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REDUCED-ORDER SLIDING FUNCTION DESIGN

FOR A CLASS OF NONLINEAR SYSTEMS

Deepti Khimani, Machhindranath Patil, Bijnan Bandyopadhyay and Abhisek K. Behera

ABSTRACT

In this paper, the design of first order sliding mode control (SMC) and
twisting control based on the reduced order sliding function is proposed for
the robust stabilization of an class of uncertain nonlinear single-input system.
This method greatly simplifies the control design as the sliding function is
linear, which is based on reduced order state vector. The nonlinear system
is represented as a cascade interconnection of two subsystems driving and
driven subsystems. Sliding surface and SMC are designed for only the driving
subsystem that guarantees the asymptotic stability of the entire system. To
show the effectiveness of the proposed control schemes, the simulation results
of translational oscillator with rotational actuator are illustrated.

Key Words: Reduced order sliding function, sliding mode control, twisting
control, uncertain nonlinear system, translational oscillator with
rotational actuator.

I. INTRODUCTION

A sliding mode control (SMC) attracts researchers
for it’s ability to completely annihilate the matched
disturbance [25, 9]. SMC design comprises the design
of sliding function (surface) and the design of control
law that initiates the sliding motion along the surface in
finite time [27, 11, 8, 23]. The design of sliding function
for nonlinear systems is relatively intricate because of
difficulty in proving the stability of the sliding motion,
usually for the higher order systems with disturbance.

In this article, we propose a design method for
SMC and the twisting control based on reduced order
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sliding function so that robustness against disturbance
can be guaranteed along with the asymptotic stability
of a system at equilibrium. As the sliding manifold
consists of fewer states, it greatly simplifies the design.

SMC based on reduced order sliding function is
rarely found in literature, refer to [29, 20, 1] for the
linear systems. An idea of using SMC that is based on
reduced order switching function stems from the recent
work in [2, 19] for the linear continuous and discrete-
time systems in special coordinate basis (SCB) form.

As SMC is discontinuous control, it leads to
chattering. This poses implementation issues in certain
practical situations [28]. One way to minimize the
chattering is to use twisting control by artificially
increasing the relative degree of the system. Such
control inherits the robustness property of conventional
SMC [14, 18, 17].

The proposed method includes the nonlinear
coordinate transformation that transforms the system
into cascade interconnection of a driving subsystem
in phase variable form and a driven subsystem with
asymptotically stable dynamics. For the transformed
system, a reduced order sliding function is designed
that involves only the driving subsystem states. Such
control guarantees global asymptotic stability of the
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system. Furthermore, to circumvent the chattering
issue, twisting control (second order sliding mode)
is designed with the same reduced order switching
function.

As an illustrative example, a translational oscillator
with rotational actuator (TORA) is considered for
the design. TORA was initially studied in [21]
to investigate the precession phase lock (PPL)
phenomenon encountered in dual-spin spacecraft. Later,
in [6, 7], fourth order model of TORA has been
considered as a benchmark problem for the nonlinear
control system designs. Recently, two-dimensional
translational oscillator with rotational actuator model
and passivity-based control design for the same has
been proposed in [10].

II. PROBLEM FORMULATION

We first illustrate the idea of cascading two
subsystems—one is in phase variable form and
another is the residual system which is asymptotically
stabilizable—which facilitates the design of SMC to
stabilize the system dynamics.

2.1. An illustrative example

Consider a nonlinear system

ẋ1 = −2x31 + x2 (1a)
ẋ2 = −x1 + x2 + x22 + x3 (1b)
ẋ3 = x4 (1c)
ẋ4 = α(x) + exp(x1)u+ w (1d)

where u and w are the control and the disturbance
inputs, respectively.

Denote x1 =
[
x1 x2

]>
. Note that x3 acts as

an input to the x1-subsystem. Let ξ(x1) be a
smooth function such that x3 = ξ(x1) makes x1 = 0 is
asymptotically stable for the x1-subsystem. Though the
function ξ(x1) can be constructed in many ways, we
only discuss the Lyapunov method based design for its
relevant to the rest of paper.

