNA, V3, V4 and
V6, or pairs of adjacent HVRs (e.g. V3–V4 or V4–V5) have
been the most widely used. Of these, the V4–V5 region is
particularly suited for the study of microbiota, since it
provides the most comparable results across platforms10

and provides a high taxonomic resolution.11,12 However,
the sequencing of these hypervariable regions requires a
technique with a longer read length than themethods that
use only one hypervariable region.

The choice of region of 16S rRNA gene to be amplified
and sequenced is based on its ability to accurately classify
as many genera or species as possible (this needs inputs
from previous studies in the literature), level of conserva-
tion of the flanking region across microbial species (the
higher the better) and its length (whether the sequencing
platform chosen can sequence this length in a cost-effec-
tive manner).

Once the choice of hypervariable region(s) of the 16S
rRNA gene to be studied (the region of interest) is made,
custom-designed primers which include the priming
Journal of Clinical and Experimental Hepatology | January/February 2019
sequences flanking it as also sequences complementary
to Illumina forward and reverse sequencing primers
(located on Illumina sequencing flow cell – see below)
are used to amplify the region of interest using polymerase
chain reaction (Figure 2A).

The existing sequencing methods can generate enor-
mous amount of data in one run (i.e. one experiment).
This amount is much larger than the number of sequences
(depth of sequencing) that one needs for adequate study
of one specimen. Hence, it makes perfect sense to some-
how combine multiple specimens in one run, to reduce
costs. This is easily done by using slightly different reverse
primers, each containing in its sequence a unique six-
nucleotide ‘index’ sequence (Figure 2B). Thus, the ampli-
fication products for each specimen will contain different
sequences for this ‘index’. These products carrying distinct
‘index’ markers can then be pooled (in roughly equimolar
quantities) and run in the same sequencing experiment.
This process of pooling of different specimens is referred
to as ‘multiplexing’. Once the sequence data are obtained,
these are computationally segregated (demultiplexed) by
reading the ‘index’ region of each sequence to identify its
origin.

Sequencing
The DNA library (or a mixture of libraries – if multi-
plexing is done) is loaded on to a flow cell, which resem-
bles a glass slide to which several oligonucleotide
molecules of two different types (the sequencing primers)
are attached. The sequencing primers have sequences that
are complementary to those of the adapters included at
the ends of the two amplification primers used to generate
the DNA library. Thus, each DNA molecule in the DNA
library attaches to theflow cell via one of the adapters, and
carries the other adapter at its free end. Since the number
of attachment sites on theflow cell ismuch larger than the
number of DNA molecules added to it, these molecules
are widely separated from each other. Through several
steps, as described in detail elsewhere,13 each DNA mole-
cule is then used to generate a local cluster consisting of
its several identical copies around it. This results in for-
mation of several million distinct clusters, each derived
from a separate molecule in the DNA library, on the flow
cell. In the next steps, DNA in each of these clusters is
sequenced first in one (forward) direction and then in the
opposite (reverse) direction. This generates several mil-
lion pairs of data, with one pair representing data for each
cluster, and hence for each individual DNA molecule in
the original library. If the DNA fragments in the library
are short, then the 30-ends of the two reads (one forward
and one reverse) in each pair can be made to overlap and
their data fused with each other during analysis
(Figure 3).

