A new charge density wave oxide, LiVMoO₅, and its tungsten analogue obtained by topotactic reduction of LiVMO₆ (M = Mo, W) brannerites[†]

J. Gopalakrishnan,* N. S. P. Bhuvanesh, R. Vijayaraghavan and N. Y. Vasanthacharya

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560 012, India

We report the synthesis of two new low-dimensional oxides, $LiVMO_5$ (M = Mo, W), which contain $S = \frac{1}{2}$ transition-metal atoms, V^{IV} : $3d^1$ and Mo^V : $4d^1/W^V$: $5d^1$, by topotactic reduction of the $LiVMO_6$ brannerites in hydrogen. $LiVMO_5$ crystallizes in orthorhombic structures related to the parent brannerite structure. The VMO₅ network of the new oxides is likely to correspond to one of the A_2X_5 structures predicted by A. F. Wells (*Philos. Trans. R. Soc. London A*, 1984, **312**, 589). LiVMO₅ is metallic showing a charge density wave (CDW) instability around 230 K; interestingly, LiVWO₅ is a paramagnetic semiconductor down to 20 K.

Several transition-metal oxides containing $S = \frac{1}{2}$ metal atoms exhibit novel electronic properties, especially when the electronic interaction is not uniform in all the three dimensions. For example, rutile-like VO₂ shows a metal–insulator transition^{1–3} at 340 K that is accompanied by cell doubling, pairing of V atoms and charge ordering; quasi-low-dimensional molybdenum oxides $A_x Mo_6 O_{17}$ (A = Na, K, Tl) and $Mo_4 O_{11}$ containing $S = \frac{1}{2}$ Mo^V are two-dimensional (2D) metals showing charge density wave (CDW) instabilities^{4,5} at low temperatures; $S = \frac{1}{2}$ spin-ladder compounds[‡] such as SrCu₂O₃, Sr₂Cu₃O₅, LaCuO_{2.5} and (VO)₂P₂O₇ show short- and long-range spin correlations that depend on whether the ladder legs are even or odd;⁶ and, last but not least, La₂CuO₄ is a well known S = $\frac{1}{2}$ 2D antiferromagnet that shows superconductivity^{7,8} when appropriately doped with holes.

All these oxides contain only one kind of $S = \frac{1}{2}$ metal atom, namely VIV, MoV or CuII. We considered it interesting to synthesize new low-dimensional transition-metal oxides containing two different $S = \frac{1}{2}$ metal atoms and explore the electronic properties. Here we report the synthesis of two such oxides, LiVMO₅ (M=Mo, W) containing V^{IV} : 3d¹ and $Mo^{V}:4d^{1}/W^{V}:5d^{1}$, and the characterization of their structure and electronic properties. The synthesis of these oxides was achieved by a topochemical reduction of the well known layered oxides, 9,10 LiVMO₆ (M=Mo, W), possessing the brannerite structure.11 The electronic properties of these oxides reveal that while the tungsten compound, LiVWO5, is a paramagnetic insulator down to 20 K, the molybdenum analogue, LiVMoO_{5.04}, is a metal showing indications of a CDW instability below 230 K. We believe that this is the first report of a CDW transition in a metal oxide containing two different $S = \frac{1}{2}$ transition-metal atoms.

Experimental

LiVMO₆ (M=Mo, W) was prepared, as reported in the literature,^{9,10} by reacting Li₂CO₃ and V₂O₅ first at 550 °C for 24 h to give LiVO₃, which was heated subsequently with MoO₃ (at 550 °C) or WO₃ (at 650 °C) for 24 h. Reduction of LiVMO₆ was investigated by thermogravimetry (TG; Cahn TG-131 system) at a heating rate of 2 °C min⁻¹, under flowing hydrogen diluted with nitrogen (H₂–N₂ in the ratio 1:2). From the TG results (Fig. 1), we determined that bulk LiVMO₅

could be prepared by reducing pellets of LiVMO₆ (at 560 °C for M = Mo and at 575 °C for M = W) in dilute hydrogen (H₂-N₂ in the ratio 1:2) for 2 h with one intermittent grinding and pelleting.