Let V = 0.5x>1 x1 be the Lyapunov function for
the x1-subsystem. Then, time derivative of V along the
solution of x1-subsystem can be given by

V̇ = x1ẋ1 + x2ẋ2

= x1(−2x31 + x2) + x2(−x1 + x2 + x22 + x3)

= −2x41 + x22 + x32 + x2 ξ(x1).

(2)

Clearly, ξ(x1) = −(k1x2 + x22) for any k1 > 1
makes V̇ < 0. Thus, the x1-subsystem is asymptotically
stabilizable to the origin.

Define T (x) be a diffeomorphic map given by
x1
x2

x3 − ξ

x4 − ξ̇

 =


x1
x2

x3 + k1x2 + x22

x4 + (k1 + 2x2)(−x1 + x2 + x22 + x3)

 .

Then, the system (1) can be transformed into under
the transformation z = T (x),

ż1 = −2z31 + z2 (3a)
ż2 = −z1 − (k1 − 1)z2 + z3 (3b)
ż3 = z4 (3c)
ż4 = a(z) + b(z)u+ w (3d)

where b(z) = exp(z1) and

a(z) = (k1 + 2z2)((k1 − 1)z1 − 2k1z2 − (k1 − 1)z3

+ z4 + k21z2 + 2z31) + α(T−1(z))

+ 2(z1 − z2 − z3 + k1z2)2.

It can be easily verified that V (T−1(z)) is an input-
to-state stable (ISS) Lyapunov function ([24, 12]) for
the z1-subsystem if z3 is imagined to be the input. So,
the trajectories of z1-subsystem are bounded when z3
is bounded and converge to z1 = 0 only when z3 ≡ 0.
So, the goal of the designer is to design a stabilizing
the feedback law u(z) to stabilize the chained form
subsystem. The synthesis technique in the motivating
example is very standard in the literature particularly in
the case of nonlinear systems.

2.2. Problem statement

Consider a class of single input nonlinear system

ẋ1 = f11(x1) + f12(x21) (4a)
ẋ2 = A21x2 +A22x3 (4b)
ẋ3 = f31(x) + g32(x)u+ w (4c)

where x1 ∈ X1 ⊂ Rp, x2 =
[
x21 x22 · · · x2q

]> ∈
X2 ⊂ Rq and x3 ∈ X3 ⊂ R are the states. Here, x =
(x1, x2, x3) ∈ X ⊂ Rn where n = p+ q + 1 and X =
X1 ×X2 ×X3. u and w are the control and unknown
disturbance inputs respectively. The vector fields f11(·),
f12(·), and f31(·) are smooth on the set X which
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contains x = 0 and g32(x) 6= 0 for all x ∈ X . The
matrices A21 and A22 are given by

A21 =

[
0 Iq−1

0 0

]
and A22 =

[
0
1

]
.

We observe that the matrix pair (A21, A22) is
controllable. In this paper, we study the stabilization of
the system (4) by designing a control law such that the
system trajectories converge to the origin in spite of the
disturbance. As it can be seen that the subsystem (4a)
is driven by x21, we make the following assumptions to
achieve the robust stabilization of system (4).

Assumption 1 The disturbance w(x, t) is a continu-
ously differentiable function. Moreover, there exist some
positive constants µ1 and µ2 such that |w(x, t)| ≤ µ1

and |ẇ(x, t)| ≤ µ2 for all x ∈ X and all t ≥ 0.

Assumption 2 The subsystem (4a) is locally ISS.

Remark 1 The above assumption, that (4a) is locally
ISS, ensures the system trajectory remains bounded
for every admissible x21. However, the conservatism
can be overcome if the bounded input is affine in (4a)
([24]), i.e., f21(x21) = f0x21 for some nonzero scalar
f0. Although this result is stated for an ISS system, the
similar argument can be made under some assumption
for the locally ISS system.