The two currently-available machines that use the
Illumina platform provide reads of 150 (HiSeq) and
| Vol. 9 | No. 1 | 62–73 65
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Figure2 A schematic representation of various functional elements included in primers used to amplify the region of interest in the 16S rRNA gene for
generation of Illumina DNA sequencing libraries (A), and corresponding example of actual primer sequences used to amplify the V3 hypervariable
region in a particular study (B). (A) The template DNA (16S rRNA gene) is shown as thick horizontal line, with hypervariable region to be sequenced in
brown and the flanking constant regions in blue. Each primer includes (beginning from the 50-end) three main regions: (i) a P5 or P7 adapter sequence
(purple) for binding to the Illumina sequencing flow-cell, (ii) a binding site for forward or reverse Illumina sequencing primer (green), and (iii) an annealing
sequence that actually help bind the primer to the 16S rRNA gene (red), in the latter’s constant region. In addition, one of the primers contains a short
(usually 6 nucleotides in length) ‘index sequence’ (or ‘barcode’; shown in yellow) needed for multiplexing (for running several specimens in one flow
cell) and another short region, known as index sequencing primers (pink), that helps sequence the index/barcode. (B) In the primer sequences
(forward primer: 341F; reverse primer: 518R), the colours of letters correspond to those of various segments of the primers in ‘A’. Lower case purple
letters (purple) at 50 end represent adapter sequences necessary for binding of the library to the Illumina flow-cell, the underlined lowercase letters
(green) represent binding site for Illumina sequencing primers, and the uppercase letters represent the actual annealing sequencing (red) for binding to
the constant regions flanking the V3 region. The letters XXXXXX (yellow) represents the 6-nucleotide index region for ‘multiplexing’ (see main text).
NNNN represent a few degenerate bases (i.e. these locations can carry any of the four possible nucleotide bases); these are added to help to provide
sequence diversity, which is necessary for proper cluster identification by the sequencer.
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300 (MiSeq) bases in either direction. Merger of read
pairs can thus generate sequences of up to �250 and
�550 nucleotides, respectively, while providing for an
overlap of �50 bases in the opposing reads. Individual
HVRs from V2 to V7 have average lengths of 86 to 207
nucleotides. Hence either of these platforms can be used
to sequence one of these HVR regions. In contrast, the
average length of V8 HVR is 322 nucleotides.14 Hence, to
sequence this HVR region, or two adjacent HVRs,
Figure3 Schematic representation of merger of paired-end reads. The red b
the length of the region of interest and lengths of the forward and reverse read
In such cases, during analysis, the overlapping 30-ends of the forward and
verification, sequences in the two directions can be merged to yield a ‘recon
sequence.

66
paired-end sequencing using MiSeq platform is
advisable.

Processing and Analysis of 16S rRNA Sequence
Data
The raw sequence data obtained contain sequences cor-
responding to sequencing adaptors and primers used for
amplification; as the first step, these latter segments are
trimmed away.
oxes represent the primer regionswhich are trimmed out. Depending on
s, the two reads may overlap to a variable extent (shown as a grey box).
reverse reads are compared to verify each other’s accuracy. After this
structed’ or ‘merged’ sequence which is longer than the either starting

ã 2018
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If the paired-end sequencing technique has been used, in
which each DNA molecule is sequenced in both directions
and the reads in the two directions partially overlap, then
the next step is merge the paired forward and reverse reads
into one read. This has two main advantages. First, since
reads in the two directions overlap only partially, the merger
provides a longer read than is possible by reading in only one
direction. Second, the merger helps in excluding any low-
quality reads. The quality of raw NGS reads declines as
sequences proceeds towards the 30-end. Thus, when bidirec-
tional sequencing is done, the non-overlapping portions (50

ends) of the forward and reverse reads represent the best
quality data, and the overlapping portions (30 ends) have the
relatively poor-quality data. The merger process verifies that
the overlapping data in the two directions are identical,
serving to ensure that no errors have crept in, thus helping
ensure that the overall data quality is good.

The sequencing equipment also provides an estimate of
the data quality (higher quality = less risk of reading error)
for each nucleotide that is read. There is always a possi-
bility that certain bases in some sequences are of low-
quality and hence more likely to represent sequencing
errors. Quality-control filters are used to identify such
poor-quality reads and purge these from the data. Gener-
ally, only reads with average quality score of 30 or above
(which represents an expected error rate of fewer than one
base for every 1000 bases) are selected for further analysis.

Widely used open-source tools for primer and adapter
trimming, paired-end read merging and quality control
analysis are listed in Table 2. Details on the usage, select-
able features, strengths and limitations of these tools are
usually available on the servers where these are hosted.
Table 2 Popular Bioinformatics Tools Used for 16S rRNA Metag