The parent oxides, LiVMO₆, and their reduced products, LiVMO₅, were characterized by X-ray powder diffraction (XRD; JEOL JDX-8P X-ray powder diffractometer; Cu-K α radiation). Unit-cell parameters were derived by least-squares refinement of the powder diffraction data using the PROSZKI program.¹² The oxygen stoichiometry/oxidation state of transition-metal atoms in LiVMO₅ was determined by redox potentiometric titration using Ce⁴⁺ as the oxidant. The mass gain during reoxidation of the samples in the TG balance provided an additional check of the oxygen stoichiometry. The powder XRD pattern of the oxidized material coincided with that of the parent LiVMO₆.

Electrical resistivity measurements of LiVMO₅ were carried out on as-prepared pellets by a four-probe technique in the temperature range 300-20 K using a closed cycle helium cryostat. Dc magnetic susceptibility measurements were made in the 300-20 K range using a Lewis Coil magnetometer (George Associates, USA, Model 2000).

Results and Discussion

 $LiVMO_6$ (M=Mo, W)^{9,10} crystallizes in the brannerite (ThTi₂O₆) structure¹¹ (Fig. 2) which consists of edge- and corner-sharing M'O₆ (M'=transition metal) octahedra. The

Fig. 1 Thermogravimetry (TG) curves for the reduction of (a) LiVMoO₆ and (b) LiVWO₆. The inset shows the TG curves for the reoxidation of (a) LiVMoO_{5.04} and (b) LiVWO₅.

[†] Contribution No. 1231 from the Solid State and Structural Chemistry Unit.

[‡] Spin-ladder compounds contain two or more metal-oxygen-metal chains interconnected by oxygen atoms.

Fig. 2 Polyhedral view of the brannerite structure of LiVMO₆. Open circles in the interlayer space represent the Li atoms. The structure is drawn from the atomic positional parameters of LiVWO₆ given in ref. 10, using ATOMS software.

Table 1 Composition, lattice parameters, CDW transition temperature (T_c) and room-temperature resistivity (ρ_{RT}) of LiVMO₅

	lattic	e parameter			
composition	а	b	с	$T_{\rm c}/{ m K}$	$\rho_{\rm RT}/\Omega~{\rm cm}$
LiVMoO _{5.04} LiVMoO _{5.08} LiVWO ₅	14.122(1) 14.143(7) 14.06(2)	14.328(2) 14.578(9) 28.81(1)	7.618(1) 7.587(3) 7.466(3)	230 240	0.052 0.096 58

connectivity of the octahedra could be represented as $M'O_{1/1}O_{2/2}O_{3/3}$, indicating that one of the oxygen atoms of each octahedron is unshared. The negative charges on the M'_2O_6 sheets are compensated by additional cations (Li or Th) which reside in the interlayer space.

The M'_2O_6 sheets of the brannerite structure could be visualized to give rise to a new M'_2O_5 framework by sharing the unshared oxygens. The connectivity of this new framework would be $M'O_{3/2}O_{3/3}$. The possibility of such an A_2X_5 structure derived from the brannerite was predicted by Wells in his classic paper surveying octahedral structures.¹³

We chose $LiVMO_6$ (M = Mo, W) for the realization of the new M'_2O_5 framework since both V^V and Mo^{VI}/W^{VI} can be reduced easily to V^{IV} and Mo^V/W^V by hydrogen at relatively low temperatures. Our TG studies[†] (Fig. 1) showed clearly the formation of an intermediate corresponding to the composition LiVMO₅. While the synthesis of bulk LiVWO₅ could be achieved readily by heating presintered pellets of LiVWO6 at 575 °C for 2 h in flowing hydrogen diluted with nitrogen, the synthesis of stoichiometric LiVMoO5 required careful monitoring of temperature and duration of reduction. For example, a sample of LiVMoO_{5.04} was obtained by reduction at 560 °C for 2 h, whereas the composition of a sample obtained by reaction at 550 °C for 2 h was LiVMoO_{5.08}. The compositions, together with other characteristics of the LiVMO₅ phases synthesized, are given in Table 1. Since V^{IV} and Mo^V/W^V are the most likely oxidation states accessible under the experimental synthesis conditions, the reduced phases could be formulated as LiV^{IV}M^VO₅. Other combinations of oxidation states,

Fig. 3 X-Ray powder diffraction patterns of (a) $LiVMoO_{5.04}$ and (b) $LiVWO_5$. (c) XRD pattern of the oxidation product of $LiVMoO_{5.04}$. This pattern coincides with that of $LiVMoO_6$.

viz. V^{III} , Mo^{VI}/W^{VI} and V^V , Mo^{IV}/W^{IV} , are unlikely on the basis of the redox characteristics of these transition metals.