Our goal of the paper is to design the sliding mode
based control laws for a subsystem of (4) such that
the stability of closed loop system is guaranteed. Two
sliding based design of control laws—one is the first
order or the classical SMC law and other one is a
continuous control law via higher order sliding mode—
are used in our work. We present the stability and design
approaches in the following section of the paper.

III. DESIGN OF SLIDING MODE CONTROL

In this section, the design of SMC for a subsystem
is presented such that the whole system is stabilizable
by the reduced order control law. At first, we introduce
a coordinate transformation that transforms the original
system into a cascaded form in which the control input
drives only a subsystem (driving system) while another
(driven) subsystem is driven by the state of driving
subsystem. This is followed by the design of SMC with
stability analysis of the system.

3.1. Coordinate transformation

Let ξ0 : X1 → X3 be a smooth function such that
x1 = 0 of the driven subsystem

ẋ1 = f11(x1) + f12(ξ0(x1)) (5)

is asymptotically stable. Then, from Assumption 2 there
exists a smooth function (generally a different ξ0(x1))
ξ(x1) such that (4a) with x21 = ξ(x1) + ν is locally ISS
for any ν in some compact domain. Now, we define a
map T : X → Rn,

T (x) =

[
x̃1

x̃2

]
=

[
x1

x2 −Dξ(x1)

]
(6)

where x2 :=
[
x>2 x3

]>
and D =[

1 d/dt · · · dq/dtq
]>

is a vector differential
operator. We assume that the map x 7→ T (x) is
diffeomorphic for all x ∈ X .

Then, the system (4) under the transformation x̃ =
T (x) in the new coordinate can be represented as

˙̃x1 = f̃11(x̃1) + f̃12(x̃21 + ξ(x̃1)) (7a)
˙̃x2 = A21x̃2 +A22x̃3 (7b)
˙̃x3 = f̃31(x̃) + g̃32(x̃)u+ w (7c)

where f̃11 ≡ f11, f̃12 ≡ f12 and f̃31(x̃) =
f31(T−1(x̃))− dq+1ξ(x̃1)/dtq+1, and g̃32(x̃) =
g32(T−1(x̃)). It may be noted that for the transformed
system (7), we can have x̃1 ∈ X̃1, x̃2 ∈ X̃2 and x̃3 ∈ X̃3

with X̃ = X̃1 × X̃2 × X̃3. Also, g̃32(x̃) 6= 0 for all
x̃ ∈ X̃ . Here, x̃2 =

[
x̃21 x̃22 · · · x̃2q

]>
. Note that

in the transformed system (7), the subsystem (7a) still
satisfies Assumption 2.

3.2. Sliding mode control design

As the x̃2-subsystem in (7b) is in regular form
[16], we can directly begin to design the SMC for this
subsystem. Consider the sliding function given by

σ(x̃2) = c>x̃2 =
[
c>1 1

] [
x̃2
x̃3

]
(8)

and the manifold S1 =
{
x̃2 ∈ Rq+1 : σ(x̃2) = 0

}
.

Here, c1 is designed such that all the eigenvalues
of the matrix A21 −A22c

>
1 have negative real parts.

This is always possible because the pair (A21, A22) is
controllable. The task is now to design the control law

c© 2019 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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x̃21(t)

Switching
Function

Sliding Mode
Controller

x̃1(t)

u(t)

σ(t)

w(t)

Subsystem-x̃1Subsystem-x̃2

x̃2(t)

Σ

Fig. 1. Control scheme with reduced order sliding function.

which brings the sliding mode in the x̃2-subsystem.
The SMC for this subsystem is now given as

u = −g̃−132 (x̃)(c>1 A21x̃2 + c>1 A22x̃3 + f̃31(x̃)

+kσ +Qsgn(σ(x̃2))) (9)

where k andQ are some positive constants. Fig.1 shows
the idea of using the reduced order based SMC.

Remark 2 The control law (9) becomes discontinuous
for x̃2 ∈ S1 which may cause some adverse effects in the
practical systems due to chattering. To avoid this issue,
some approximations to the discontinuous component
are used in the real time implementation. However, in
such attempts the system response may be compromised
compared to that of with discontinuous control law.

