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This paper proposes a new class of uniform continuoesnvergence of state variables in the presence of matched
higher order sliding mode controllers (UCHOSMA) for thedisturbances/uncertainties. Depending on the finite time o
arbitrary relative degree systems. The proposed methodakymptotic stability of state variables, a variety of siigli
ogy is a combination of two controllers where one of the cormode algorithms have been reported in literature.
ponents is an uniform super twisting control which acts as  pespite of the various intriguing aspects of sliding mode
the disturbance compensator and the second part gives §tntrol such as finite time convergence, compensation of
uniform finite time convergence for the disturbance free SYéatched disturbances, reduced order design etc., prlactica
tem. This algorithm provides uniform finite time conver@engealization of sliding mode control still requires some mor
of the output and its higher derivatives using an absolutepjasses of novel algorithms. This is due to the discontisuou
continuous control signal and thus alleviating the chattemature of the control action or less flexibility and restdos
ing phenomenon. The attractive feature of the proposed cajf-the existing sliding mode algorithms that could generate
troller is that irrespective of the different initial cortdins, gn absolutely continuous control signal.
the .c.on.trol Is _able tp bring_thg gtatgs of the system to the The main disadvantage of sliding mode control is the
equilibrium point uniformly in finite time. The eﬁectlyese chattering effect [1]. Itis an undesirable phenomenon gene
of the proposed controller has been demonstrated with bof, § gy to high frequency oscillations of control signaéwh
simulation as well as experimental results. the system trajectories slide along the sliding manifold [1
To avoid this effect, super-twisting algorithm (STA) [2]$ha
been proposed for the sliding manifold having relative degr

1 Introduction one with respect to control
A significant amount of research effort has been focused p_ ’ ' _ )
Super-twisting control [2], [3] is a continuous controller

in the area of robust control due to both their practical pote : g ) } s

tial chattering in various applications and theoreticaaleh €nsuring all the main properties of first order sliding mode

lenges. Sliding mode control, which is one of the most agontrol for the system with Lipschitz (in time) matched

tively studied topics within the realm of robust controlliec Pounded uncertainties/disturbances. The superior pyoper

niques, generally aims to achieve finite time or asymptotfﬁc this algorithm has been exploited for the development of
continuous integral sliding mode controller for various€o
trol applications [4], [5], [6].

*Address all correspondence related to ASME style format andds Most of the praCt'CaI systems are represented as a sec-

to this author.



ond (for example: Mechanical systems and Electrical sys-
tems) and higher order systems. The main control objec-
tive for these plants are, to provide high performance in a
specified time in spite of uncertainties/perturbationsasd
avoid chattering. Existing second order sliding mode con-
trollers (for example: twisting, terminal sliding mode,neo
troller with prescribed convergence, sub-optimal etc.g ar
directly applicable to second order uncertain plants [1]t B
the main drawback of these controllers is that they provide
discontinuous control signal, which generates unnecgssar
chattering.

To ensure finite time convergence using continuous con-
trol, Levant [2] recommended use of a third order sliding
mode controller. But such controller not only uses the outpu
and its derivative, but also the second derivative of the out
put. To realize this control, the exact information abow th
uncertainties are required. In this case, it is possibl@to-c
pensate the uncertainties even without the use of a sliding
mode controller [7].

ator point of view for chattering minimization.

Uniform finite time convergence for the s&G, ...,6(")
where o represents the output amds the relative de-
gree of the system with respect to output (i.e., irrespec-
tive of the initial conditions of the states of the systems,
the trajectories will converge to origin at the same upper
bounded time. Such phenomenon is called as fixed time
stability [20—24]). Existing controllers based on fixed
time stability are discontinuous in nature. But our pro-
posed controllers are absolutely continuous which are
independent of the initial conditions.

Extra information does not require other than
0,0,...,0"Y, to generate the absolutely continu-
ous control signal for the arbitrary relative degree.
Compensates those uncertainties/perturbations which
are Lipschitz in time and output.

This new class of continuous controllers are nonhomo-
geneous or homogeneous in the bi-limit.

The organization of the paper is as follows. In Section 2, a

In the past years, several uniform algorithms have begRet hackground of the globally uniform super twistingalg

proposed and used in different applications like multirage

rithm as a disturbance observer is given. Section 3 dissusse

systems [,25_27]’ neural networks [28,29] and stoghgsiic S¥he main results. Section 4 discusses a detailed illustrati
chronization of complex networks [30]. These existing CONsyample and Section 5 presents the concluding remarks.