Purpose Tools

Trimming of primers and adapters Cutadapt

Sickle

cutPrimers

AdaperRemova

Quality control NGS-QC ToolKit

Trimmomatic

clinQC

AfterQC

Merger of paired-end reads Pandaseq

PEAR

FLASH

MeFiT

16S-rRNA metagenome analysis pipelines QIIME

MOTHUR

MG-RAST

MICCA

Journal of Clinical and Experimental Hepatology | January/February 2019
Assignment of Reads to Operational
Taxonomic Units
The next step is clustering or binning the pre-processed
high-quality sequences into operational taxonomic units
(OTUs). Each OTU represents a cluster of nucleotide
sequences that are highly similar and are likely to repre-
sent one (or a few closely-related) organisms.15 This pre-
sumes that sequences with a high degree of nucleotide
identity (usually >97%) belong to the same bacterial spe-
cies. This assumption not only accounts for intra-species
sequence variations, but also helps overcome the problem
of occasional errors introduced during DNA sequencing;
for instance, if two sequences differ by only 1–2 nucleo-
tides, this difference may not be real and be due to
sequencing errors, and hence, it makes sense to treat these
as one. A lower clustering threshold of 95% is used for
genus-level analysis.16 The clustering also reduces the
large data set of several sequences (usually in hundreds
of thousands) to representative consensus sequences for a
few clusters or OTUs and the count of number of sequen-
ces in each cluster – this helps reduce the run time of
subsequent steps in data analysis.
Taxonomy Assignment
A representative sequence from each OTU is then mapped
to a reference 16S-rRNA sequence database. The OTU is
then assigned the taxonomy of the closest match found in
the database on such mapping. By doing this for all the
OTUs, one can obtain information on the various types of
bacteria present and relative abundance of each, in a
particular specimen.
enome Analysis.

URL

https://github.com/marcelm/cutadapt
https://github.com/najoshi/sickle

https://github.com/aakechin/cutPrimers

l https://github.com/MikkelSchubert/adapterremoval

http://www.nipgr.res.in/ngsqctoolkit.html
http://www.usadellab.org/cms/?page=trimmomatic

https://sourceforge.net/projects/clinqc/

https://github.com/OpenGene/AfterQC

https://github.com/neufeld/pandaseq
https://sco.h-its.org/exelixis/web/software/pear/

https://ccb.jhu.edu/software/FLASH/

https://github.com/nisheth/MeFiT

http://qiime.org/
https://www.mothur.org/

http://metagenomics.anl.gov/

http://micca.org/
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These reference databases contain several thousand
16S-rRNA gene sequences, with information on the bac-
terium (name and phylogeny) from which each is derived.
Several such databases are currently available, namely
SILVA,17 Ribosomal Database Project (RDP),18 Green-
genes19 and EzTaxon-e.20 Another alternative is the use
of RNACentral,21 an aggregated RNA resource, which
allows the use of 16S rRNA sequences from several or
all the above-mentioned databases. Alternatively, a spe-
cialized database of 16S rRNA sequences of human intes-
tinal organisms (HITdb)22 can be used when one is
working with data from microbiota of intestinal origin.

Admittedly, no good match can be found for represen-
tative sequences from some OTUs, and these OTUs thus
remain unclassified. Also, some OTUs can be assigned to a
higher-level taxon (e.g. a particular family or order) but
not to a specific lower-level taxon (e.g. genus or species).
USING THE MICROBIOTA COMPOSITION
DATA FOR DECISION MAKING

Data on microbiota in one specimen are of little use.
Almost always, one looks at data from several specimens.
Once data on the type and abundance of various bacteria
present in each of several specimens have been obtained,
further analyses of such data can be broadly categorized
into three types:
i) Estimation of diversity within a specimen and between

groups of specimens;
ii) Identification of specific taxa that differ significantly between

study groups; and
iii) Functional profiling to predict the genes and metabolic

pathways.
Various steps involved in each of the above analyses are

described below.
As a first step, data noise is reduced by purging data for

OTUs (e.g. species) that are observed in only a few speci-
mens (e.g. fewer than 10% specimens – i.e. in only 2 or
fewer specimens, if the study has a total of 20 specimens)
or account for very few reads (e.g. <0.005% of reads in all
the specimens taken together). These bacterial groups that
are present in only a few subjects with a particular disease
or in a very small concentration are unlikely to be impor-
tant for disease pathogenesis, and hence can be safely
ignored. The specimen-wise observation count of each
OTU remaining in the dataset is then tabulated as an
OTU table, with each specimen represented as a column
and each taxon as a row, and the cells contain information
on abundance of a particular taxon in a particular speci-
men. This table describes the bacterial composition of
each specimen, and forms the basis of analyses that follow.