It may be noted that the closed loop system
stability can be shown by first establishing the sliding
motion for x̃2-subsystem. So, we show that the control
law (9) achieves the sliding mode in some finite-time.

Lemma 1 Consider the subsystem (7b) and (7c), and
the control law (9). Then, the sliding mode in the system
is enforced by the control law (9) in a finite-time if k > 0
and Q > µ1.

Proof. Omitted due to page limitation. �

Proposition 1 Consider the system (7) and the control
law (9). Let the conditions in Lemma 1 hold for the
controller gain. Then, there exists a subset of X̃ such
that the trajectories of (7) starting within this region
remain within X̃ for all time and converge to zero
asymptotically.

Proof. Since x̃1-subsystem is locally ISS, this is
equivalent to say that there exists a Lyapunov function
Vx̃1 such that

V̇x̃1
≤ −α1(‖x̃1‖) + γ1(|x̃21|) (10)

for some class-K∞ functions α1 and γ1. For any a1 >
0 define the set X̃10 = {x̃1 ∈ X̃1 : Vx̃1

(x̃1) ≤ a1} such
that X̃10 ⊂ X̃1. We now rewrite the dynamics (7b) and
(7c) with the control (9) as

˙̃x2 = (A21 −A22c
>
1 )x̃2 +A22σ

σ̇ = −kσ −Q sgn(σ) + w.

Let P2 and Q2 be the symmetric and positive
definite matrices for which (A21 −A22c

>
1 )>P2 +

P2(A21 −A22c
>
1 ) = −Q2 holds. Then, using the

Lyapunov function Vx̃2 = x̃>2 P2x̃2, one can easily
arrive at

V̇x̃2 ≤ −
λmin{Q2}

2
‖x̃2‖2 +

2‖P2A22‖2

λmin{Q2}
σ2. (11)

Construct the set X̃20 = Π1 ∩Π2 where Π1 =
{x̃2 ∈ X̃2 : Vx̃2

(x̃2) ≤ a2} for any a2 > 0 such that
Π1 ⊂ X̃2 and

Π2 =

{
x̃2 ∈ X̃2 : γ1(‖x̃2‖) ≤ min

x̃1∈∂X̃10

α1(‖x̃1‖)
}
.

Finally, we let X̃30 = {σ ∈ R : Vσ(σ) ≤
a3} where Vσ(σ) = σ2/2 and a3 ≤
λ2min{Q2}/(8‖P2A22‖2) minx̃2∈∂X̃20

‖x̃2‖2. With
this, let us denote X̃0 = X̃10 × X̃20 × X̃30 and assume
that (x̃1(0), x̃2(0), σ(0)) ∈ X̃0.

We now prove the Lyapunov stability first. It
follows immediately from Lemma 1 that X̃30 is a
positively invariant set, i.e., σ(t) belongs to this set for
all t ≥ 0. Similarly, when σ ∈ X̃30, (11) implies that
X̃20 is also a positively invariant set. And, finally from
(10) we achieve that the trajectories of (7a) remain
within X̃10 whenever x̃2 ∈ X̃20. This all together shows
that (7) is Lyapunov stable.

Asymptotic convergence can be argued easily
by observing the sliding mode σ(x̃2) = 0 in the x̃2-
subsystem. From the fact that A21 −A22c

>
1 is Hurwitz,

the trajectories, x̃2(t), of the system

˙̃x2(t) = (A21 −A22c
>
1 )x̃2(t)

converge to zero as t→∞. This also implies that x̃3(t)
goes to zero asymptotically. Recall that the subsystem
(7a) is locally ISS, so the trajectories of this system
remain bounded X̃10 for all time and goes to zero
when x̃21 ≡ 0. Since by design x̃21(t) goes to zero as
t→∞, x̃1(t) also converges to zero as t→∞. So, we
achieve that the trajectories of the closed loop system
(7) approach to x̃ = 0 asymptotically. �
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IV. DESIGN VIA TWISTING CONTROL

The conventional SMC (9), that ensures the
sliding mode in the x̃2-subsystem, suffers from the
chattering effects which may not be desirable for
practical systems. One way to address this issue is by
designing the continuous SMC via higher order sliding
mode algorithm. In this case, we use twisting control
algorithm ([14]) to make the control law continuous and
thereby minimizing the chattering effects ([3]). It may
be noted that in this synthesis process the derivative of
the sliding function can be obtained by employing a
robust exact differentiator [15, 4, 13].