trollers based on fixed time stability are discontinuousdn n

ture and are homogeneous. Some controllers are continuous
but fail to rejeCt the disturbances/uncertainties. 2 Globa”y uniform Super tW|St|ng a|gorithm as a dis-
It is clear from the above discussion that the finite time tyrbance observer
control under the absolutely continuous control signahwit The super twisting algorithm is considered as the

out explicit knowledge of the disturbance is still unexgldr most prominent type of second order sliding mode al-
Similar kind of situation is also true for the system with gorithm for achieving robustness against matched distur-
higher relative degree. To avoid the above mentioned drapances/uncertainties along with chattering free contgol b

backs and to generate an absolutely continuous control sigmerating absolutely continuous control signal. Conside
nal for the arbitrary relative degree system with respect {ge following first order system

the output, some of the generalized family has been recently
studied [9]- [11]. However, the convergence time of the
above mentioned algorithms are not uniform with respect to

the initial conqnlons. - . wherez; € R is the state variablel € R is the matched non
For the higher order systems, it is possible to use th

_ ) veomishing disturbance andis defined as,
STAto obtain a continuous control and therefore compensate
the chattering problem [12]. However, this has the disadvan
tage that it requires the design of a first order sliding serfa

resulting in asymptotic convergence instead of a finite time » . )
convergence of the states. wherek; andk; are positive gains to be designed and

7 =u+d 1)

u=—-kigi(z1) +v, v=—ko@(z1) 2

1 3 .
71) = W|z| Zsign(z z13sign(z
Motivation ®1(21) = Wa|za| 2sigN(z1) + He|za| 2SigN(22) ;

The main motivation of designing uniform continuous @,(z;) = }ulzsign(zl) + 2y o] 21| +§u§\zl\zsign(zl)
higher order sliding mode algorithm (UCHOSMA) is that 2 2
the controllers are continuous, nonhomogenous and unifo
with respect to the initial conditions and are capable aoheli
inating Lipschitz disturbances/uncertainties.

hh W, H2 > 0. After substituting control input (2) in (1), we
get

2 =—k@(z1) +V+d, V=—ko(21) )

Main Contributions

The goal of this paper is to suggest a generalized ordgbw, let us define, := v+ d then,z, = v+ d,then the above
UCHOSMA which has the following properties: system can be written as

Absolutely continuous control signal for the arbitrary ] ) :
relative degree which is more desirable from the actu- 7 =—kiQ(z)+2, 2=—kPp(z)+d

®)



where\d| < A;. The above algorithm is known as the uni-  In this manuscript, the'" order sliding mode control
form super twisting algorithm. The following definition andwith respect to output is equivalent to the finite time stabi-
lemma states the finite time convergence properties of thigation of output and itgr — 1)™" derivatives to origin of
algorithm. the uncertain chain of integrators using the non-smooth con

o N troller where the solution is interpreted in the sense apFil
Definition 1. [14] The origin z = z, = 0 for a systemn(5) pov [8].

is globally uniformly stable if all trajectories starting iR?
converge to a neighborhood of=z0 in finite time and the
convergence time is uniformly bounded with respect to the pMain Results

initial conditions. Consider the following uncertain chain of integrators
The convergence of the system (5) will be uniform within

a finite time, which means that all the trajectories converge X1 = Xo
to zero at a time smaller than a constant irrespective of the Yo = X3
initial conditions. (8)

Lemmal. [14] If the gains k > 2\/A;, ko > 2/ and o
H1, ko > O, then the trajectories of the systdB) starting at % = f(x)+9(x)(u+d)
2o € R? converge to the origin in finite time and they reach

that point at most after a time wherex € R", outputy = x; = 0, f(x) €R, g(x) €R,d€R

andu € R. Before proceeding to the controller design, it is
important to mention that the present manuscript is based on
6 (1 1 2 1 . .
T)=|—F—-——F— — 2 (6) the following assumptions:
ke \ps  ws(z)) &
Assumption 1. Since this paper seeks a non-smooth con-
. o troller for solving the problem, solutions of the systems ar
where [ is any value satisfyif< u < W(z), ki, k2 are  defined in the Filippov sense [8], i.e., letting x denote the
constants and &) = Vo(2) +Vn(2). Here \g(2) ={'PL, state of the entire systerit) = f(x(t),d(t)), solutions are
WhereZTzz 0 (2= [(ll)l(zl)7 25], and \(2) = a|@1(z1)[*—  defined with the differential inclusion
Bl@1(z1)|3sign(z1) |z2| 3sign(z2) + 82,2, wherea = k»5, B =
1, 5 > 0 is a global strong Lyapunov function for system .
(5) for sufficiently larged and positive symmetric matrix X< ﬂ ﬂ cl(ca(f(Bs() \N)))
P. Moreover, the convergence time is uniformly bounded by

4 4
_ 6 (k 2 (k i -
Tmax= 1, (Ff) Ty (ki) , which implies any trajectory \yherecl and co denote the closure and the convex hull re-

converges to zero in a time smaller thagaf spectively, B(x) is the unit ball and the sets N are all sets of
zero Lebesgue measure.