Estimation of Diversity of Microbiota
Estimation of microbial diversity has clinical importance, as
alterations in gut flora composition (also sometimes
68
referred to as ‘dysbiosis’) are often associated with reduced
microbiome diversity.23 Diversity is assessed using two sep-
arate types of measures – namely alpha diversity and beta
diversity – which represent entirely different constructs.

Alpha Diversity
Alpha-diversity is defined as the number of unique taxa
(richness) and their distribution (evenness) in a particular
specimen. Thus, a specimen which contains several differ-
ent types of bacteria is considered to have a greater diver-
sity than another specimen with fewer types of bacteria.
Another factor that affects the assessment of diversity is
the distribution of various bacterial types. For instance, let
us think of two specimens (A and B) having four types of
bacteria (a, b, c and d) each. Further, let us assume that
specimen A contains the four types of bacteria in equal
numbers, accounting for 25% of the bacterial cells each; by
contrast, in specimen B, bacterium ‘a’ accounts for 97% of
cells, and ‘b’, ‘c’ and ‘d’ for 1% each. In this case, the former
specimen is more diverse and is considered to have a
greater alpha diversity than the latter.

Several indices are available for estimation of alpha-diver-
sity. These include Chao1 and Abundance-based Coverage
Estimator (ACE), which primarily measure the species rich-
ness. By contrast, other commonly-used indices of alpha
diversity, namely the Shannon Index and the Simpson index
measure both the richness and the evenness of distribution
of taxa.24 These indices act as summary statistics of alpha
diversity of individual specimens. A comparison of alpha
diversity indices in two groups of specimens (e.g. from
patients with a particular disease and healthy controls; using
a parametric [unpaired t test] or non-parametric [Mann–
Whitney U or Wilcoxon’s rank sum test] statistical test) can
inform us whether the disease is associated with a change in
the diversity of gut microbiota.

Beta Diversity
Beta diversity provides a measure to assess the difference
in species composition of two groups of specimens, e.g.
those from patients with a particular disease and healthy
subjects (control group). Looked at in another way, this
measure calculates the number of species that are different
between the two groups.

Let us look at an example of two studies, A and B with a
fewspecimens each. In studyA (Figure4A), letus assume that
the total number of species in the specimens included in two
groups (let us call them K and L) is Ktot and Ltot, respectively.
Further, let us assume that Mtot is the number of species
common to both groups (assumed here as 3 species). In this
situation, beta diversity is calculated as: Beta Diversity Index
BDI(K,L) = 1 � [(Mtot � 2)/(Ktot + Ltot)], whichwould be 0.7.
Similarly, ifwe lookat studyBconsistingof twoother groups
XandY (Figure4B)whichalsohave10 species each, but share
a largerproportionof bacterial species (say5) (Ztot), their beta
diversity ‘BDI(X,Y)’would be expected to be 0.5. Their values
ã 2018



Figure4 Examples of calculation of beta diversity index (panels A and B). In panel A, two specimens (K and L) have 10 species each (shown by lower
case letters). Of these 3 species (h, i and j) are shared and 7 each are distinct being present in only one specimen. The beta diversity index for these two
specimens can be calculated as 0.70. By comparison, in panel B, two specimens (X and Y), with similar number of species (10 each) have a greater
overlapwith 5 shared species and 5 unshared species each. In this case, the beta diversity index is calculated to be 0.50, a lower value indicating lower
diversity (and greater sharing) than in panel ‘A’. Panels C and D show examples of principal component analysis plots. In panel C, the three groups of
specimens (shown using red, yellow and blue dots) have small intra-group beta-diversity values and large inter-group beta-diversity values. Hence, the
dots for each group cluster together, but are placed at larger distances from the other groups. This clustering suggests that the microbiota in three
groups are quite distinct from each other. By comparison, in panel D, the specimens from 3 groups show substantial overlap, indicating that
microbiota in the three groups are not much different. In this situation, the inter-group and intra-group diversities are similar.
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range from zero to one, with a high value indicating a lower
level of similarity between the two groups, whereas a low
value shows a higher level of similarity.