4.1. Design of sliding mode control via twisting
algorithm

First, we see that the system (7b) can be written as

˙̃x2 = (A21 −A22c
>
1 )x̃2 +A22σ. (12)

Then, by denoting σ1 ≡ σ1(x̃2) = σ(x̃2) and σ2 ≡
σ2(x̃) = σ̇(x̃2), we obtain

σ̇1 = σ2

σ̇2 = M(x̃) + g̃32(x̃)v + ẇ

where v = u̇ is the new virtual control input and

M(x̃) = c>1 (A21 −A22c
>
1 )2x̃2 + c>1 A22σ2 +

˙̃
f31(x̃)

+ c>1 (A21 −A22c
>
1 )A22σ1 + ˙̃g32(x̃)u.

Note that σ2 = c>1 (A21 −A22c
>
1 )x̃2 + c>1 A22σ1 +

f̃31(x̃) + g̃32(x̃)u+ w. The twisting control law which
enforces σ1 = σ2 = 0 in a finite-time, is given by

v = −g̃−132 (x̃)(M(x̃) + ε1sgn(σ1) + ε2sgn(σ2))

where ε1 and ε2 are some positive constants. We see
that with the virtual control the actual control signal
now becomes continuous. It is worthy to note that the
control law (13) requires the information of σ2 which
depends on the disturbance, w. So, this control law may
not be possible to implement unless the information of
uncertainty is known (i.e., σ2 is known). However, this
difficulty can be avoided by a robust exact differentiator
as given below for some κ1 > 0 and κ2 > 0,

ṡ1 = −κ1|s1 − σ1|
1
2 sgn(s1 − σ1) + s2

ṡ2 = −κ2sgn(s1 − σ1)

which provides σ2 exactly in the presence of uncertainty
in a finite-time. Then, the control law can be given by

u(t) =

∫ t

0

v̂(τ)dτ (13)

where v̂ = −g̃−132 (x̃)(M(x̃) + ε1sgn(σ1) + ε2sgn(s2)).
Now, using the control law (13) one can write the closed
loop system (7) as

˙̃x1 = f̃11(x̃1) + f̃12(x̃21 + ξ(x̃1)) (14a)
˙̃x2 = (A21 −A22c

>
1 )x̃2 +A22σ1 (14b)

σ̇1 = σ2 (14c)
σ̇2 = −ε1sgn(σ1)− ε2sgn(s2) + ẇ (14d)
˙̃σ1 = −κ1|σ̃1|

1
2 sgn(σ̃1) + σ̃2 (14e)

˙̃σ2 = −κ2sgn(σ̃1)− σ̇2 (14f)

where σ̃1 = s1 − σ1 and σ̃2 = s2 − σ2. The stability
of the closed loop system is presented in the next
subsection.

4.2. Stability analysis

Let us denote σv =
[
σ1 σ2

]>
, sv =

[
s1 s2

]>
and σ̃v =

[
σ̃1 σ̃2

]>
.

Lemma 2 Consider the subsystems (14e) and (14f).
Assume that σ1 is available and there exists µ > 0 such
that |σ̇2(t)| ≤ µ for all t ≥ 0. Then, σ̃v = 0 is finite-time
stable if κ1 > 1.5

√
µ and κ2 > µ.

Proof. Refer to [15]. �

Remark 3 The assumption in the above lemma, that
|σ̇2| is bounded, is not an additional constraint imposed
on the system. This is because the closed loop system
with the control law (13) given by (14d) guarantees that
this assumption is fulfilled.

Lemma 3 Consider the subsystems (14c) and (14d).
Let Assumption 1 holds. Assume that σ̃v = 0. Then,
σv = 0 is finite-time stable if ε1 > ε2 + µ2 and ε2 > µ2.