5>0UN=0

Once the states reach the sliding surface, then fronz{53,

v+d=0, Assumption 2. It is assumed that (k) and d contain all
kinds of uncertainties/disturbances, whose derivativisia

—~ =
d=—-v= /t ko (21)dT (7) [f(¥)+g(x)d| <A, although it might not be necessary that
0 f(x) 4+ g(x)d is bounded and als@~*(x)) # 0.

The above property leads to use the super twisting algorithﬂ?e main aim of thg_vyork IS to propose a umfor_m con.tlnu—
as a controller as well as a disturbance observer. In the n&Xt finite time stab|_l|z|ng control for an u.n.certam gham of
section we are going to propose a new class of uniform Cow_tegrators S0 that irrespective Of. the |n|t|al ¢ onditiafs
tinuous finite time controller for the uncertain chain ofant the states of the systems the trajectories will converge to

grators. The proposed methodology is based on the combiﬁgg'n at the_ same upper bounded time. . For fuliling the
tion of two controllers where the first controller is able ta-s & ovglmentmned goal the feedback contres proposed as
bilize the system uniformly in the absence of disturbanat ahl ~ 9 (x) (Uo+up), where
the second part of the controller is inspired from the above
disturbance observation property of the uniform superttwis Up = —kq|s1|"tsign(sy) —ka|s2|“2sign(sp) — - -
ing algorithm. The main idea behind the above proposal is Ongj ©)
] . . — Kn|sn[""sign(sn)
that, the effect of disturbance is taken care by the unifarm s
per twisting control and the closed loop system response is
always governed by the proposed uniform controller. Henggith 5 = x; +n; |xi|‘Tlisign(xi), ni = Xi/k and
this control strategy can be considered as an absolutely con
tinuous control law for compensating Lipschitz perturbas N , N
exactly and ensuring finite time convergence. Up = —ki¢1(0) +V, V= —ka2(0) (10)



where sliding or coupling variable is defined as
t
0=X,— / UpdT, (12)
0

and

@1(0) = /0] 2SigN(G) + Ho|0] 2SiGN(0); f, b > O
1 . 3 .
%2(0) = Sasign(0) + 20| + Slo|*sign(o)

Now, the next aim is to design appropri&tex;, ki, ko anda;

One can further write (15) usirgand= as

X1 =X (16a)

X2 = X3 (16b)

: (16c)

6 =—kip(0)+= (16d)
. A~ /_/%

== —ko@(0)+ f(X)+g(x)d (16e)

First, we analyze (16d) and (16e) together. Then we inves-
tigate (16a)-(16¢) which depends ongenerated by (16d)-

fori =1,2,--- ,nsuch that origin of the closed loop systenthe). Let us definé := [0,=]" € R2. Equation (16€) has

after applying the proposed controlleis globally uniformly

. . . . . . . . . . /_/%
finite time stable. Following theorem gives the convergeneediscontinuous right hand side. Dependingféx) + g(x)d,

conditions for the proposed controller.

Theorem 1. For the uncertain syster(8), under the feed-
back control u= g~*(x) (up+ Up), there exists a nonempty

set of gains KX, ki, ke and parameten; fori =1,2,-.n

Rl>2\/E,R2>2A
aH:%, i=23,...,n
withap,p =1 and ap=a

ki > xiAéH’),xi >0, and1>Ag>0

(13)

such that(13) is satisfied. Furthermore, i{13) is satisfied

6 = 0 is not an equilibrium point of (16d) and (16e). For
proving the stability of (16d)-(16€), the same candidata-Ly
punov function is used as proposed in [14]

W(6) = [¢(0),Z]" Plgu(0), =] +aleu (o)

17
— Blow(0)|3sign(0) = 3sign(=) + =2 G

whereP is positive symmetric definite matrix ard= k9,
B=1,5> 0, one can easily prove that all the trajectories of
the subsystem (16d)-(16€) startingdgtc R? converge to the
origin in finite time and reach that point at most after a time,

and k andx; > O will be selected such that the polynomial

S+ a,s" 1+ .. +ays+a; is Hurwitz with coefficient, ja=

kiA(()"“’1> + Xi, Ao > 0 and there exists € (0,1) such that
for everya € (1—¢,1), the origin is globally uniformly finite

time stable.

TEo)= 0 (- |+t (9
ke \us  ws(6p)/) Kk

wherep is any value satisfying & p < W(ap), ky > 2V/A,

Proof. Taking the time derivative of sliding variable (11) anc!(2 < 2.

including it into an uncertain system (8), one can write

X1=X2
X2:X3

(14)
0 =Xp—Up=Up+ f(x)+g(x)d

Substitutingup from (10) into (14)

X1 = X2
X2 = X3
: (15)
6 = —kigr(0) + v + f(x) +g(x)d
v = —ko@p(0).
Let us define= := v + f(x) +g(x)d, time derivative of is

. A~ —_——N—
given as= = —ko@(0) + f(X) + g(x)d.