The example shown above (and in Figure 4) is a bit
simplistic, since it looked at only the species counts. In
real-life, somewhatmore complexmethods are used. Thus,
for estimation of beta diversity, data from different speci-
mens (e.g. from individual patients with a disease) are
assembled into a table where each row represents a bacte-
rial group (e.g. species) and each column represents a
specimen. In this table, the values in individual cells
contain observation counts for the particular bacterial
group in a particular specimen (often after normalization,
using one of several available normalization methods).
Based on the above table, a distance/dissimilarity matrix
is generated for each pair of specimens, using either a non-
phylogeny-based or a phylogeny-basedmethod. Themeth-
ods based on non-phylogeny distances, such as Bray–Cur-
tis, Euclidean, Jaccard or Hamming distancematrices, take
into account abundances of various taxa in the two
Journal of Clinical and Experimental Hepatology | January/February 2019
specimens being compared. The methods based on phy-
logeny-based distances also take into consideration the
relative phylogenetic distances between various taxa; these
are further of two types, i.e. un-weighted UniFrac method
(which considers only the presence and absence of OTUs
across specimens and the phylogenetic distances of taxa)
and weighted UniFrac method (which also considers rela-
tive abundance information for each OTU and phyloge-
netic distances between them).25

The clustering patterns of specimens belonging to
different groups, as represented in the beta-diversity
matrices, can also be visualized in 2D or 3D plots using
principal coordinate analysis. In these plots, the specimens
with smaller distances between them appear to cluster
closer together (Figure 4C) than specimens that have
greater distances between them (Figure 4D).

Normalization of Data for Diversity Analyses
The absolute number of reads often varies across speci-
mens included in a study. This poses a problem in alpha
| Vol. 9 | No. 1 | 62–73 69
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and beta diversity analyses. For instance, if a specimen is
sequenced in two different experiments to different
depths (i.e. to obtain different numbers of total sequence
reads), the experiment with larger depth is likely to pick up
a larger number of unique taxa. Hence, during diversity
analysis, it is important that data used from each speci-
men have the same depth of sequencing. This is done
using a ‘rarefaction technique’, whereby, for each speci-
men, an identical number of sequence reads are randomly
selected and used for analysis (referred to as normalization
of data by equalizing the sampling depth of all the speci-
mens to the one with the fewest reads). Besides simple data
reduction, some advanced normalization techniques such
as DESeq2, edgeR or Cumulative Sum Scaling (CSS) nor-
malization have been proposed,26 each with some advan-
tages and limitations. The choice of normalization
method should be such that it has the minimum risk
of introducing a bias.

Identification of Specific Taxa that Differ
Significantly Between Study Groups
Analysis of information on gut microbiota often involves
comparison of two (and sometimes more than two)
groups of specimens. These specimens can either belong
to two different sets of individuals, as in case-control
study design. Alternatively, the two groups of specimens
can belong to the same of individuals but at different time
points.

Case-Control Analysis (Unpaired Data)
Identification of core bacterial taxa that are significantly
enriched in one group of specimens through case-control
comparison study is an important aim of microbiota
analysis. This analysis is used in situations when micro-
biota of a group of patients is compared to a group of
controls, or when microbiota of two groups of patients,
with different disease profiles, are compared. Thus, a
specific bacterial taxon (phylum, family, order, genus or
species) may be absent or have a low relative abundance in
one group of specimens and a higher relative abundance
in the other group of specimens.

For such case-control comparison for identification of
differential abundance of taxa, unpaired statistical tests
are used. The statistical test used may be parametric (e.g.
unpaired t test), or non-parametric (e.g. Mann–Whitney U
test or Wilcoxon’s rank sum test); the latter is preferred
since often the underlying data cannot be assumed to
follow a normal distribution.

Comparison of Paired Data
Paired comparisons often refer to analysis of data when
specimens are collected from the same set of subjects at
two points, e.g. analysis of microbiota using stool speci-
mens of a group of individuals before and after a particu-
lar intervention. Such analysis requires the use of a paired
70
parametric (paired t test) or non-parametric (Wilcoxon’s
signed-rank test) statistical test.

Controlling for Multiple Comparisons
Due to the extremely complex nature of gut microbiota,
each specimen may contain several hundred taxa. Thus,
comparison of abundances of these taxa between two sets
of specimens, whether paired or unpaired, implies the use
of multiple statistical tests, one for each bacterial taxon
with the null hypothesis that the groups do not differ.