Proof. Omitted due to page limitation. �
We now prove our main result for the closed

loop system when the estimated state is being used in
the controller. The idea is to design the differentiator
gains κ1 and κ2 large enough to ensure σ̃v = 0 in a
sufficiently small time such that σv(t) belongs to the
region of interest for all time.

Define Ωρ = {σv ∈ R2 : V1(σv) ≤ ρ} for some
ρ > 0 where V1(σv) = ε1|σ1|+ σ2

2/2. Then, for any
ρ1 > 0, we define the set Ωρ1 in the similar manner.
Note that Ωρ1 ⊂ Ωρ for any ρ1 < ρ. Also, define X̃ρ =

X̃1 × X̃2 × Ωρ for later use.
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Theorem 1 Consider the system (14c)–(14f). Suppose
that σv(0) ∈ Ωρ1 for any ρ1 < ρ. Then, for any sv(0) ∈
R2 there exist the differentiator gains κ1 and κ2 and
the controller gains ε2 > µ2 and ε1 > ε2 + µ2 such that
σv(t) belongs to Ωρ for all t ≥ 0, and moreover, it
approaches to σv = 0 in some finite-time.

Proof. By noting σv(0) ∈ Ωρ1 , we can show that for any
(σv, sv) ∈ Ωρ ×R2,

|V̇1(σv)| ≤ κv

for some κv > 0. Let t1 = (ρ− ρ1)/κv. Then, from the
above relations, we conclude that V1(σv(t)) ≤ ρ for all
t ∈ [0, t1]. Now, choose the differentiator gains κ1 and
κ2 sufficiently large such that σ̃v(t) = 0 for all t ≥ t1.
This is always possible since Lemma 2 guarantees the
finite-time estimation of σv. Now, since s2(t) = σ2(t)
for all t ≥ t1, we have

V̇1(σv(t)) < 0, ∀ t ≥ t1

for σ2(t) 6= 0. Thus, the finite-time stability of σv = 0
follows by Lemma 3 since σ̃v(t) = 0 for all t ≥ t1. �

Proposition 2 Consider the system (14a)–(14d). Let
the conditions in Theorem 1 hold. Then, there exists a
subset of X̃ρ such that the system trajectories starting
within this region remain within X̃ρ for all time and
converge to zero asymptotically.

Proof. Following same notations as in the
proof of Proposition 1, construct the set
Ωρ0 = {σv ∈ R2 : V1(σv) ≤ ρ0} with any ρ0 < ρ
where ρ ≤ ε1λmin{Q2}/(2‖P2A22‖) minx̃2∈∂X̃20

‖x̃2‖.
Let X̃ρ0 = X̃10 × X̃20 × Ωρ0 . Then, with the help of
Theorem 1 the proof follows similar lines that of
Proposition 1. �

V. NUMERICAL SIMULATION

The proposed design methods can be applied to
practical systems such as underactuated slosh control in
a container confined track length ([26]), TORA system.
To demonstrate the effectiveness of proposed control
design we consider the TORA system. A TORA system,
which is also called as rotational/translational Actuator
(RTAC), was proposed in [21] to study the control
of excited nutation in the dual-spin spacecraft. TORA
model also found to be used to study the problem
of stabilizing the translational motion of multi-mode
systems with a rotational actuator [5].

m

N

θ
eM

ks
F

Fig. 2. Translational Oscillator with Rotating Actuator.

As posed in [7], TORA consists of a platform of
mass M and eccentric rotating mass m that stabilizes
the translational motion of the platform. The rotating
mass is located at a distance e from the point about
which it rotates with the moment of inertia I . The cart
is connected to a fixed wall through a linear spring of
stiffness k. Let N(t) be the control torque applied to the
mass m and F (t) be the bounded disturbance force on
the platform. Let q(t) be the position of the platform and
θ(t) be the angular position of the rotational mass m. A
typical TORA system is shown in Fig. 2.