Sinceo = = = 0 after at most timeT (Gg) and main-
tainedd = 0 irrespective of the disturbance. So one can write

6=—kp(0)+==0 (19)

which further implies,

0=0=X=Up (20)

It means that after fixed tim& (G) the closed loop sys-
tem (16a)-(16e) becomes free from the disturbances and the
closed-loop system trajectories are only governed by the co
trol up. In the light of the above discussion, one can express
the closed-loop system (16a)-(16€e) as

Xl = X2
(21)

Xn:uo



Now our aim is to prove the claim that the proposed comp ~ — 1 ; ki|xi|®sign(x;) which is same as Bhat and Bern-
troller ug for the system (21), forces the trajectories to corstein [13], it yields the finite time convergence of trajee
verge globally uniformly to the origin in finite time. After to the origin.

substitutinguo from (9) into (21), one can write Now our next aim is to analyze the choice of gain such
n that finite time convergence is not violated. For this puepos
x(ln> =— Zki\a\"'sign(a) suppose in the first case that trajectories are confined in the
i=

homogeneous sphere of radiMsi.e., || < Ao < 1. Then we
n 1 1 - ye: i : i i
__ Zk‘ (% -1 [ | & sign(xi) | sign(x; -+ i [ | & sign(x;)) have to show that-k;|x; | S|gn(x..) term is dominant over the
= linear termk;n;X;. One can easily show that the above men-
(22) tioned condition is always satisfied, when trajectoried wil
stay inside théx;| < Ap < 1. For showing this, one can write
where (n) represents the!" derivative ofx;. Substituting
ni=0fori=1,2,--- n, the proposed controller is similar to 1
the work of Bhat and Bernstein [13], which is stated as: kil (% -+ ni[xi| % sign(x))[“" < ki[xi|* 4 Xi[xi]

}let Ki,...,kn > O. be sugh that the polypomlalé‘ + _ (ki‘xi|di—l+xi)|xi| (25)
knS"*+ -+ + kos+ ky is Hurwitz, and there existse (0,1)
such that, for everg € (1—¢,1), the origin is a globally fi-
nite time stable equilibrium for the syste@ = Gunder the
feedback control

which further impliesi, ~ —(ki|x | ~t+X)x. Therefore, by
selecting

. aA(1=ai)
0= —kq|x1|%tsign(x1) — - - - — kn[Xn|®"sign(xn).  (23) ki = Xifg (26)

the nonlinear term-k;|x;|%isign(x) will be dominant over
Wnear term. This is always possible becaudsgis a very
'small quantity. Similarly for the case whex| > Ay, the lin-
earized system about the points Ay is stable provided the
characteristic polynomia + a,s" 1 + - -- 4 a; is Hurwitz.
étability of system when the system trajectories are oetsid
N .
posiive (ouiside the sphefe]| > 1> Ao [15] wherefo >0 & toEeORRRn e SRR o B2 S0 e e
IS some positive constant. symmetric matrix. Using Lyapunov methodology also, the

Due to the property of homogeneity in the_b|-l|m|t, the ain condition remains the same as Hurwitzness of polyno-
convergence proof of closed loop system (22) is analyzed al '+ a,s" 1+ .. +ay, because outside the unit sphere

two separate parts; firstwhen trajectories lie inside thesp linear term is dominant over the nonlinear term and behav-

| < 8o < 1and the second when they lie outside the Sphe?rc?r of closed loop system is governed by the linear control

il =1> AO'_ . . . . Up =~ —XiX. This completes the proof of the theorem.
The main idea behind introducing the extra term

ni|xi|“*lisigr‘(ai)) in the control is that for all initial condi- Rémark 1. It might be possible that one can think of a proof
tions of statesx;| > 1 > Ay, based on construction of strict continuously differentiph-
punov function, but it is not an easy task. Therefore in the
present paper, a logical proof is adopted which is based
Up ~ — ikiﬂixi (24) on disturbance observation property and homogeneity in bi-
1=

Actually the proposed controller satisfies the proper
of homogeneity in the bi-limit, as defined by Vincent An
drieu et.al, [15] and all solutions of the system (22) cogeer
in finite time to the origin, uniformly with respect to initia
condition because the degree of homogeneity in the O-Ignit
negative (inside the sphepe| < Ag < 1) and in theo-limit is

limit.

because (x; +r]i|xi|(x%sigr(xi))‘ﬂi < |x|% 4+ ni|x| and also 4 lllustrative examples

1 For validating the capabilities of the proposed control
algorithm, we have taken three examples of second, third and
fourth-order complex systems. Further, a comparativeystud
has been done with some existing algorithms.

sign(x + ni|x| % sign(x)) = sign(x;). Since we are inter-
ested in|x| > 1 > Ao, Nni|x| is dominant over termx;|%
and |x|% +ni|x| ~ ni|x|. Due to this approximation, out-
side the sphergg| > 1 > Ag, the closed loop system is ap-
proximately governed by (24) which yields a faster asymp-

totic convergence of the states variables towards the hom1 Second-order system

geneous spherk| < Ap < 1, rather than the contral 4s In the first example consider a robotic manipulator as
proposed by Bhat and Bernstein [13]. (One can also seléglow [16].