The XRD pattern of LiVMoO₅ [Fig. 3(a)] could be indexed on an orthorhombic cell [a=14.122(1), b=14.328(2), c= 7.618(1) Å; Table 2]. The pattern of LiVWO₅ [Fig. 3(b)] also indexes on a similar orthorhombic cell [a=14.06(2), b= 28.81(1), c=7.466(3) Å; Table 3], but with a doubling of the b axis as compared to LiVMoO₅. On comparing the lattice parameters of the parent brannerite (for LiVMoO₆: a=9.347, b=3.670, c=6.632 Å, β =111° 28′) with the lattice parameters of LiVMoO₅, we see the following relationships: a(LiVMoO₅) $\approx \sqrt{2a}$ (LiVMoO₆), c(LiVMoO₅) $\approx 2b$ (LiVMoO₆).

The unshared vertex pointing towards the interlayer space [Fig. 4(a)], shares a similar vertex in the adjacent slab, thus eliminating an oxygen atom on reduction. Hence we expect a

Table 2 X-Ray powder diffraction data for LiVMoO₅^a

h	k	l	$d_{ m obs}/{ m \AA}$	$d_{ m calc}/{ m \AA}$	$I_{\rm obs}$
0	2	0	7.167	7.165	14
3	1	0	4.473	4.472	34
2	2	1	4.210	4.197	100
0	0	2	3.810	3.810	9
0	4	0	3.583	3.582	23
4	1	0	3.427	3.427	19
0	2	2	3.363	3.364	43
2	0	2	3.351	3.353	54
0	4	1	3.243	3.242	65
4	2	1	2.926	2.924	28
0	5	1	2.706	2.682	21
5	1	1	2.603	2.604	9
4	1	2	2.546	2.548	8
4	2	2	2.439	2.435	54
4	4	1	2.386	2.388	8
6	0	0	2.353	2.353	8
0	6	1	2.279	2.279	8
1	3	3	2.214	2.215	11
5	2	2	2.163	2.163	8
0	7	0	2.045	2.047	9
6	0	2	2.002	2.002	9
4	6	1	1.914	1.915	10
2	6	3	1.689	1.689	20
4	1	4	1.663	1.665	26
8	3	1	1.618	1.618	9
0	8	3	1.465	1.464	9

aa = 14.122(1), b = 14.328(2), c = 7.618(1) Å.

[†] The TG curve of LiVMoO₆ (Fig. 1) shows three intermediate stages corresponding to the loss of 0.5, 1 and 2 oxygens, the final product of reduction being a mixture of LiVO₂ and MoO₂ at 700 °C. On the other hand, the TG curve of LiVWO₆ shows four stages corresponding to the loss of 0.5, 1, 1.25 and 2.5 oxygens up to 800 °C.

Table 3 X-Ray powder diffraction data for LiVWO₅^a

h	k	l	$d_{ m obs}/{ m \AA}$	$d_{ m calc}/{ m \AA}$	I _{obs}
0	4	0	7.225	7.204	10
0	5	0	5.735	5.763	23
3	0	0	4.683	4.689	94
2	3	1	4.495	4.518	34
3	3	0	4.230	4.231	90
0	6	1	4.040	4.040	9
2	5	1	3.818	3.828	7
0	0	2	3.738	3.733	78
0	8	0	3.612	3.602	50
4	0	0	3.520	3.516	5
1	3	2	3.370	3.378	24
2	1	2	3.284	3.277	27
0	8	1	3.249	3.245	16
3	1	2	2.903	2.906	100
2	5	2	2.858	2.862	19
2	6	2	2.722	2.712	22
0	11	0	2.618	2.619	9
0	0	3	2.488	2.489	26
4	3	2	2.475	2.475	26
1	11	1	2.435	2.435	14
0	12	0	2.401	2.402	12
0	4	3	2.358	2.352	9
2	11	1	2.330	2.332	14
3	11	0	2.287	2.287	10
0	13	0	2.214	2.217	10
6	3	1	2.178	2.179	36
6	6	1	2.029	2.029	10
7	0	0	2.002	2.009	6
5	7	2	1.973	1.972	17
0	15	0	1.922	1.921	10
7	3	1	1.903	1.903	9
5	0	3	1.864	1.864	13
0	16	0	1.804	1.801	10
3	15	0	1.779	1.778	8
1	5	4	1.762	1.762	11
3	15	1	1.729	1.729	11
0	17	0	1.694	1.695	38
0	1	5	1.491	1.492	12
1	3	5	1.468	1.468	10
6	11	3	1.429	1.430	18