The equations of motion are given by

(M +m)q̈ + ksq = −me(θ̈ cos θ − θ̇2 sin θ) + F
(15)

(I +me2)θ̈ = −meq̈ cos θ +N. (16)

Where, ks = m0(I +me2) and m0 = (M +m)/(I +

me2). Define z :=
√
m0 q, ε := me

√
m0/(M +m),

v := m0N/ks and w :=
√
m0 F/ks. Then, the normal-

ized equations of motion (15) and (16) for the TORA
system can be expressed as

z̈ + z = ε
(
θ̇2 sin θ − θ̈ cos θ

)
+ w

θ̈ = −εz̈ cos θ + v

where z is the normalized cart position, v is
dimensionless control torque, w is disturbance force,
and ε is the coupling factor between the translational
and rotational motions. Assume that ε < 1 and there
exists a wmax > 0 such that |w(t)| ≤ wmax for all t ≥ 0.

Define state variables as z1 = z, z2 = ż, z3 = θ

and z4 = θ̇. Then, the dynamics of the system can be
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described by following state equations

ż1 = z2 (17a)

ż2 =
−z1 + εz24 sin z3

1− ε2 cos2 z3
− ε cos z3

1− ε2 cos2 z3
v

+
1

1− ε2 cos2 z3
w (17b)

ż3 = z4 (17c)

ż4 =
ε cos z3(z1 − εz24 sin z3)

1− ε2 cos2 z3

+
1

1− ε2 cos2 z3
v − ε cos z3

1− ε2 cos2 z3
w. (17d)

Note that here 0 < ε < 1 which
implies that |ε cos(·)| < 1. Define the
transformation x = Φr(z) where Φr(z) =[
z1 + ε sin z3 z2 + εz4 cos z3 z3 z4

]>
. Therefore,

the system (17) in new coordinate space x = Φr(z) can
be given as

ẋ1 = x2 (18a)
ẋ2 = −x1 + ε sinx3 + w (18b)
ẋ3 = x4 (18c)
ẋ4 = u+ w (18d)

where v = − (α(x)− u) /β(x) and w =
−εwβ(x) cosx3 with

β(x) = 1/(1− ε2 cos2 x3)

α(x) = ε cosx3[x1 − ε(1 + x24) sinx3]β(x).

The system (18) is already in the desired form.
Now, we have to look for a function x3 = ξ(x1)
such that x1 = 0 of (18a) and (18b) with w = 0

is asymptotically stable where x1 =
[
x1 x2

]>
. Let

V (x1) = x>1 x1/2 be the Lyapunov function for the
subsystem (18a) and (18b). Then, time derivative of
V (x1) along the solutions of (18a) and (18b) with w =
0 yields

V̇ (x1) = x1ẋ1 + x2ẋ2 = εx2 sinx3.

Let x3 = ξ(x1) = − arctanκx2 for any κ > 0.
Then, the above relation becomes

V̇ (x1) = εx2 sin(− arctanκx2)

= −

(
εκx22√

1 + κ2x22

)
. (19)

The convergence of system trajectory to the
origin cannot be guaranteed by (19). So, we apply

LaSalle’s invariance principle to show the asymptotic
convergence of the system trajectories to x1 = 0. Let
Ω ⊂ R2 be a positively invariant compact set containing
the equilibrium. Let E0 = {x1 ∈ R2 : V̇ (x1) = 0} =
{x1 ∈ R2 : x2 = 0} such that E0 ⊂ Ω. Now, we find
a largest invariant set E1 within E0. Since ξ(x1) = 0
for x2 = 0, we see that ẋ2(t) = 0 if x1(t) = x2(t) = 0
for all t ≥ 0 provided w = 0. Thus, E1 = {x1 ∈ R2 :
x1 = 0}. Therefore, by LaSalle’s invariance principle
we conclude that forw = 0 all the trajectories x1(t) will
converge to E1 as t→∞.