§ =X +Nifxi| asign(x;) in places = x + ;|| sign(x) for

more faster convergence. Then also same analysis is valid.) . 1

However, inside the homogeneous sphege < 8o < 1,  X(l) =Xe(t), %X(t) = Lo (U—glcosx (1)) +d(1))
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Fig. 2. Evolution of state 2 for different controllers

andy(t) = x¢(t), where,x(t) is the joint anglex,(t) is the
angular velocitym = 3kg is the mass| = 1mis the length,

9000
| = 0.5kg.n? is the moment of inertiay is the joint input and 00
d(t) =2+4sint/2)+0.6sin(1xt) is a disturbance. The out-
put of the system ig;(t) and the desired output trajectory is ™
sir?(t). Substituting the parameter values in the above equa ¢
tion, 3 50 H
%:; 4000 %:)
X1(t) =Xt E £
_1( ) =X(t) @7 :
Xo(t) = —2.8cogxy(t)) +0.2857uy (t) +d(t). -
1000
Now controluy (t) is taken asy (t) = 0.2#857(2.8 cogxy(t)) +
u(t)). Then the above system (27) will become ’
-10000 5 0
X1(t) = X2(t), %2(t) =u(t)+d(t) (28) Time (sec)
Proposed

wherex = [x; Xp|" is the state vecton = ug + up is the
control input andd(t) is the matched disturbance. Con-

1
sider two arbitrary variables; (x1) = X1 + N1 |x1| % sign(x1)
1

and s(X2) = X + N2|X%2|%2sign(xz) whereay = 1, ap =
% andn; = n2 = 1. Then the controlyy is expressed
asuo = —ki|s1(x1)| 3sign(ss(x1)) — kalsz(x2) | sign(sz(x2))
wherek; =5 andk, = 6.

Now constructing an arbitrary sliding surfacee R
aso =xy — [guodt. Then, 6 =u+d—Uu=0= U+ .~
Up +d—uUp = 0= up+d=0. Therefore, when the sys-
tem is on the sliding surface, the disturbance has to |
canceled out by the contralp, which is defined as be-

15

051

-100

-150

100

50

Time (sec)
HODSMC

Control Input

0 5
Time (sec)
CTSMC

Fig. 3. Control input for different controllers

0

low up = —A1@1(0) +Vv, V= —Axp(0) whereA; = 4.4, -0.5 I

1 . 3 .
>Iz =3, ¢u(0) = ullclﬁsggn(c) + Hz|0]2sign(0), (o) = 1 L.
3M12sign(o) + 2 Lz |o] + 31| o|?sign(0), ky = 2 andy, = 4. 0 . 0

The simulation is carried out for different initial condi-
tions of the states of the system. The proposed controller 1>
compared with the existing controllers. For this, Higher Or
der Discontinuous Sliding Mode Controller (HODSMC) [2]

Time(sec)

15

Fig. 4. Tracking response of state X for X3(0) = —100

10



Control Torque (N-m)

i.e., Uyopsmc = —Kzsign— Kzsign with different controller
gains, i.e.,K; = 10 andK; = 5 and Continuous Terminal
Sliding Mode Controller (CTSMC) proposed in [5] with con-
troller gains,k; = 10k, = 5,L = 5,0 = 1 have been de-
signed. The obtained results are shown in the figures Fig.1-
2. It can be seen that HODSMC is dependent on the initial
conditions and the nature of control signal is discontirsuou
which causes chattering effect. In case of CTSMC, the con-
trol input is continuous but states take a longer time to con-
verge to zero as compared to the proposed controller. In the
proposed one, states are converging to zero uniformly irre-

2 F 1 spective of different initial conditions. Also, from Fig, B
is observed that HODSMC is discontinuous in nature while
-3 : : the CTSMC and proposed are continuous. A tradeoff is well
0 > 10 15 seen from the same figure that there is a huge initial magni-
Time (sec) tude but it is uniform and acts independently to the différen

initial conditions. For the same values of tuned parameters
of the controller, the system states successfully track afse
desired trajectories as shown in Fig. 4-5. The disturbance
observation capability of the proposed controller can be in

- ferred from Fig.6. The Fig.7 shows the control torque for the
10 — — - Applied disturbance tracking problem with initial conditions of; (0) = —30 and
Estimated disturbance x2(0) = —100 which shows that control is continuous and
hence chattering is alleviated.