Let us assume a situation where abundances of 100
bacteria taxa (often at different taxonomic ranks – phyla,
orders, families, genera and species) are compared between
a group of patients and controls, using the usual P value
cut-off of 0.05 for significance. In such analysis, it can be
shown that around 5 of these 100 comparisons can show P
value < 0.05 just by chance, leading to a false conclusion
of difference between groups where none actually exists.
To avoid this, one of the several available methods
(referred to as ‘correction for multiple comparisons’) is
applied – these adjust the calculated P values to remove
the effect of multiple comparisons, permitting the com-
parison of resultant ‘adjusted P value’ against the usual
cut-off. Two methods that are most commonly used for
this purpose are: Bonferroni correction27 and Benjamini-
Hochberg false discovery rate correction.28

Specific Measures for Comparison of Microbiota
Composition Across Groups
Some specific measures have been proposed for compari-
son of gut microbiota composition between groups. These
are meant to be used in specific situations, based on
experience accumulated from studies on gut microbiota.
For instance, based on data from patients with liver dis-
ease, a measure named as ‘Cirrhosis Dysbiosis Ratio’ has
been proposed.29 It is computed as the natural log (ln) of
the ratio of aggregated abundance of autochthonous
(Lachnospiraceae, Ruminococcaceae and Veillonellaceae)
and non-autochthonous (Enterobacteriaceae and Bacter-
oidaceae) taxa. Thus:

Cirrhosisdysbiosisratio ¼ loge½ðaþ bþ cÞ=ðdþ eÞ;
where a, b, c, d and e represent individual abundances of
Lachnospiraceae, Ruminococcaceae, Veillonellaceae,
Enterobacteriaceae and Bacteroidaceae, respectively.

Similarly, another measure ‘Microbial Dysbiosis Index’
has been proposed for use in Crohn’s disease.30

16S rRNA Metagenomic Analysis Pipelines
Installation, configuration and use of individual tools for
trimming, QC analysis, taxonomy profiling is somewhat
complicated for clinicians. To overcome this difficulty,
several bioinformatic pipelines have been developed to
automate the various steps of 16S rRNA gene-based meta-
genome analysis. Some of the available software tools are
ã 2018
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listed in Table 2. For comprehensive statistical, visual and
comparative analysis of microbiome data, online servers,
such as MicrobiomeAnalyst31 and METAGENassist,32 can
also be used. The websites where these tools are hosted also
provide the details of procedures used, and these should be
useful to those readers who are interested in knowingmore
about the analytical algorithms and procedures.

Prediction of Functional Profiles from 16S
rRNA Data
One of the purposes of studying microbiota is to know
what metabolic functions it is capable of. Knowing the
changes in functions of altered microbiota in a disease
could help understand how the alteration in composition
of the microbiota may relate to the pathogenesis of the
particular disease.

It is possible to assess the function of microbiota from
its composition using tools such as PICRUSt (Phyloge-
netic Investigation of Communities by Reconstruction of
Unobserved States)33 and Tax4Fun,34 which use data
annotated by Greengenes and SILVA databases, respec-
tively. These tools, use the data on composition of a
particular microbial community (i.e. presence and abun-
dance of various bacterial taxa in it) and the annotated
genome sequences of these taxa to estimate the likely gene
content of the community. Thus, these tools provide as
output a table containing information about the abun-
dance in each specimen of various genes coding for each
metabolic pathway. These data can then be further ana-
lyzed using a statistical tool, such as STAMP (Statistical
Analysis of Taxonomic and Functional Profiles).35
SHOTGUN METAGENOME (MICROBIOME)
SEQUENCING

Sequencing of 16S rRNA gene or its segments, as dis-
cussed above is a powerful technique. However, it has
the drawback that the determination of bacteria present
in a specimen is based on the association of various
sequences of the region of 16S rRNA gene studied with
particular bacterial taxa. However, this association is not
perfect. Second, this method is limited to the analysis of
taxa for which informative sequences are included in the
16S rRNA reference databases. In addition, errors during
sequencing may prevent accurate species assignment.
More importantly, this method provides information only
on taxonomic composition of the specimens studied, but
cannot directly assess the biological functions of the
microbial communities that these specimens represent.
Though phylogenetic reconstruction tools (see “Predic-
tion of functional profiles from 16S rRNA data” section)
have been used to estimate the biological functions of a
microbial community based on 16S rRNA data, these
remain indirect and their accuracy is limited by the
Journal of Clinical and Experimental Hepatology | January/February 2019
non-availability of compete genome annotations for a
large number of bacteria.