Let’s define the transformation x̃ = T (x) as in (6)

x̃ :=

[
x̃1

x̃2

]
:=


x1
x2

x3 + arctanκx2

x4 + κ(−x1+ε sin x3)
1+κ2x2

2

 . (20)

Therefore, the system after transformation (20) is
mapped to

˙̃x1 = x̃2 (21a)
˙̃x2 = −x̃1 + ε sin(x̃3 − arctanκx̃2) + w (21b)
˙̃x3 = x̃4 (21c)
˙̃x4 = ζ4(x̃) + u+ w̃ (21d)

where u = (β(x)v + α(x))|x=T−1(x̃) and

ζ4(x̃) =

[
κ(−x2 + εx4 cosx3)

1 + κ2x22
· · ·

− κ(−x1 + ε sinx3)2 ∗ 2κ2x2
(1 + κ2x22)2

] ∣∣∣∣∣
x=T−1(x̃)

w̃ = −κ(−x1 + ε sinx3) ∗ 2κ2x2
(1 + κ2x22)2

w

∣∣∣∣∣
x=T−1(x̃)

.

The TORA system in the similar form has been
utilized in design of passivity based controller in [22].
For our numerical simulation, we consider ε = 0.2 and
normalized disturbing force w = 0.2 sin(10t).

5.1. Switching function

A reduced order sliding surface for x̃2-subsystem
is designed with c1 = 4 as

σ = 4x̃3 + x̃4 (22)

so that the dynamics ˙̃x3 = −4x̃3 is asymptotically
stable to x̃3 = 0 when σ ≡ 0.
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5.2. First order SMC

For the finite time reachability of x̃2 to the surface
σ = σ(x̃2) = 0, the reaching law based control law as
in (9) is given by

u = −4x̃4 − ζ4 − kσ −Qsgn (σ) (23)

where k > 0 and Q > µ1. As the magnitude of matched
disturbance, |w̃3| ≤ µ1 = 0.0417, we chooseQ = 1 and
for faster convergence towards the surface we select k =
2. Fig. 3 shows the state trajectory of the system (21)
and Fig. 4 shows the evolution of switching function
and the conventional SMC input.

5.3. Twisting control

As in the control law (13), the twisting control for
TORA can be given by

u(t) = −
∫ t

0

v̂(τ)dτ (24)

where v̂ = −M(x̃)− ε1sgn(σ1)− ε2sgn(s2), M(x̃) =
64x̃2 − 16σ1 + 4s2 + ζ̇4(x̃) and ν = −16x̃2 + 4σ1 +
ζ4(x̃) + u+ w̃. Fig. 5 shows the state trajectories and
the twisting algorithm based control signal with ε1 = 5
and ε2 = 2.

0 5 10 15 20

t sec.

-2

-1

0

1

2

x̃

x̃1

x̃2

x̃3

x̃4

Fig. 3. State trajectory for the TORA using first order SMCl.

Remark 4 It can be observed that in both conventional
SMC (23) and twisting control (24) based on reduced
order switching function (22), the trajectory of the
TORA system converges to the origin as shown in Fig. 3
and Fig. 5(a), respectively. Note that the twisting control
reduces the chattering significantly as it is evident from
Fig. 5(b). However, the conventional first order SMC
exhibits chattering which may be unacceptable in case
of large disturbances (see Fig. 4(b)).

VI. Conclusion

For the asymptotic stability of the nonlinear
system, SMC based on reduced order sliding function

0 5 10 15 20

t sec.

-2

0

2

4

6

σ

(a)

0 5 10 15 20

t sec.

-15

-10

-5

0

5

u

(b)

Fig. 4. (a) Evolution of switching function σ; (b) First order SMC for
TORA.
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1

2

u
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Fig. 5. (a) State trajectory for the TORA using twisting control; (b)
Twisting control.

are designed for the system represented by the cascade
of two subsystems which consitss of asymptotically
stabilizable subsystem and controlled subsystem in
phase variable form. Therefore, by designing SMC for
the controlled subsystem, the trajectory of the whole
system can be made asymptotically stable to the origin.
The twisting control based on reduced order sliding
function is also designed for stability of the phase
variable subsystem that ensures the asymptotic stability
of the entire system.
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