Fig. 5. Tracking response of state X2 for X2(0) = —30

4.2 Third-order system

For further verification we consider a second exam-
ple of the kinematic model of a car (as given in [I})=
vcosy, y=usiny, = tand 6 =u; wherex andy are
the Cartesian coordinates of the midpoint of the rear axle,
W is the orientation angley is the longitudinal velocityl is
the length between the two axles ahis the steering angle
-5 . . T which is the control input. The control aim is to steer the car
from a given initial position to the desired trajectgry: g(x),
0 S . 10 15 whereg(x) andy are assumed to be available in real time.

Time (sec) Now definex; =y—g(x), v = 10m/s, | =5m,x=y =

v =0=0att =0, g(x) = 10sin0.05x) + 5. From the state
equations of the system it is obvious that the control appear
for the first time explicitly in the third-order derivative ®;.
Hence the relative degree of the system is 3 with respect to
100 , , , , , the control.

Now redefining the state equation by differentiating
X1 =y —g(x), which is given asxg = Xz, X2 = x3, and
x3 = f(x) +g1(X)ur. Now controluy(t) is taken such that,
u(t) = r%X)(—f(x) 4 u(t)). Then the above system will
becomex; = Xz, X2 = X3, andxz = u(t) +d, wherex =
[x1 X xa]" is the state vecton = up + Up is the control
input andd(t) is the matched disturbance.

Consider the arbitrary variables s1(x1) =

1

1 1
X1 + Nafxa|“tsign(xy), Szl(Xz) = Xp + Na2|x2|%2sign(xy)

and s3(x3) = X3 + N3|Xs3|“3sign(x3), wheren; = ny =
50 . ! . - - Ns =1, a1=13% a,=2 andag = 3. Then the con-
0 0.5 1 15 2 25 3 . 1.
Time (sec) trol up is expressed asip = —kj|s1(x1)|2sign(si(x1)) —
3 . 3 .
kelso(x2)|3sign(sa(x2)) — kalss(xs)| Isign(ss(xs)), where
Fig. 7. Evolution of control input ki =1, kk =15 andks = 1.5 are positive constants.

Now constructing an arbitrary sliding surfacee R

Disturbances

Fig. 6. Evolution of estimated and applied disturbance
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Fig. 9. Tracking deviations

aso = X3 — fé updt and defining the second part of the
control law asup = —A1@(0) +Vv, V= —Ax@(0) where

AL = 4.4, A2 = 3, @1(0) = |u|0|Zsign(0) + po|o] 2sign(o),
@(0) = 3pZsign(o) + 2u |0 + 3p8|o|?sign(o), = 1

andp, = 2. The simulation is carried out for different initial g
conditions of the states with an additional disturbance 1 '2
24 0.2sin(t) and it can be observed that tracking deviation | ‘ ‘

25 L I
5 10 15 20 25 30

or redefined statex,i = 1,---,3 are converging to zero Time (sec)
irrespective of the disturbances/uncertainties as shawn i
Fig. 8-10. A comparative study between the Higher Order ~ Fig- 12. Steering angle derivative (control) Proposed
Super-Twisting Controller (HOSTC) [9], HODSMC [2]
and the proposed controller shows least settling time fﬁ
the proposed one. The car trajectory tracking response ar
steering angle derivative (control) are shown in Fig.11 a
Fig.12 respectively. One can clearly observe that the obntr;
is continuous in Fig.12, hence it is more desirable for the
mechanical actuator. Fig. 13 shows the discontinuous @atur
of the control input for HODSMC leading to a chatteringt.3 Fourth-order System
effect. 4.3.1 Dynamic model of a 2-DOF Helicopter

Furthermore, for the demonstration of the efficacy of the  The 2-DOF helicopter is a non-linear and multivariable
proposed controllers, a two-degree of freedom (2-DOF) henstable system with cross couplings and unmodeled dynam-

Control Input u

cr:gpter model which is an example of fourth-order system is
nsidered and implementation of the proposed controllers
the same model in real time is shown in the next subsec-