Another method for study of microbiota involves
sequencing of all the genomic material present in a speci-
men (referred to as ‘microbiome’ – a term used to denote
the collective genetic material of the microorganisms in a
particular environment, and ‘metagenome’ – all the
genetic material of microbial or host origin contained
in an environment) without the use of any culture
method, instead of just the 16S rRNA gene. These meth-
ods have the advantage of providing information on the
metabolic capabilities of the microbiota present in a par-
ticular specimen.

In this technique, DNA is extracted from all the cells in a
microbial community. Thereafter, instead of targeting a
specific genomic locus (e.g. 16S rRNA gene) for amplifica-
tion, all the DNA is sheared into tiny fragments that are
independently sequenced using a newer-generation
sequencing technique to obtain information on the entire
‘microbiome’ or ‘metagenome’. This provides several mil-
lion sequence reads that belong to various locations on the
genomes of the diverse bacteria, as also the host DNA,
present in the starting specimen. These reads thus contain
sequences not only of the taxonomically-informative 16S
rRNA genes for the bacteria contained in the specimen, but
also those corresponding to coding regions for enzymes
that serve critical biological functions and are contained in
the bacterial community. Hence, these metagenomic
sequence data provide an opportunity to simultaneously
explore two different aspects of the microbial community:
which bacteria does it contain and what are these bacteria
capable of doing? This capability has led to formation of
major consortia (such as the human microbiome project)
around the globe that are trying to use metagenomics as a
tool for understanding the intestinal microbiota in human
health and disease in several populations around theworld.

In brief, the metagenomic sequence reads obtained in
this procedure are mapped to a large number of bacterial
reference genomes. Reads that uniquely map to adjacent
locations on a reference genome are then assembled to
form contigs, or continuous stretches of DNA sequence to
reconstruct partial or complete draft microbial genomes.
These contigs are then used to identify the gene families
these belong to. By analysing the abundance of contigs for
a particular gene family or those for all the genes in a
particular pathway, a fairly accurate estimate of overall
functional capabilities of all the bacteria present within a
community can be obtained.

However, processing and analysis of shotgun metage-
nome sequence data poses several major challenges. First,
the sequence data obtained relate not only to the bacterial
DNA but also to the unwanted host DNA. In certain
situations, for instance in analysis of human fecal speci-
mens, these ‘contaminant’ human DNA sequences may
overwhelm the bacteria DNA. To deal with this problem,
| Vol. 9 | No. 1 | 62–73 71
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methods have been developed to selectively enrich micro-
bial DNA sequences in the sequencing dataset by filtering
host DNA sequences from the raw metagenome data, as
the first step in data processing. Second, to ensure ade-
quate representation of most of the bacteria present in a
community, the amount of data generated needs to be
very large. These large number of reads then have to be
compared to the entire genomes of a large number of
bacteria, many of which are quite closely related. This
poses a huge computational challenge in terms of com-
puter power. Third, the publically-available databases do
not contain full reference genomic sequences for many
bacteria. Finally, and possibly most importantly, metage-
nome data are several-fold more expensive to generate
than the 16S rRNA data. Hence, this technique has not
become commonplace for the study of gut microbiota.
OTHER NEWER TECHNIQUES (TABLE 1)

Meta-transcriptomics36 is a tool similar to metagenomics,
except that RNA, instead of DNA, is extracted and
sequenced. The DNA analysis allows us to assess the
functional capability of the genomic material contained
in the bacteria present in a particular microbial commu-
nity; however, one cannot be certain whether these genes
are actually being expressed or not. The study of RNA
allows us instead to study the expression of various genes
in the bacterial genomes, taking us one step closer to the
real-life functional characterization of the specimen.

It is theoretically possible to achieve an even better insight
into the functional potential of microbiota in a particular
specimen by study the profile of proteins contained in it
(metaproteomics)37 or various metabolites resulting from
various metabolic pathways (metabolomics).38 The use of
these techniques is currently at an early stage, but with the
ongoing development of tools for the measurement of these
substances and the analysis of data generated, we should
hear more about these in the coming years.
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