aa = 14.06(2), b = 28.81(1), c = 7.466(3)Å.

decrease in the *c* parameter of LiVMoO₆; accordingly, we have $b(\text{LiVMoO}_5) < 3c(\text{LiVMoO}_6)$.

Also the reduction of LiVMO₆ and subsequent reoxidation of the product LiVMO₅ phases occur reversibly at relatively low temperatures (500–575 $^{\circ}$ C) suggesting that the LiVMO₆-LiVMO₅ transformation is most probably topotactic. Thus on the basis of lattice parameters and reversible reduction-oxidation, we propose a schematic model for the transformation of LiVMoO₆-LiVMoO₅ in Fig. 4. We see that the structure proposed for LiVMoO₅ in the *ab* plane is topologically similar to the structure of LiVMoO₆ in the ac plane, except that the unshared oxygens in the adjacent layers of the latter structure are connected to produce a quasi-twodimensional structure in the former. Accordingly, the possible topotactic relationships are: [100](LiVMoO₅)||[100](LiV MoO_6); $[010](LiVMoO_5) || [001](LiVMoO_6); [001](LiV$ MoO_5 || [010] (LiVMoO₆). We believe that similar topotactic relationships exist between LiVWO₅ and LiVWO₆.

From the connectivity of the metal-oxygen octahedra in the LiVMoO₅ structure [Fig. 4(b)], we see that the electronic interaction between the $S = \frac{1}{2}$ cations is not likely to be uniform in all the three dimensions; the interaction between the transition-metal atoms would be more pronounced in the (130) planes (the MoO₆ octahedra are connected by edges in these planes) than in the direction perpendicular to these planes. Considering that the ordering of the transition-metal atoms in the parent brannerite sheets^{9,10} is most probably retained in the (130) planes of the product LiVMoO₅ phases, one would

Fig. 4 Idealized representation of the structural transformation of $LiVMoO_6$ (a) to $LiVMoO_5$ (b). Open circles represent the Li atoms.

expect quasi-two-dimensional electronic properties for these materials.

We show the electrical resistivity data for LiVMO₅ in Fig. 5 and 6. We see that the tungsten compound is semiconducting (Fig. 5), having a small activation energy (0.005 eV) in the 100–20 K region. The molybdenum compound (LiVMoO_{5.04}), on the other hand, is metallic down to 230 K, below which it shows a metal–semiconductor–metal transition [Fig. 6(a)]. The resistivity decreases with temperature down to 240 K; below 230 K it increases showing a maximum at 120 K. The resistivity below 120 K again decreases down to 20 K. This resistivity behaviour is reminiscent of quasi-low-dimensional molybdenum oxides, $A_xMo_6O_{17}$ (A = Na, K, Tl) which show a CDW transition.⁴ The electrical resistivity of another sample having

Fig. 5 Plot of resistivity (ρ) vs. temperature (T) for LiVWO₅. The inset shows the plot of $\log(\rho)$ vs. T^{-1} .

Fig. 6 Plots of resistivity (ρ) vs. temperature (T) for (a) LiVMoO_{5.04} and (b) LiVMoO_{5.08}

Fig. 7 Plot of molar magnetic susceptibility (χ_M) vs. temperature (T)for LiVMoO_{5.04}. The inset shows $\chi_{\rm M}^{-1}$ vs. T for LiVWO₅.

the composition LiVMoO_{5.08} [Fig. 6(b)] also shows similar behaviour, although there is an increase in both the CDW transition temperature (250 K) and the resistivity. The increase in resistivity of this phase could possibly be attributed to the higher oxygen content (and hence a smaller charge-carrier concentration) than LiVMoO_{5.04}. The specific heat measurements also support the existence of a CDW transition showing a broad maximum in the region 210-270 K.