Xl =X2,

~ —Bpx + (Mygd, — Mpgdh)cose — (Myd2 + Mpd?)xZcosc sinxg I

Xo

X3 =Xa,

T2

Y4 — —ByX4 + 2(Mpd? + Myd2)XpX4CO SiNnXy

5 29

Table 1. System Specifications
S.No. || Symbol Description Value Unit
1. Kpp Thrust torque constant for pitch motor assembly 0.204 || N-m/V
2. Kyy Thrust torque constant for yaw motor assembly 0.072 || N-m/V
3. Kpy Cross-torque constant, acting along pitch axis from yawomg@t 0.0068 || N-m/V
4, Kyp Cross-torque constant, acting along yaw axis from pitchomgt0.0219|| N-m/V
5. Bp Equivalent damping about pitch axis 0.800 N/V
6. By Equivalent damping about yaw axis 0.318 N/V
8. Mn Mass of helicopter 1.3872 kg
9. di Distance of pitch motor from hinge along the helicopter bogly0.186 m
10. d Distance of yaw motor from hinge along the helicopter body 0.186 m
11. Jp Moment of inertia about pitch axis 0.0384| kg-n?
12 Jy Moment of inertia about yaw axis 0.0432| kg-n?
13 My Total moving mass about pitch axis 0.633 kg
14 My Total moving mass about yaw axis 0.667 kg
15. g Acceleration due to gravity 9.8 m/sec
while the tail propeller guides the rotation motion arouinel t
10 yaw axis. The motors correspond to each one of the actuators
8| of the propellers. It is assumed that the pitch and yaw thrust
6 forces i.e.Fp andF, always remain positive when pitch angle
4t and yaw angle increas@y(> 0, 8, > 0). Fy represents the
5 Ll thrust force due to gravity.
30 The nonlinear dynamic model [17] of the system in
§ 2| state-space form is given by (29). Here, X2, X3 and Xy
n are the states of the system representing pitch angle, pitch
Al velocity, yaw angle and yaw velocity, respectively. rep-
ol resents the total moment of inertia of the systerm. =
) ‘ KppVp + KpyVy is the total input torque along the pitch axis
" 2 s 6 8 10 and is the sum of thrust torque from pitch motor and cross

Time (sec)

Fig. 13. Steering angle derivative (control) HODSMC

torque acting along the pitch axis from yaw motor. Simi-
larly, T2 = KypVp + KV is the total input torque along the
yaw axis and is the sum of thrust torque from yaw motor and
cross torque acting along the yaw axis from pitch mafer
andVy are the input voltages to pitch and yaw motors.

ics widely used in mechatronics’ and aerodynamic applica- Assumex; = 61, xo = 01, X3 = 85, X4 = B,. Thus, by
tions [18,19]. A free body diagram of 2-DOF helicoptercarrying out simple manipulations, one can obtain the non-
model is shown in Fig. 14. It is mounted on a fixed baséear dynamical model in state space form represented by
with two propellers that are driven by DC motors. The fron29). For simplicity, (29) can be rewritten in terms of two
propeller controls the elevation of the nose over the piket a separate dynamics i.e., pitcé | and yaw 0,), treating two
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8, >0,CW

8, > 0, cCW

Pitch axis

Fig. 15. Experimental Setup

Fig. 14. Free body diagram of a generalised twin rotor MIMO sys-
tem connected directly to the two channel data-acquisitiorrdboa
(DAQ board), which has 8 digital inputs and 8 pulse width

. . modulated digital outputs, and it is capable of reaching 4 kH
Single Input Single Output (SISO) systems that can be easl&omp"ng rate which is further wired with two channel two

;%?tgﬁgﬁd' Volt-PAQ power amplifiers which provide a regulate@0v
' at 3 A, amplify the output voltages and thus drive the pitch
and yaw motors.
Xl = X2
Xo = Up+La(t, e, X, Vy, ) 0 441 controllers Design
Consider the pitch and yaw dynamics given by (30)
For Yaw, and (31). Then, a proposed controller for the pitch and
yaw control are designed separately considering an arbi-
1
X3 = X4 trary variable as; (x1) = Xy +n1|x1| 91 sign(x1 ), andsy(x2) =
1
X4 = Uy + {2(t, X1, X2, %4, Vp) (31) X+ Nn2lx2|%2sign(xz) for pitch. Similarly, s3(x3) = X3 +
1 1
N3lXa| %3 sign(Xg) andsu(X4) = X4 + Na|Xa| “ Sign(xs) for yaw
where 7y — (My8%-Mpgdy)cosy —(Myd3 +Mpdf)xGeosysing +KpVy whereny, Nz, N3, N4, 01, A2, 03 anday are design param-

b eters which are to be chosen. Then, the pitch controller is
andl, = XpXacosasiM tKyiVo 516 taken as an un- designed asi, = upo + Upp Where controluy is expressed
.. . Jy . L. 1 . 1 .
certainties/disturbances acting on the system. Sulistitut asupo = —kq|S1(X1)|3sign(si(x1)) — ka|S2(X2)| 2 sign(s2(%2)),
Vp = (%eey-1(yy + Soxy) andVy, = (52)"L(uy + 2xs) in - Whereky and kp are controller gains. Now constructing
3 P T y 3y y T3, . c t

(29), we obtain two second-order pitch and yaw dynami@) arbitrary sliding surface € R as 0 = xz — o UpodT,
separately which are in the chain of integrators form (3@ = Up + {1 — Upo = 0= Upo+ Upp + {1 — Upo = 0= Upp +
and (31). up anduy are the control inputs which are to beS1 = 0. Therefore, when the system is on the sliding sur-
designed. Our objective is to design a robust control law féce the disturbance has to be cancelled out by the con-
the given model that can stabilize the system and achieve tHel Upp, Which is defined belowipp = —A1¢u(0) +Vv, V=

h . . 1 . 3 .
desired pitch and yaw angle. The numerical values of thehx@(0) @1(0) = p|o|2sign(o) + H2|0|2sign(0), @2(0) =
design parameters for the exemplary Quanser 2-DOF hejign?sign(0) + 2 p|o] + 3p2|o|?sign(o) wherehy, Az,
copter [17] is tabulated in Table 1. andyy, are tunable gains.

In the next section, both the simulation and experimental ~ Similarly the yaw controller is designed as, =
test have been carried out for the 2-DOF helicopter modgjO + upy where control up is expressed adyo =

as discussed in earlier section and the obtained results @rI%|%(x3)|%sign(%(x3))—k4|s4(x4)|%sign(s4(x4))wherek3

2(MpdZ+Myd3)

shown. and k, are controller gains. Now constructing an arbi-
trary sliding surfacec € R as 0 = x4 — [y Uyodt, 0 =
4.4 Experimental Setup Uy+ {2 — Uy = 0= Uy + Upy + {2 — Uyo = 0 = Upy +

The experimental setup of 2-DOF helicopter consists é¢ = 0. Therefore, when the system is on the sliding sur-
two brushless DC motors with-24V and +15V , one for face the disturbance has to be cancelled out by the con-
pitch and another for yaw followed by two optical encoder§0! Uny, Which is defined belowipy = —As@s(0) +v, V=
for measuring the pitch and yaw angular positions with aAs@s(0) @3(0) = p13\0|%sigr’(0)+p4|0|%sigr(o), M(0) =
resolution of 4096 and 8192 counts/revolution respegtivel3us?sign(o) + 2usu|o] + 32| o[?sign(o) wherehs, A4, pg
as shown in the Fig. 15. The yaw and pitch encoders a@adjy are tunable gains.



4.4.2 Simulation Results 10 ‘

— Desired

In simulation, we consider the problem of stabilization  s; o 0o0]]

1

at the origin and set-point tracking of the pitch and yaw an- !
gles, simultaneously and perform the simulation test fér di
ferent initial conditions in the presence of matched uraiest
ties present in the model{, {2). The control design param-
eters are chosen &3 =k3 = 10,ko = ks =5,A\1 = A3 =2,
N=M=4m=n3=1Lnn=N=2Wu=k=1and
M2 = W = 1. The obtained results are shown in Figures 16,
17,18 and 19. g
It can be observed that states are converging to zeroun %/ " “ o " 0 0
formly irrespective of different initial conditions as sk Time (sec)
in Fig. 16. For the same values of tuned parameters of the _ _ _ , - _
controller, the system states successfully track a desied Flg. 18. Set-point tracking of pitch angle for different initial condi-
point trajectory shown in Fig. 18 and Fig. 19. From Fig. 1?',°ns
it can be seen that the control input is continuous in nature
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and free from chattering. 15
0k f
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5 200 - Ep Fig. 19. Set-point tracking of yaw angle for different initial conditions
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Time (sec) Time (sec)

N=M=6m=n=2Nn=ns=4u=Kp=1and
H2 = ls = 1, the pitch controller(u,) and yaw controller
(uy) are designed following the procedure given in above
controller design section. Then, the designed controfler i
applied on the 2-DOF helicopter model in real time. The ex-
perimental test is carried out for different initial condits

to show the effectiveness of the proposed controllers. The
[\, obtained results are shown in the Figures 20, 21 and 22.

Fig. 16. Time evolution of states for different initial conditions

n
S

20 20

10 10

=
15}

S

§ 0 0 0 Fig. 20 shows the set-point tracking response of the

§ 10 10 10 pitch angle. Similarly, the set-point tracking responsé¢hef

[} 5 10 O 5 10 0 5 10 . A .

< yaw angle is shown in the Fig. 21. It can be observed that

ERRAN o 0 the desired control objectives, i.e., tracking of the picial

< s s|||! " s\ yaw angle are achieved successfully using the proposed con-

£-10 10 10 trollers. Additionally, another property, i.e., the caniter

% i 15 15 acting independently to the different initial conditiossaiso

0 mesen 0 tmetseo " tmewe  Vverified through the results obtained in the experiment. Fig
(x,(0), x4(0) = -10°) (%,(0), x4(0) = 10°) (x,(0), x4(0) = 5°) 22 shows the continuous nature of the controllers.

Fig. 17. Time evolution of control input for different initial conditions
5 Conclusions
This paper proposes a new class of uniform finite time
higher order sliding mode control. The proposed control
4.4.3 Experimental Results is a combination of a modified uniform finite time contin-
In experimental case, we consider the problem of sateus controller and the fixed time super twisting algorithm.
point tracking of the desired pitch and yaw angles of thidence, due to the combination of two continuous contrallers
2-DOF helicopter model. Selecting the control design p#he overall controller is continuous in nature eliminatthg
rameters a¥; = ks = 0.2,kp = kg = 0.15, A; = A3 =9, chattering effect completely. The proposed control is suc-
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