Magnetic susceptibility data (Fig. 7) of LiVMoO_{5.04} corroborate the resistivity behaviour, showing a characteristic drop in the susceptibility around the transition temperature (230 K). Similar susceptibility data have been reported for A_xMo₆O₁₇ oxides.⁴ The drop in the susceptibility and the increase in the resistivity at the CDW transition have been attributed² to a decrease in the density of states at the Fermi level $(E_{\rm F})$ signaling the onset of a CDW transition. LiVWO₅, on the other hand, shows Curie-Weiss paramagnetic behaviour (Fig. 7 inset) and the effective magnetic moment obtained from the χ_M^{-1} vs T plot (300–150 K) is 2.41 μ_B , while the value calculated from the spin-only formula for V^{IV}: 3d¹ and W^V: 5d¹ configurations is 2.45 $\mu_{\rm B}$. At temperatures below 150 K, there is a change in the slope showing a slight enhancement of the susceptibility. The Curie-Weiss behaviour of the tungsten compound is consistent with its semiconducting nature, indicating that V^{IV} : 3d¹ and W^{V} : 5d¹ electrons are localized.

The electrical and magnetic properties of $LiVMO_5$ (M = Mo, W) show that the electronic interaction between the S = $\frac{1}{2}$ atoms, V^{IV}: 3d¹ and Mo^V: 4d¹, in LiVMoO₅ produces itinerant states that support a CDW instability, while the interaction between V^{IV} : 3d¹ and W^V : 5d¹ in the isotypic LiVWO₅ does not produce itinerant states and the associated electronic instability at low temperatures. While the present work has shown the possibility of a CDW instability in a new oxide containing two different $S = \frac{1}{2}$ atoms, viz. $V^{IV}: 3d^1$ and Mo^{V} :4d¹, further work is essential to establish the detailed structure and electronic properties of this oxide.

Conclusions

We have synthesized two new oxides, $LiVMO_5$ (M = Mo, W), containing $S = \frac{1}{2}$ cations which belong to $3d^1$ and $4d^1/5d^1$ series, by topotactic reduction of the brannerites LiVMO₆ (M = Mo, W). The orthorhombic structure of LiVMO₅, derived from the parent layered LiVMO₆, is quasi-two-dimensional, showing interesting electronic properties. While LiVWO₅ is paramagnetic and semiconducting, LiVMoO5 is metallic showing indications of a CDW instability around 230 K.

We thank Professor C. N. R. Rao, F.R.S. for encouragement and support and the Indo-French Centre for the Promotion of Advanced Research, New Delhi, for financial support. N. S. P. B. thanks the Council of Scientific and Industrial Research, New Delhi, for the award of a senior research fellowship.

References

- F. J. Morin, Phys. Rev. Lett., 1959, 3, 34.
- 2 J. B. Goodenough, Phys. Rev., 1960, 117, 1442.
- 3 R. M. Wentzcovitch, W. W. Schulz and P. B. Allen, Phys. Rev. Lett., 1994, 72, 3389.
- Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, ed. C. Schlenker, Kluwer, Dordrecht, 1989. E. Canadell and M-H. Whangbo, *Chem. Rev.*, 1991, **91**, 965.
- 5
- E. Dagotto and T. M. Rice, Science, 1996, 271, 618. 6
- 7 J. G. Bednorz and K. A. Müller, Z. Phys. B, 1986, 64, 189.
- 8 Chemistry of Superconductor Materials, ed. T. A. Vanderah, Noyes Publications, Park Ridge, New Jersey, 1992.
- 9 J. Galy, J. Darriet and B. Darriet, C. R. Acad. Sci. Paris, 1967, 264, 1477.
- 10 J. Galy, G. Meunier, J. Senegas and P. Hagenmuller, J. Inorg. Nucl. Chem., 1971, 33, 2403.
- R. Ruh and A. D. Wadsley, Acta Crystallogr., 1966, 21, 974. 11
- W. Lasocha and K. Lewinski, J. Appl. Crystallogr., 1994, 27, 437. 12
- 13 A. F. Wells, Philos. Trans. R. Soc., London A, 1984, 312, 553.

Paper 6/06392F; Received 17th September, 1996